Properties

Label 525.2.bf.b.368.2
Level 525
Weight 2
Character 525.368
Analytic conductor 4.192
Analytic rank 0
Dimension 8
CM discriminant -3
Inner twists 16

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 525.bf (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 368.2
Root \(0.965926 + 0.258819i\)
Character \(\chi\) = 525.368
Dual form 525.2.bf.b.107.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.67303 - 0.448288i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.19067 + 1.48356i) q^{7} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(1.67303 - 0.448288i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.19067 + 1.48356i) q^{7} +(2.59808 - 1.50000i) q^{9} +(3.34607 + 0.896575i) q^{12} +(1.22474 + 1.22474i) q^{13} +(2.00000 + 3.46410i) q^{16} +(6.06218 - 3.50000i) q^{19} +(-3.00000 + 3.46410i) q^{21} +(3.67423 - 3.67423i) q^{27} +(-5.27792 + 0.378937i) q^{28} +(-3.50000 + 6.06218i) q^{31} +6.00000 q^{36} +(-11.7112 - 3.13801i) q^{37} +(2.59808 + 1.50000i) q^{39} +(-8.57321 - 8.57321i) q^{43} +(4.89898 + 4.89898i) q^{48} +(2.59808 - 6.50000i) q^{49} +(0.896575 + 3.34607i) q^{52} +(8.57321 - 8.57321i) q^{57} +(-7.00000 - 12.1244i) q^{61} +(-3.46618 + 7.14042i) q^{63} +8.00000i q^{64} +(3.13801 + 11.7112i) q^{67} +(15.0573 - 4.03459i) q^{73} +14.0000 q^{76} +(-11.2583 + 6.50000i) q^{79} +(4.50000 - 7.79423i) q^{81} +(-8.66025 + 3.00000i) q^{84} +(-4.50000 - 0.866025i) q^{91} +(-3.13801 + 11.7112i) q^{93} +(-9.79796 + 9.79796i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q + 16q^{16} - 24q^{21} - 28q^{31} + 48q^{36} - 56q^{61} + 112q^{76} + 36q^{81} - 36q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) 1.67303 0.448288i 0.965926 0.258819i
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −2.19067 + 1.48356i −0.827996 + 0.560734i
\(8\) 0 0
\(9\) 2.59808 1.50000i 0.866025 0.500000i
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 3.34607 + 0.896575i 0.965926 + 0.258819i
\(13\) 1.22474 + 1.22474i 0.339683 + 0.339683i 0.856248 0.516565i \(-0.172790\pi\)
−0.516565 + 0.856248i \(0.672790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(18\) 0 0
\(19\) 6.06218 3.50000i 1.39076 0.802955i 0.397360 0.917663i \(-0.369927\pi\)
0.993399 + 0.114708i \(0.0365932\pi\)
\(20\) 0 0
\(21\) −3.00000 + 3.46410i −0.654654 + 0.755929i
\(22\) 0 0
\(23\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) −5.27792 + 0.378937i −0.997433 + 0.0716124i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −3.50000 + 6.06218i −0.628619 + 1.08880i 0.359211 + 0.933257i \(0.383046\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 6.00000 1.00000
\(37\) −11.7112 3.13801i −1.92531 0.515886i −0.983932 0.178545i \(-0.942861\pi\)
−0.941382 0.337342i \(-0.890472\pi\)
\(38\) 0 0
\(39\) 2.59808 + 1.50000i 0.416025 + 0.240192i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −8.57321 8.57321i −1.30740 1.30740i −0.923283 0.384120i \(-0.874505\pi\)
−0.384120 0.923283i \(-0.625495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(48\) 4.89898 + 4.89898i 0.707107 + 0.707107i
\(49\) 2.59808 6.50000i 0.371154 0.928571i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.896575 + 3.34607i 0.124333 + 0.464016i
\(53\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 8.57321 8.57321i 1.13555 1.13555i
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −7.00000 12.1244i −0.896258 1.55236i −0.832240 0.554416i \(-0.812942\pi\)
−0.0640184 0.997949i \(-0.520392\pi\)
\(62\) 0 0
\(63\) −3.46618 + 7.14042i −0.436698 + 0.899608i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 3.13801 + 11.7112i 0.383369 + 1.43075i 0.840721 + 0.541468i \(0.182131\pi\)
