Properties

Label 525.2.i.a
Level 525
Weight 2
Character orbit 525.i
Analytic conductor 4.192
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 525.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 \zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -2 + 2 \zeta_{6} ) q^{4} -2 q^{6} + ( 2 - 3 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} +O(q^{10})\) \( q -2 \zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -2 + 2 \zeta_{6} ) q^{4} -2 q^{6} + ( 2 - 3 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} + ( 6 - 6 \zeta_{6} ) q^{11} + 2 \zeta_{6} q^{12} + 3 q^{13} + ( -6 + 2 \zeta_{6} ) q^{14} + 4 \zeta_{6} q^{16} + ( -4 + 4 \zeta_{6} ) q^{17} + ( -2 + 2 \zeta_{6} ) q^{18} -\zeta_{6} q^{19} + ( -1 - 2 \zeta_{6} ) q^{21} -12 q^{22} -4 \zeta_{6} q^{23} -6 \zeta_{6} q^{26} - q^{27} + ( 2 + 4 \zeta_{6} ) q^{28} -8 q^{29} + ( -1 + \zeta_{6} ) q^{31} + ( 8 - 8 \zeta_{6} ) q^{32} -6 \zeta_{6} q^{33} + 8 q^{34} + 2 q^{36} + 7 \zeta_{6} q^{37} + ( -2 + 2 \zeta_{6} ) q^{38} + ( 3 - 3 \zeta_{6} ) q^{39} -6 q^{41} + ( -4 + 6 \zeta_{6} ) q^{42} - q^{43} + 12 \zeta_{6} q^{44} + ( -8 + 8 \zeta_{6} ) q^{46} + 2 \zeta_{6} q^{47} + 4 q^{48} + ( -5 - 3 \zeta_{6} ) q^{49} + 4 \zeta_{6} q^{51} + ( -6 + 6 \zeta_{6} ) q^{52} + ( 4 - 4 \zeta_{6} ) q^{53} + 2 \zeta_{6} q^{54} - q^{57} + 16 \zeta_{6} q^{58} + ( 8 - 8 \zeta_{6} ) q^{59} + 14 \zeta_{6} q^{61} + 2 q^{62} + ( -3 + \zeta_{6} ) q^{63} -8 q^{64} + ( -12 + 12 \zeta_{6} ) q^{66} + ( 7 - 7 \zeta_{6} ) q^{67} -8 \zeta_{6} q^{68} -4 q^{69} + 6 q^{71} + ( 1 - \zeta_{6} ) q^{73} + ( 14 - 14 \zeta_{6} ) q^{74} + 2 q^{76} + ( -6 - 12 \zeta_{6} ) q^{77} -6 q^{78} + \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 12 \zeta_{6} q^{82} -2 q^{83} + ( 6 - 2 \zeta_{6} ) q^{84} + 2 \zeta_{6} q^{86} + ( -8 + 8 \zeta_{6} ) q^{87} + 12 \zeta_{6} q^{89} + ( 6 - 9 \zeta_{6} ) q^{91} + 8 q^{92} + \zeta_{6} q^{93} + ( 4 - 4 \zeta_{6} ) q^{94} -8 \zeta_{6} q^{96} + 6 q^{97} + ( -6 + 16 \zeta_{6} ) q^{98} -6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} + q^{3} - 2q^{4} - 4q^{6} + q^{7} - q^{9} + O(q^{10}) \) \( 2q - 2q^{2} + q^{3} - 2q^{4} - 4q^{6} + q^{7} - q^{9} + 6q^{11} + 2q^{12} + 6q^{13} - 10q^{14} + 4q^{16} - 4q^{17} - 2q^{18} - q^{19} - 4q^{21} - 24q^{22} - 4q^{23} - 6q^{26} - 2q^{27} + 8q^{28} - 16q^{29} - q^{31} + 8q^{32} - 6q^{33} + 16q^{34} + 4q^{36} + 7q^{37} - 2q^{38} + 3q^{39} - 12q^{41} - 2q^{42} - 2q^{43} + 12q^{44} - 8q^{46} + 2q^{47} + 8q^{48} - 13q^{49} + 4q^{51} - 6q^{52} + 4q^{53} + 2q^{54} - 2q^{57} + 16q^{58} + 8q^{59} + 14q^{61} + 4q^{62} - 5q^{63} - 16q^{64} - 12q^{66} + 7q^{67} - 8q^{68} - 8q^{69} + 12q^{71} + q^{73} + 14q^{74} + 4q^{76} - 24q^{77} - 12q^{78} + q^{79} - q^{81} + 12q^{82} - 4q^{83} + 10q^{84} + 2q^{86} - 8q^{87} + 12q^{89} + 3q^{91} + 16q^{92} + q^{93} + 4q^{94} - 8q^{96} + 12q^{97} + 4q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
