Properties

Label 525.2.bc.a.157.1
Level $525$
Weight $2$
Character 525.157
Analytic conductor $4.192$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(82,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.bc (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 157.1
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 525.157
Dual form 525.2.bc.a.418.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.965926 + 0.258819i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.63896 + 0.189469i) q^{7} +(0.866025 - 0.500000i) q^{9} +O(q^{10})\) \(q+(-0.965926 + 0.258819i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.63896 + 0.189469i) q^{7} +(0.866025 - 0.500000i) q^{9} +(-3.00000 + 5.19615i) q^{11} +(-1.93185 - 0.517638i) q^{12} +(-1.41421 - 1.41421i) q^{13} +(2.00000 + 3.46410i) q^{16} +(1.55291 + 5.79555i) q^{17} +(-1.73205 - 3.00000i) q^{19} +(2.50000 - 0.866025i) q^{21} +(-0.707107 + 0.707107i) q^{27} +(-4.76028 - 2.31079i) q^{28} +(-4.50000 - 2.59808i) q^{31} +(1.55291 - 5.79555i) q^{33} +2.00000 q^{36} +(-2.24144 + 8.36516i) q^{37} +(1.73205 + 1.00000i) q^{39} +10.3923i q^{41} +(3.67423 - 3.67423i) q^{43} +(-10.3923 + 6.00000i) q^{44} +(-5.79555 - 1.55291i) q^{47} +(-2.82843 - 2.82843i) q^{48} +(6.92820 - 1.00000i) q^{49} +(-3.00000 - 5.19615i) q^{51} +(-1.03528 - 3.86370i) q^{52} +(2.68973 + 10.0382i) q^{53} +(2.44949 + 2.44949i) q^{57} +(5.19615 - 9.00000i) q^{59} +(7.50000 - 4.33013i) q^{61} +(-2.19067 + 1.48356i) q^{63} +8.00000i q^{64} +(3.34607 - 0.896575i) q^{67} +(-3.10583 + 11.5911i) q^{68} -6.00000 q^{71} +(0.965926 - 0.258819i) q^{73} -6.92820i q^{76} +(6.93237 - 14.2808i) q^{77} +(-4.33013 + 2.50000i) q^{79} +(0.500000 - 0.866025i) q^{81} +(4.24264 + 4.24264i) q^{83} +(5.19615 + 1.00000i) q^{84} +(-5.19615 - 9.00000i) q^{89} +(4.00000 + 3.46410i) q^{91} +(5.01910 + 1.34486i) q^{93} +(9.19239 - 9.19239i) q^{97} +6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 24 q^{11} + 16 q^{16} + 20 q^{21} - 36 q^{31} + 16 q^{36} - 24 q^{51} + 60 q^{61} - 48 q^{71} + 4 q^{81} + 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) −0.965926 + 0.258819i −0.557678 + 0.149429i
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −2.63896 + 0.189469i −0.997433 + 0.0716124i
\(8\) 0 0
\(9\) 0.866025 0.500000i 0.288675 0.166667i
\(10\) 0 0
\(11\) −3.00000 + 5.19615i −0.904534 + 1.56670i −0.0829925 + 0.996550i \(0.526448\pi\)
−0.821541 + 0.570149i \(0.806886\pi\)
\(12\) −1.93185 0.517638i −0.557678 0.149429i
\(13\) −1.41421 1.41421i −0.392232 0.392232i 0.483250 0.875482i \(-0.339456\pi\)
−0.875482 + 0.483250i \(0.839456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 1.55291 + 5.79555i 0.376637 + 1.40563i 0.850938 + 0.525266i \(0.176034\pi\)
−0.474301 + 0.880363i \(0.657299\pi\)
\(18\) 0 0