−0.457352 + 0.889286i \(0.651202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 15.0573 4.03459i 1.76232 0.472213i 0.775138 0.631792i \(-0.217680\pi\)
0.987185 + 0.159579i \(0.0510137\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 14.0000 1.60591
\(77\) 0 0
\(78\) 0 0
\(79\) −11.2583 + 6.50000i −1.26666 + 0.731307i −0.974355 0.225018i \(-0.927756\pi\)
−0.292306 + 0.956325i \(0.594423\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) −8.66025 + 3.00000i −0.944911 + 0.327327i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −4.50000 0.866025i −0.471728 0.0907841i
\(92\) 0 0
\(93\) −3.13801 + 11.7112i −0.325397 + 1.21440i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.79796 + 9.79796i −0.994832 + 0.994832i −0.999987 0.00515471i \(-0.998359\pi\)
0.00515471 + 0.999987i \(0.498359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 4.93117 18.4034i 0.485882 1.81334i −0.0901732 0.995926i \(-0.528742\pi\)
0.576055 0.817411i \(-0.304591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(108\) 10.0382 2.68973i 0.965926 0.258819i
\(109\) −14.7224 8.50000i −1.41015 0.814152i −0.414751 0.909935i \(-0.636131\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 0 0
\(111\) −21.0000 −1.99323
\(112\) −9.52056 4.62158i −0.899608 0.436698i
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.01910 + 1.34486i 0.464016 + 0.124333i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) −12.1244 + 7.00000i −1.08880 + 0.628619i
\(125\) 0 0
\(126\) 0 0
\(127\) 8.57321 8.57321i 0.760750 0.760750i −0.215708 0.976458i \(-0.569206\pi\)
0.976458 + 0.215708i \(0.0692060\pi\)
\(128\) 0 0
\(129\) −18.1865 10.5000i −1.60123 0.924473i
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) −8.08776 + 16.6610i −0.701298 + 1.44469i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(138\) 0 0
\(139\) 7.00000i 0.593732i 0.954919 + 0.296866i \(0.0959415\pi\)
−0.954919 + 0.296866i \(0.904058\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 10.3923 + 6.00000i 0.866025 + 0.500000i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.43280 12.0394i 0.118175 0.992993i
\(148\) −17.1464 17.1464i −1.40943 1.40943i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) −2.00000 + 3.46410i −0.162758 + 0.281905i −0.935857 0.352381i \(-0.885372\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 3.00000 + 5.19615i 0.240192 + 0.416025i
\(157\) 5.37945 + 20.0764i 0.429327 + 1.60227i 0.754288 + 0.656543i \(0.227982\pi\)
−0.324961 + 0.945727i \(0.605351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.27603 + 23.4225i −0.491576 + 1.83459i 0.0568404 + 0.998383i \(0.481897\pi\)
−0.548417 + 0.836205i \(0.684769\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 10.0000i 0.769231i
\(170\) 0 0
\(171\) 10.5000 18.1865i 0.802955 1.39076i
\(172\) −6.27603 23.4225i −0.478543 1.78595i
\(173\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) −17.1464 17.1464i −1.26750 1.26750i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.59808 + 13.5000i −0.188982 + 0.981981i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 3.58630 + 13.3843i 0.258819 + 0.965926i
\(193\) 11.7112 3.13801i 0.842993 0.225879i 0.188619 0.982050i \(-0.439599\pi\)
0.654374 + 0.756171i \(0.272932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 11.0000 8.66025i 0.785714 0.618590i
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 24.2487 + 14.0000i 1.71895 + 0.992434i 0.920864 + 0.389885i \(0.127485\pi\)
0.798082 + 0.602549i \(0.205848\pi\)
\(200\) 0 0