151.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.00000 1.73205i 0.500000 0.866025i −1.00000 + 1.73205i 0 −2.00000 0.500000 2.59808i 0 −0.500000 0.866025i 0
226.1 −1.00000 + 1.73205i 0.500000 + 0.866025i −1.00000 1.73205i 0 −2.00000 0.500000 + 2.59808i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.i.a 2
5.b even 2 1 105.2.i.b 2
5.c odd 4 2 525.2.r.d 4
7.c even 3 1 inner 525.2.i.a 2
7.c even 3 1 3675.2.a.o 1
7.d odd 6 1 3675.2.a.p 1
15.d odd 2 1 315.2.j.a 2
20.d odd 2 1 1680.2.bg.l 2
35.c odd 2 1 735.2.i.f 2
35.i odd 6 1 735.2.a.a 1
35.i odd 6 1 735.2.i.f 2
35.j even 6 1 105.2.i.b 2
35.j even 6 1 735.2.a.b 1
35.l odd 12 2 525.2.r.d 4
105.o odd 6 1 315.2.j.a 2
105.o odd 6 1 2205.2.a.k 1
105.p even 6 1 2205.2.a.m 1
140.p odd 6 1 1680.2.bg.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.i.b 2 5.b even 2 1
105.2.i.b 2 35.j even 6 1
315.2.j.a 2 15.d odd 2 1
315.2.j.a 2 105.o odd 6 1
525.2.i.a 2 1.a even 1 1 trivial
525.2.i.a 2 7.c even 3 1 inner
525.2.r.d 4 5.c odd 4 2
525.2.r.d 4 35.l odd 12 2
735.2.a.a 1 35.i odd 6 1
735.2.a.b 1 35.j even 6 1
735.2.i.f 2 35.c odd 2 1
735.2.i.f 2 35.i odd 6 1
1680.2.bg.l 2 20.d odd 2 1
1680.2.bg.l 2 140.p odd 6 1
2205.2.a.k 1 105.o odd 6 1
2205.2.a.m 1 105.p even 6 1
3675.2.a.o 1 7.c even 3 1
3675.2.a.p 1 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 2 T_{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(525, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + 2 T + 2 T^{2} + 4 T^{3} + 4 T^{4} \)
$3$ \( 1 - T + T^{2} \)
$5$ 1
$7$ \( 1 - T + 7 T^{2} \)
$11$ \( 1 - 6 T + 25 T^{2} - 66 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 3 T + 13 T^{2} )^{2} \)
$17$ \( 1 + 4 T - T^{2} + 68 T^{3} + 289 T^{4} \)
$19$ \( ( 1 - 7 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \)
$23$ \( 1 + 4 T - 7 T^{2} + 92 T^{3} + 529 T^{4} \)
$29$ \( ( 1 + 8 T + 29 T^{2} )^{2} \)
$31$ \( 1 + T - 30 T^{2} + 31 T^{3} + 961 T^{4} \)
$37$ \( 1 - 7 T + 12 T^{2} - 259 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 6 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 + T + 43 T^{2} )^{2} \)
$47$ \( 1 - 2 T - 43 T^{2} - 94 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 4 T - 37 T^{2} - 212 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 8 T + 5 T^{2} - 472 T^{3} + 3481 T^{4} \)
$61$ \( ( 1 - 13 T + 61 T^{2} )( 1 - T + 61 T^{2} ) \)
$67$ \( 1 - 7 T - 18 T^{2} - 469 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 6 T + 71 T^{2} )^{2} \)
$73$ \( 1 - T - 72 T^{2} - 73 T^{3} + 5329 T^{4} \)
$79$ \( 1 - T - 78 T^{2} - 79 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 + 2 T + 83 T^{2} )^{2} \)
$89$ \( 1 - 12 T + 55 T^{2} - 1068 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - 6 T + 97 T^{2} )^{2} \)
show more
show less