\(19\) −1.73205 3.00000i −0.397360 0.688247i 0.596040 0.802955i \(-0.296740\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 2.50000 0.866025i 0.545545 0.188982i
\(22\) 0 0
\(23\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −4.76028 2.31079i −0.899608 0.436698i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −4.50000 2.59808i −0.808224 0.466628i 0.0381148 0.999273i \(-0.487865\pi\)
−0.846339 + 0.532645i \(0.821198\pi\)
\(32\) 0 0
\(33\) 1.55291 5.79555i 0.270328 1.00888i
\(34\) 0 0
\(35\) 0 0
\(36\) 2.00000 0.333333
\(37\) −2.24144 + 8.36516i −0.368490 + 1.37522i 0.494137 + 0.869384i \(0.335484\pi\)
−0.862627 + 0.505840i \(0.831183\pi\)
\(38\) 0 0
\(39\) 1.73205 + 1.00000i 0.277350 + 0.160128i
\(40\) 0 0
\(41\) 10.3923i 1.62301i 0.584349 + 0.811503i \(0.301350\pi\)
−0.584349 + 0.811503i \(0.698650\pi\)
\(42\) 0 0
\(43\) 3.67423 3.67423i 0.560316 0.560316i −0.369082 0.929397i \(-0.620328\pi\)
0.929397 + 0.369082i \(0.120328\pi\)
\(44\) −10.3923 + 6.00000i −1.56670 + 0.904534i
\(45\) 0 0
\(46\) 0 0
\(47\) −5.79555 1.55291i −0.845369 0.226516i −0.189961 0.981792i \(-0.560836\pi\)
−0.655407 + 0.755276i \(0.727503\pi\)
\(48\) −2.82843 2.82843i −0.408248 0.408248i
\(49\) 6.92820 1.00000i 0.989743 0.142857i
\(50\) 0 0
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) −1.03528 3.86370i −0.143567 0.535799i
\(53\) 2.68973 + 10.0382i 0.369462 + 1.37885i 0.861270 + 0.508148i \(0.169670\pi\)
−0.491807 + 0.870704i \(0.663664\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.44949 + 2.44949i 0.324443 + 0.324443i
\(58\) 0 0
\(59\) 5.19615 9.00000i 0.676481 1.17170i −0.299552 0.954080i \(-0.596837\pi\)
0.976034 0.217620i \(-0.0698294\pi\)
\(60\) 0 0
\(61\) 7.50000 4.33013i 0.960277 0.554416i 0.0640184 0.997949i \(-0.479608\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) −2.19067 + 1.48356i −0.275999 + 0.186911i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 3.34607 0.896575i 0.408787 0.109534i −0.0485648 0.998820i \(-0.515465\pi\)
0.457352 + 0.889286i \(0.348798\pi\)
\(68\) −3.10583 + 11.5911i −0.376637 + 1.40563i
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 0.965926 0.258819i 0.113053 0.0302925i −0.201849 0.979417i \(-0.564695\pi\)
0.314902 + 0.949124i \(0.398028\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 6.92820i 0.794719i
\(77\) 6.93237 14.2808i 0.790017 1.62745i
\(78\) 0 0
\(79\) −4.33013 + 2.50000i −0.487177 + 0.281272i −0.723403 0.690426i \(-0.757423\pi\)
0.236225 + 0.971698i \(0.424090\pi\)
\(80\) 0 0
\(81\) 0.500000 0.866025i 0.0555556 0.0962250i
\(82\) 0 0
\(83\) 4.24264 + 4.24264i 0.465690 + 0.465690i 0.900515 0.434825i \(-0.143190\pi\)
−0.434825 + 0.900515i \(0.643190\pi\)
\(84\) 5.19615 + 1.00000i 0.566947 + 0.109109i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.19615 9.00000i −0.550791 0.953998i −0.998218 0.0596775i \(-0.980993\pi\)