\(201\) 10.5000 + 18.1865i 0.740613 + 1.28278i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −1.79315 + 6.69213i −0.124333 + 0.464016i
\(209\) 0 0
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.32628 18.4727i −0.0900338 1.25401i
\(218\) 0 0
\(219\) 23.3827 13.5000i 1.58006 0.912245i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 7.34847 + 7.34847i 0.492090 + 0.492090i 0.908964 0.416874i \(-0.136874\pi\)
−0.416874 + 0.908964i \(0.636874\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(228\) 23.4225 6.27603i 1.55119 0.415640i
\(229\) 6.06218 3.50000i 0.400600 0.231287i −0.286143 0.958187i \(-0.592373\pi\)
0.686743 + 0.726900i \(0.259040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −15.9217 + 15.9217i −1.03422 + 1.03422i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −7.00000 + 12.1244i −0.450910 + 0.780998i −0.998443 0.0557856i \(-0.982234\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 4.03459 15.0573i 0.258819 0.965926i
\(244\) 28.0000i 1.79252i
\(245\) 0 0
\(246\) 0 0
\(247\) 11.7112 + 3.13801i 0.745168 + 0.199667i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −13.1440 + 8.90138i −0.827996 + 0.560734i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(258\) 0 0
\(259\) 30.3109 10.5000i 1.88343 0.652438i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −6.27603 + 23.4225i −0.383369 + 1.43075i
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) 14.0000 + 24.2487i 0.850439 + 1.47300i 0.880812 + 0.473466i \(0.156997\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 0 0
\(273\) −7.91688 + 0.568406i −0.479151 + 0.0344015i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.13801 + 11.7112i 0.188545 + 0.703660i 0.993844 + 0.110790i \(0.0353382\pi\)
−0.805299 + 0.592869i \(0.797995\pi\)
\(278\) 0 0
\(279\) 21.0000i 1.25724i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 31.7876 8.51747i 1.88958 0.506311i 0.890941 0.454120i \(-0.150046\pi\)
0.998637 0.0521913i \(-0.0166205\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −14.7224 + 8.50000i −0.866025 + 0.500000i
\(290\) 0 0
\(291\) −12.0000 + 20.7846i −0.703452 + 1.21842i
\(292\) 30.1146 + 8.06918i 1.76232 + 0.472213i
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 31.5000 + 6.06218i 1.81563 + 0.349418i
\(302\) 0 0
\(303\) 0 0
\(304\) 24.2487 + 14.0000i 1.39076 + 0.802955i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.22474 1.22474i 0.0698999 0.0698999i −0.671293 0.741192i \(-0.734261\pi\)
0.741192 + 0.671293i \(0.234261\pi\)
\(308\) 0 0
\(309\) 33.0000i 1.87730i
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 1.34486 5.01910i 0.0760162 0.283696i −0.917446 0.397861i \(-0.869753\pi\)
0.993462 + 0.114165i \(0.0364192\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −26.0000 −1.46261
\(317\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 15.5885 9.00000i 0.866025 0.500000i
\(325\) 0 0
\(326\) 0 0
\(327\) −28.4416 7.62089i −1.57282 0.421436i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.500000 + 0.866025i 0.0274825 + 0.0476011i 0.879440 0.476011i \(-0.157918\pi\)
−0.851957 + 0.523612i \(0.824584\pi\)
\(332\) 0 0
\(333\) −35.1337 + 9.41404i −1.92531 + 0.515886i
\(334\) 0 0
\(335\) 0 0
\(336\) −18.0000 3.46410i −0.981981 0.188982i
\(337\) 25.7196 25.7196i 1.40104 1.40104i 0.604223 0.796815i \(-0.293484\pi\)
0.796815 0.604223i \(-0.206516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 3.95164 + 18.0938i 0.213368 + 0.976972i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(348\) 0 0
\(349\) 14.0000i 0.749403i −0.927146 0.374701i \(-0.877745\pi\)
0.927146 0.374701i \(-0.122255\pi\)