0.447427 0.894321i \(-0.352341\pi\)
\(90\) 0 0
\(91\) 4.00000 + 3.46410i 0.419314 + 0.363137i
\(92\) 0 0
\(93\) 5.01910 + 1.34486i 0.520456 + 0.139456i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.19239 9.19239i 0.933346 0.933346i −0.0645677 0.997913i \(-0.520567\pi\)
0.997913 + 0.0645677i \(0.0205669\pi\)
\(98\) 0 0
\(99\) 6.00000i 0.603023i
\(100\) 0 0
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 1.81173 6.76148i 0.178515 0.666228i −0.817411 0.576055i \(-0.804591\pi\)
0.995926 0.0901732i \(-0.0287421\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(108\) −1.93185 + 0.517638i −0.185893 + 0.0498097i
\(109\) 8.66025 + 5.00000i 0.829502 + 0.478913i 0.853682 0.520794i \(-0.174364\pi\)
−0.0241802 + 0.999708i \(0.507698\pi\)
\(110\) 0 0
\(111\) 8.66025i 0.821995i
\(112\) −5.93426 8.76268i −0.560734 0.827996i
\(113\) 7.34847 7.34847i 0.691286 0.691286i −0.271229 0.962515i \(-0.587430\pi\)
0.962515 + 0.271229i \(0.0874301\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.93185 0.517638i −0.178600 0.0478557i
\(118\) 0 0
\(119\) −5.19615 15.0000i −0.476331 1.37505i
\(120\) 0 0
\(121\) −12.5000 21.6506i −1.13636 1.96824i
\(122\) 0 0
\(123\) −2.68973 10.0382i −0.242524 0.905114i
\(124\) −5.19615 9.00000i −0.466628 0.808224i
\(125\) 0 0
\(126\) 0 0
\(127\) 8.57321 + 8.57321i 0.760750 + 0.760750i 0.976458 0.215708i \(-0.0692060\pi\)
−0.215708 + 0.976458i \(0.569206\pi\)
\(128\) 0 0
\(129\) −2.59808 + 4.50000i −0.228748 + 0.396203i
\(130\) 0 0
\(131\) 9.00000 5.19615i 0.786334 0.453990i −0.0523366 0.998630i \(-0.516667\pi\)
0.838670 + 0.544640i \(0.183334\pi\)
\(132\) 8.48528 8.48528i 0.738549 0.738549i
\(133\) 5.13922 + 7.58871i 0.445627 + 0.658024i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.0764 5.37945i 1.71524 0.459598i 0.738542 0.674207i \(-0.235515\pi\)
0.976700 + 0.214610i \(0.0688480\pi\)
\(138\) 0 0
\(139\) −1.73205 −0.146911 −0.0734553 0.997299i \(-0.523403\pi\)
−0.0734553 + 0.997299i \(0.523403\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 11.5911 3.10583i 0.969297 0.259722i
\(144\) 3.46410 + 2.00000i 0.288675 + 0.166667i
\(145\) 0 0
\(146\) 0 0
\(147\) −6.43331 + 2.75908i −0.530611 + 0.227565i
\(148\) −12.2474 + 12.2474i −1.00673 + 1.00673i
\(149\) −10.3923 + 6.00000i −0.851371 + 0.491539i −0.861113 0.508413i \(-0.830232\pi\)
0.00974235 + 0.999953i \(0.496899\pi\)
\(150\) 0 0
\(151\) −2.50000 + 4.33013i −0.203447 + 0.352381i −0.949637 0.313353i \(-0.898548\pi\)
0.746190 + 0.665733i \(0.231881\pi\)
\(152\) 0 0
\(153\) 4.24264 + 4.24264i 0.342997 + 0.342997i
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 + 3.46410i 0.160128 + 0.277350i
\(157\) 1.81173 + 6.76148i 0.144592 + 0.539625i 0.999773 + 0.0212957i \(0.00677914\pi\)
−0.855181 + 0.518329i \(0.826554\pi\)