\(350\) 0 0
\(351\) 9.00000 0.480384
\(352\) 0 0
\(353\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 15.0000 25.9808i 0.789474 1.36741i
\(362\) 0 0
\(363\) −13.4722 13.4722i −0.707107 0.707107i
\(364\) −6.92820 6.00000i −0.363137 0.314485i
\(365\) 0 0
\(366\) 0 0
\(367\) −4.03459 15.0573i −0.210604 0.785984i −0.987668 0.156563i \(-0.949959\pi\)
0.777064 0.629421i \(-0.216708\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −17.1464 + 17.1464i −0.889001 + 0.889001i
\(373\) 9.41404 35.1337i 0.487441 1.81915i −0.0813690 0.996684i \(-0.525929\pi\)
0.568810 0.822469i \(-0.307404\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 37.0000i 1.90056i 0.311393 + 0.950281i \(0.399204\pi\)
−0.311393 + 0.950281i \(0.600796\pi\)
\(380\) 0 0
\(381\) 10.5000 18.1865i 0.537931 0.931724i
\(382\) 0 0
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −35.1337 9.41404i −1.78595 0.478543i
\(388\) −26.7685 + 7.17260i −1.35897 + 0.364134i
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −18.4034 4.93117i −0.923638 0.247488i −0.234498 0.972117i \(-0.575345\pi\)
−0.689140 + 0.724628i \(0.742011\pi\)
\(398\) 0 0
\(399\) −6.06218 + 31.5000i −0.303488 + 1.57697i
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) −11.7112 + 3.13801i −0.583378 + 0.156316i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −6.06218 3.50000i −0.299755 0.173064i 0.342578 0.939490i \(-0.388700\pi\)
−0.642333 + 0.766426i \(0.722033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 26.9444 26.9444i 1.32745 1.32745i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.13801 + 11.7112i 0.153669 + 0.573501i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 33.3220 + 16.1755i 1.61256 + 0.782788i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 20.0764 + 5.37945i 0.965926 + 0.258819i
\(433\) 15.9217 + 15.9217i 0.765147 + 0.765147i 0.977248 0.212101i \(-0.0680304\pi\)
−0.212101 + 0.977248i \(0.568030\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −17.0000 29.4449i −0.814152 1.41015i
\(437\) 0 0
\(438\) 0 0
\(439\) −24.2487 + 14.0000i −1.15733 + 0.668184i −0.950662 0.310228i \(-0.899595\pi\)
−0.206666 + 0.978412i \(0.566261\pi\)
\(440\) 0 0
\(441\) −3.00000 20.7846i −0.142857 0.989743i
\(442\) 0 0
\(443\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(444\) −36.3731 21.0000i −1.72619 0.996616i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −11.8685 17.5254i −0.560734 0.827996i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −1.79315 + 6.69213i −0.0842496 + 0.314424i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.7112 3.13801i −0.547828 0.146790i −0.0257197 0.999669i \(-0.508188\pi\)
−0.522108 + 0.852879i \(0.674854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 25.7196 + 25.7196i 1.19529 + 1.19529i 0.975560 + 0.219733i \(0.0705187\pi\)
0.219733 + 0.975560i \(0.429481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(468\) 7.34847 + 7.34847i 0.339683 + 0.339683i
\(469\) −24.2487 21.0000i −1.11970 0.969690i
\(470\) 0 0
\(471\) 18.0000 + 31.1769i 0.829396 + 1.43656i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) −10.5000 18.1865i −0.478759 0.829235i
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) 0 0
\(486\) 0 0
\(487\) 9.41404 + 35.1337i 0.426591 + 1.59206i 0.760424 + 0.649427i \(0.224991\pi\)
−0.333833 + 0.942632i \(0.608342\pi\)
\(488\) 0 0
\(489\) 42.0000i 1.89931i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −28.0000 −1.25724
\(497\) 0 0
\(498\) 0 0
\(499\) −37.2391 + 21.5000i −1.66705 + 0.962472i −0.697835 + 0.716258i \(0.745853\pi\)