\(158\) 0 0
\(159\) −5.19615 9.00000i −0.412082 0.713746i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.36516 + 2.24144i 0.655210 + 0.175563i 0.571083 0.820892i \(-0.306523\pi\)
0.0841267 + 0.996455i \(0.473190\pi\)
\(164\) −10.3923 + 18.0000i −0.811503 + 1.40556i
\(165\) 0 0
\(166\) 0 0
\(167\) −8.48528 + 8.48528i −0.656611 + 0.656611i −0.954577 0.297966i \(-0.903692\pi\)
0.297966 + 0.954577i \(0.403692\pi\)
\(168\) 0 0
\(169\) 9.00000i 0.692308i
\(170\) 0 0
\(171\) −3.00000 1.73205i −0.229416 0.132453i
\(172\) 10.0382 2.68973i 0.765405 0.205090i
\(173\) −4.65874 + 17.3867i −0.354198 + 1.32188i 0.527294 + 0.849683i \(0.323207\pi\)
−0.881491 + 0.472200i \(0.843460\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −24.0000 −1.80907
\(177\) −2.68973 + 10.0382i −0.202172 + 0.754517i
\(178\) 0 0
\(179\) 20.7846 + 12.0000i 1.55351 + 0.896922i 0.997852 + 0.0655145i \(0.0208689\pi\)
0.555663 + 0.831408i \(0.312464\pi\)
\(180\) 0 0
\(181\) 5.19615i 0.386227i 0.981176 + 0.193113i \(0.0618586\pi\)
−0.981176 + 0.193113i \(0.938141\pi\)
\(182\) 0 0
\(183\) −6.12372 + 6.12372i −0.452679 + 0.452679i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −34.7733 9.31749i −2.54288 0.681362i
\(188\) −8.48528 8.48528i −0.618853 0.618853i
\(189\) 1.73205 2.00000i 0.125988 0.145479i
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −2.07055 7.72741i −0.149429 0.557678i
\(193\) −4.03459 15.0573i −0.290416 1.08385i −0.944790 0.327677i \(-0.893734\pi\)
0.654374 0.756171i \(-0.272932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 13.0000 + 5.19615i 0.928571 + 0.371154i
\(197\) −7.34847 7.34847i −0.523557 0.523557i 0.395087 0.918644i \(-0.370714\pi\)
−0.918644 + 0.395087i \(0.870714\pi\)
\(198\) 0 0
\(199\) −9.52628 + 16.5000i −0.675300 + 1.16965i 0.301081 + 0.953599i \(0.402653\pi\)
−0.976381 + 0.216055i \(0.930681\pi\)
\(200\) 0 0
\(201\) −3.00000 + 1.73205i −0.211604 + 0.122169i
\(202\) 0 0
\(203\) 0 0
\(204\) 12.0000i 0.840168i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 2.07055 7.72741i 0.143567 0.535799i
\(209\) 20.7846 1.43770
\(210\) 0 0
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) −5.37945 + 20.0764i −0.369462 + 1.37885i
\(213\) 5.79555 1.55291i 0.397105 0.106404i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.3676 + 6.00361i 0.839565 + 0.407551i
\(218\) 0 0
\(219\) −0.866025 + 0.500000i −0.0585206 + 0.0337869i
\(220\) 0 0
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0 0
\(223\) 3.53553 + 3.53553i 0.236757 + 0.236757i 0.815506 0.578749i \(-0.196459\pi\)
−0.578749 + 0.815506i \(0.696459\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.55291 + 5.79555i 0.103071 + 0.384664i 0.998119 0.0613041i \(-0.0195260\pi\)
−0.895049 + 0.445969i \(0.852859\pi\)
\(228\) 1.79315 + 6.69213i 0.118754 + 0.443197i
\(229\) −3.46410 6.00000i −0.228914 0.396491i 0.728572 0.684969i \(-0.240184\pi\)
−0.957487 + 0.288478i \(0.906851\pi\)
\(230\) 0 0
\(231\) −3.00000 + 15.5885i −0.197386 + 1.02565i
\(232\) 0 0
\(233\) −20.0764 5.37945i −1.31525 0.352420i −0.468052 0.883701i \(-0.655044\pi\)
−0.847196 + 0.531281i \(0.821711\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 18.0000 10.3923i 1.17170 0.676481i
\(237\) 3.53553 3.53553i 0.229658 0.229658i
\(238\) 0 0
\(239\) 18.0000i 1.16432i 0.813073 + 0.582162i \(0.197793\pi\)
−0.813073 + 0.582162i \(0.802207\pi\)
\(240\) 0 0
\(241\) 16.5000 + 9.52628i 1.06286 + 0.613642i 0.926222 0.376980i \(-0.123037\pi\)
0.136637 + 0.990621i \(0.456371\pi\)
\(242\) 0 0
\(243\) −0.258819 + 0.965926i −0.0166032 + 0.0619642i
\(244\) 17.3205 1.10883
\(245\) 0 0
\(246\) 0 0
\(247\) −1.79315 + 6.69213i −0.114095 + 0.425810i
\(248\) 0 0
\(249\) −5.19615 3.00000i −0.329293 0.190117i
\(250\) 0 0
\(251\) 20.7846i 1.31191i 0.754799 + 0.655956i \(0.227735\pi\)
−0.754799 + 0.655956i \(0.772265\pi\)
\(252\) −5.27792 + 0.378937i −0.332478 + 0.0238708i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 5.79555 + 1.55291i 0.361517 + 0.0968681i 0.435005 0.900428i \(-0.356747\pi\)
−0.0734884 + 0.997296i \(0.523413\pi\)
\(258\) 0 0
\(259\) 4.33013 22.5000i 0.269061 1.39808i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.06918 30.1146i −0.497567 1.85694i −0.515151 0.857100i \(-0.672264\pi\)
0.0175838 0.999845i \(-0.494403\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.34847 + 7.34847i 0.449719 + 0.449719i
\(268\) 6.69213 + 1.79315i 0.408787 + 0.109534i
\(269\) 10.3923 18.0000i 0.633630 1.09748i −0.353174 0.935558i \(-0.614898\pi\)
0.986804 0.161922i \(-0.0517692\pi\)
\(270\) 0 0
\(271\) −27.0000 + 15.5885i −1.64013 + 0.946931i −0.659349 + 0.751837i \(0.729168\pi\)
−0.980785 + 0.195094i \(0.937499\pi\)
\(272\) −16.9706 + 16.9706i −1.02899 + 1.02899i
\(273\) −4.76028 2.31079i −0.288105 0.139855i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −13.3843 + 3.58630i −0.804182 + 0.215480i −0.637419 0.770517i \(-0.719998\pi\)
−0.166763 + 0.985997i \(0.553331\pi\)
\(278\) 0 0
\(279\) −5.19615 −0.311086
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −15.4548 + 4.14110i −0.918693 + 0.246163i −0.687027 0.726632i \(-0.741084\pi\)
−0.231667 + 0.972795i \(0.574418\pi\)
\(284\) −10.3923 6.00000i −0.616670 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) −1.96902 27.4249i −0.116227 1.61884i
\(288\) 0 0
\(289\) −16.4545 + 9.50000i −0.967911 + 0.558824i
\(290\) 0 0
\(291\) −6.50000 + 11.2583i −0.381037 + 0.659975i
\(292\) 1.93185 + 0.517638i 0.113053 + 0.0302925i
\(293\) −12.7279 12.7279i −0.743573 0.743573i 0.229691 0.973264i \(-0.426229\pi\)