−0.969216 + 0.246214i \(0.920813\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4.48288 16.7303i −0.199092 0.743020i
\(508\) 23.4225 6.27603i 1.03920 0.278454i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −27.0000 + 31.1769i −1.19441 + 1.37919i
\(512\) 0 0
\(513\) 9.41404 35.1337i 0.415640 1.55119i
\(514\) 0 0
\(515\) 0 0
\(516\) −21.0000 36.3731i −0.924473 1.60123i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −7.62089 + 28.4416i −0.333238 + 1.24366i 0.572528 + 0.819885i \(0.305963\pi\)
−0.905766 + 0.423777i \(0.860704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −19.9186 11.5000i −0.866025 0.500000i
\(530\) 0 0
\(531\) 0 0
\(532\) −30.6694 + 20.7699i −1.32969 + 0.900489i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −14.5000 25.1147i −0.623404 1.07977i −0.988847 0.148933i \(-0.952416\pi\)
0.365444 0.930834i \(-0.380917\pi\)
\(542\) 0 0
\(543\) 11.7112 3.13801i 0.502577 0.134665i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −17.1464 + 17.1464i −0.733128 + 0.733128i −0.971238 0.238110i \(-0.923472\pi\)
0.238110 + 0.971238i \(0.423472\pi\)
\(548\) 0 0
\(549\) −36.3731 21.0000i −1.55236 0.896258i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 15.0201 30.9418i 0.638721 1.31578i
\(554\) 0 0
\(555\) 0 0
\(556\) −7.00000 + 12.1244i −0.296866 + 0.514187i
\(557\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(558\) 0 0
\(559\) 21.0000i 0.888205i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.70522 + 23.7506i 0.0716124 + 0.997433i
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) 15.5000 26.8468i 0.648655 1.12350i −0.334790 0.942293i \(-0.608665\pi\)
0.983444 0.181210i \(-0.0580014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.500000 + 0.866025i
\(577\) −8.51747 31.7876i −0.354587 1.32334i −0.881004 0.473109i \(-0.843132\pi\)
0.526417 0.850227i \(-0.323535\pi\)
\(578\) 0 0
\(579\) 18.1865 10.5000i 0.755807 0.436365i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 14.5211 19.4201i 0.598839 0.800869i
\(589\) 49.0000i 2.01901i
\(590\) 0 0
\(591\) 0 0
\(592\) −12.5521 46.8449i −0.515886 1.92531i
\(593\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 46.8449 + 12.5521i 1.91723 + 0.513721i
\(598\) 0 0
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) 49.0000 1.99875 0.999376 0.0353259i \(-0.0112469\pi\)
0.999376 + 0.0353259i \(0.0112469\pi\)
\(602\) 0 0
\(603\) 25.7196 + 25.7196i 1.04738 + 1.04738i
\(604\) −6.92820 + 4.00000i −0.281905 + 0.162758i
\(605\) 0 0
\(606\) 0 0
\(607\) 5.01910 + 1.34486i 0.203719 + 0.0545863i 0.359235 0.933247i \(-0.383038\pi\)
−0.155517 + 0.987833i \(0.549704\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −46.8449 + 12.5521i −1.89205 + 0.506973i −0.893756 + 0.448553i \(0.851939\pi\)
−0.998292 + 0.0584195i \(0.981394\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 42.4352 + 24.5000i 1.70562 + 0.984738i 0.939829 + 0.341644i \(0.110984\pi\)
0.765787 + 0.643094i \(0.222350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 12.0000i 0.480384i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) −10.7589 + 40.1528i −0.429327 + 1.60227i
\(629\) 0 0
\(630\) 0 0
\(631\) 44.0000 1.75161 0.875806 0.482663i \(-0.160330\pi\)
0.875806 + 0.482663i \(0.160330\pi\)
\(632\) 0 0
\(633\) −26.7685 + 7.17260i −1.06395 + 0.285085i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.1428 4.77886i 0.441495 0.189345i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) −35.5176 35.5176i −1.40068 1.40068i −0.797938 0.602739i \(-0.794076\pi\)
−0.602739 0.797938i \(-0.705924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −10.5000 30.3109i −0.411527 1.18798i