−0.973264 + 0.229691i \(0.926229\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.55291 5.79555i −0.0901092 0.336292i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −9.00000 + 10.3923i −0.518751 + 0.599002i
\(302\) 0 0
\(303\) 0 0
\(304\) 6.92820 12.0000i 0.397360 0.688247i
\(305\) 0 0
\(306\) 0 0
\(307\) −4.94975 + 4.94975i −0.282497 + 0.282497i −0.834104 0.551607i \(-0.814015\pi\)
0.551607 + 0.834104i \(0.314015\pi\)
\(308\) 26.2880 17.8028i 1.49790 1.01441i
\(309\) 7.00000i 0.398216i
\(310\) 0 0
\(311\) 18.0000 + 10.3923i 1.02069 + 0.589294i 0.914303 0.405032i \(-0.132739\pi\)
0.106384 + 0.994325i \(0.466073\pi\)
\(312\) 0 0
\(313\) −4.91756 + 18.3526i −0.277957 + 1.03735i 0.675877 + 0.737015i \(0.263765\pi\)
−0.953834 + 0.300335i \(0.902902\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −10.0000 −0.562544
\(317\) −2.68973 + 10.0382i −0.151070 + 0.563801i 0.848340 + 0.529452i \(0.177602\pi\)
−0.999410 + 0.0343491i \(0.989064\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14.6969 14.6969i 0.817760 0.817760i
\(324\) 1.73205 1.00000i 0.0962250 0.0555556i
\(325\) 0 0
\(326\) 0 0
\(327\) −9.65926 2.58819i −0.534158 0.143127i
\(328\) 0 0
\(329\) 15.5885 + 3.00000i 0.859419 + 0.165395i
\(330\) 0 0
\(331\) 2.50000 + 4.33013i 0.137412 + 0.238005i 0.926516 0.376254i \(-0.122788\pi\)
−0.789104 + 0.614260i \(0.789455\pi\)
\(332\) 3.10583 + 11.5911i 0.170454 + 0.636145i
\(333\) 2.24144 + 8.36516i 0.122830 + 0.458408i
\(334\) 0 0
\(335\) 0 0
\(336\) 8.00000 + 6.92820i 0.436436 + 0.377964i
\(337\) 18.3712 + 18.3712i 1.00074 + 1.00074i 1.00000 0.000741840i \(0.000236135\pi\)
0.000741840 1.00000i \(0.499764\pi\)
\(338\) 0 0
\(339\) −5.19615 + 9.00000i −0.282216 + 0.488813i
\(340\) 0 0
\(341\) 27.0000 15.5885i 1.46213 0.844162i
\(342\) 0 0
\(343\) −18.0938 + 3.95164i −0.976972 + 0.213368i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0382 + 2.68973i −0.538879 + 0.144392i −0.517985 0.855390i \(-0.673318\pi\)
−0.0208935 + 0.999782i \(0.506651\pi\)
\(348\) 0 0
\(349\) −20.7846 −1.11257 −0.556287 0.830990i \(-0.687775\pi\)
−0.556287 + 0.830990i \(0.687775\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −34.7733 + 9.31749i −1.85080 + 0.495920i −0.999582 0.0288971i \(-0.990800\pi\)
−0.851215 + 0.524817i \(0.824134\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 20.7846i 1.10158i
\(357\) 8.90138 + 13.1440i 0.471111 + 0.695656i
\(358\) 0 0
\(359\) 15.5885 9.00000i 0.822727 0.475002i −0.0286287 0.999590i \(-0.509114\pi\)
0.851356 + 0.524588i \(0.175781\pi\)
\(360\) 0 0
\(361\) 3.50000 6.06218i 0.184211 0.319062i
\(362\) 0 0
\(363\) 17.6777 + 17.6777i 0.927837 + 0.927837i
\(364\) 3.46410 + 10.0000i 0.181568 + 0.524142i
\(365\) 0 0
\(366\) 0 0
\(367\) −4.39992 16.4207i −0.229674 0.857156i −0.980478 0.196630i \(-0.937000\pi\)
0.750804 0.660526i \(-0.229666\pi\)
\(368\) 0 0
\(369\) 5.19615 + 9.00000i 0.270501 + 0.468521i
\(370\) 0 0
\(371\) −9.00000 25.9808i −0.467257 1.34885i
\(372\) 7.34847 + 7.34847i 0.381000 + 0.381000i
\(373\) 6.69213 + 1.79315i 0.346505 + 0.0928458i 0.427874 0.903838i \(-0.359263\pi\)
−0.0813690 + 0.996684i \(0.525929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 28.0000i 1.43826i 0.694874 + 0.719132i \(0.255460\pi\)
−0.694874 + 0.719132i \(0.744540\pi\)
\(380\) 0 0
\(381\) −10.5000 6.06218i −0.537931 0.310575i
\(382\) 0 0
\(383\) 6.21166 23.1822i 0.317401 1.18456i −0.604333 0.796732i \(-0.706560\pi\)
0.921733 0.387824i \(-0.126773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.34486 5.01910i 0.0683632 0.255135i
\(388\) 25.1141 6.72930i 1.27497 0.341628i
\(389\) −5.19615 3.00000i −0.263455 0.152106i 0.362454 0.932002i \(-0.381939\pi\)
−0.625910 + 0.779895i \(0.715272\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −7.34847 + 7.34847i −0.370681 + 0.370681i
\(394\) 0 0
\(395\) 0 0
\(396\) −6.00000 + 10.3923i −0.301511 + 0.522233i
\(397\) 6.76148 + 1.81173i 0.339349 + 0.0909283i 0.424469 0.905442i \(-0.360461\pi\)
−0.0851201 + 0.996371i \(0.527127\pi\)
\(398\) 0 0
\(399\) −6.92820 6.00000i −0.346844 0.300376i
\(400\) 0 0
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) 2.68973 + 10.0382i 0.133985 + 0.500038i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −36.7423 36.7423i −1.82125 1.82125i
\(408\) 0 0
\(409\) −3.46410 + 6.00000i −0.171289 + 0.296681i −0.938871 0.344270i \(-0.888126\pi\)
0.767582 + 0.640951i \(0.221460\pi\)
\(410\) 0 0
\(411\) −18.0000 + 10.3923i −0.887875 + 0.512615i
\(412\) 9.89949 9.89949i 0.487713 0.487713i
\(413\) −12.0072 + 24.7351i −0.590836 + 1.21714i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.67303 0.448288i 0.0819288 0.0219527i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 31.0000 1.51085 0.755424 0.655237i \(-0.227431\pi\)
0.755424 + 0.655237i \(0.227431\pi\)
\(422\) 0 0
\(423\) −5.79555 + 1.55291i −0.281790 + 0.0755053i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −18.9718 + 12.8480i −0.918108 + 0.621760i
\(428\) 0 0
\(429\) −10.3923 + 6.00000i −0.501745 + 0.289683i
\(430\) 0 0
\(431\) 6.00000 10.3923i 0.289010 0.500580i −0.684564 0.728953i \(-0.740007\pi\)
0.973574 + 0.228373i \(0.0733406\pi\)
\(432\) −3.86370 1.03528i −0.185893 0.0498097i
\(433\) 20.5061 + 20.5061i 0.985460 + 0.985460i 0.999896 0.0144357i \(-0.00459518\pi\)
−0.0144357 + 0.999896i \(0.504595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.0000 + 17.3205i 0.478913 + 0.829502i
\(437\) 0 0
\(438\) 0 0
\(439\) 4.33013 + 7.50000i 0.206666 + 0.357955i 0.950662 0.310228i \(-0.100405\pi\)
−0.743996 + 0.668184i \(0.767072\pi\)
\(440\) 0 0
\(441\) 5.50000 4.33013i 0.261905 0.206197i
\(442\) 0 0
\(443\) 10.0382 + 2.68973i 0.476929 + 0.127793i 0.489272 0.872131i \(-0.337262\pi\)