\(652\) −34.2929 + 34.2929i −1.34301 + 1.34301i
\(653\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 33.0681 33.0681i 1.29011 1.29011i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −24.5000 + 42.4352i −0.952940 + 1.65054i −0.213925 + 0.976850i \(0.568625\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 15.5885 + 9.00000i 0.602685 + 0.347960i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 25.7196 + 25.7196i 0.991419 + 0.991419i 0.999963 0.00854415i \(-0.00271972\pi\)
−0.00854415 + 0.999963i \(0.502720\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 10.0000 17.3205i 0.384615 0.666173i
\(677\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(678\) 0 0
\(679\) 6.92820 36.0000i 0.265880 1.38155i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) 36.3731 21.0000i 1.39076 0.802955i
\(685\) 0 0
\(686\) 0 0
\(687\) 8.57321 8.57321i 0.327089 0.327089i
\(688\) 12.5521 46.8449i 0.478543 1.78595i
\(689\) 0 0
\(690\) 0 0
\(691\) −24.5000 42.4352i −0.932024 1.61431i −0.779857 0.625958i \(-0.784708\pi\)
−0.152167 0.988355i \(-0.548625\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −81.9786 + 21.9661i −3.09188 + 0.828467i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 19.0526 11.0000i 0.715534 0.413114i −0.0975728 0.995228i \(-0.531108\pi\)
0.813107 + 0.582115i \(0.197775\pi\)
\(710\) 0 0
\(711\) −19.5000 + 33.7750i −0.731307 + 1.26666i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 16.5000 + 47.6314i 0.614492 + 1.77389i
\(722\) 0 0
\(723\) −6.27603 + 23.4225i −0.233408 + 0.871091i
\(724\) 12.1244 + 7.00000i 0.450598 + 0.260153i
\(725\) 0 0
\(726\) 0 0
\(727\) −15.9217 + 15.9217i −0.590503 + 0.590503i −0.937767 0.347265i \(-0.887111\pi\)
0.347265 + 0.937767i \(0.387111\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) −12.5521 46.8449i −0.463937 1.73144i
\(733\) 13.8969 51.8640i 0.513294 1.91564i 0.131777 0.991279i \(-0.457932\pi\)
0.381518 0.924362i \(-0.375402\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 45.8993 + 26.5000i 1.68843 + 0.974818i 0.955718 + 0.294285i \(0.0950814\pi\)
0.732717 + 0.680534i \(0.238252\pi\)
\(740\) 0 0
\(741\) 21.0000 0.771454
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.5000 + 35.5070i 0.748056 + 1.29567i 0.948753 + 0.316017i \(0.102346\pi\)
−0.200698 + 0.979653i \(0.564321\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −18.0000 + 20.7846i −0.654654 + 0.755929i
\(757\) −34.2929 + 34.2929i −1.24640 + 1.24640i −0.289095 + 0.957301i \(0.593354\pi\)
−0.957301 + 0.289095i \(0.906646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) 44.8623 3.22097i 1.62412 0.116607i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −7.17260 + 26.7685i −0.258819 + 0.965926i
\(769\) 49.0000i 1.76699i −0.468445 0.883493i \(-0.655186\pi\)
0.468445 0.883493i \(-0.344814\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 23.4225 + 6.27603i 0.842993 + 0.225879i
\(773\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 46.0041 31.1548i 1.65039 1.11767i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 27.7128 4.00000i 0.989743 0.142857i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.896575 + 3.34607i 0.0319595 + 0.119274i 0.980063 0.198688i \(-0.0636681\pi\)
−0.948103 + 0.317962i \(0.897001\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.27603 23.4225i 0.222868 0.831756i
\(794\) 0 0
\(795\) 0 0
\(796\) 28.0000 + 48.4974i 0.992434 + 1.71895i
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 42.0000i 1.48123i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0