−0.0123433 + 0.999924i \(0.503929\pi\)
\(444\) 8.66025 15.0000i 0.410997 0.711868i
\(445\) 0 0
\(446\) 0 0
\(447\) 8.48528 8.48528i 0.401340 0.401340i
\(448\) −1.51575 21.1117i −0.0716124 0.997433i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) −54.0000 31.1769i −2.54276 1.46806i
\(452\) 20.0764 5.37945i 0.944314 0.253028i
\(453\) 1.29410 4.82963i 0.0608019 0.226916i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.93117 18.4034i 0.230670 0.860873i −0.749383 0.662137i \(-0.769650\pi\)
0.980053 0.198736i \(-0.0636836\pi\)
\(458\) 0 0
\(459\) −5.19615 3.00000i −0.242536 0.140028i
\(460\) 0 0
\(461\) 31.1769i 1.45205i 0.687666 + 0.726027i \(0.258635\pi\)
−0.687666 + 0.726027i \(0.741365\pi\)
\(462\) 0 0
\(463\) 1.22474 1.22474i 0.0569187 0.0569187i −0.678074 0.734993i \(-0.737185\pi\)
0.734993 + 0.678074i \(0.237185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.9778 + 7.76457i 1.34093 + 0.359302i 0.856780 0.515683i \(-0.172462\pi\)
0.484152 + 0.874984i \(0.339128\pi\)
\(468\) −2.82843 2.82843i −0.130744 0.130744i
\(469\) −8.66025 + 3.00000i −0.399893 + 0.138527i
\(470\) 0 0
\(471\) −3.50000 6.06218i −0.161271 0.279330i
\(472\) 0 0
\(473\) 8.06918 + 30.1146i 0.371021 + 1.38467i
\(474\) 0 0
\(475\) 0 0
\(476\) 6.00000 31.1769i 0.275010 1.42899i
\(477\) 7.34847 + 7.34847i 0.336463 + 0.336463i
\(478\) 0 0
\(479\) −10.3923 + 18.0000i −0.474837 + 0.822441i −0.999585 0.0288165i \(-0.990826\pi\)
0.524748 + 0.851258i \(0.324159\pi\)
\(480\) 0 0
\(481\) 15.0000 8.66025i 0.683941 0.394874i
\(482\) 0 0
\(483\) 0 0
\(484\) 50.0000i 2.27273i
\(485\) 0 0
\(486\) 0 0
\(487\) 35.1337 9.41404i 1.59206 0.426591i 0.649427 0.760424i \(-0.275009\pi\)
0.942632 + 0.333833i \(0.108342\pi\)
\(488\) 0 0
\(489\) −8.66025 −0.391630
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 5.37945 20.0764i 0.242524 0.905114i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 20.7846i 0.933257i
\(497\) 15.8338 1.13681i 0.710241 0.0509930i
\(498\) 0 0
\(499\) 17.3205 10.0000i 0.775372 0.447661i −0.0594153 0.998233i \(-0.518924\pi\)
0.834788 + 0.550572i \(0.185590\pi\)
\(500\) 0 0
\(501\) 6.00000 10.3923i 0.268060 0.464294i
\(502\) 0 0
\(503\) −25.4558 25.4558i −1.13502 1.13502i −0.989330 0.145690i \(-0.953460\pi\)
−0.145690 0.989330i \(-0.546540\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.32937 + 8.69333i 0.103451 + 0.386084i
\(508\) 6.27603 + 23.4225i 0.278454 + 1.03920i
\(509\) −5.19615 9.00000i −0.230315 0.398918i 0.727586 0.686017i \(-0.240642\pi\)
−0.957901 + 0.287099i \(0.907309\pi\)
\(510\) 0 0
\(511\) −2.50000 + 0.866025i −0.110593 + 0.0383107i
\(512\) 0 0
\(513\) 3.34607 + 0.896575i 0.147732 + 0.0395848i
\(514\) 0 0
\(515\) 0 0
\(516\) −9.00000 + 5.19615i −0.396203 + 0.228748i
\(517\) 25.4558 25.4558i 1.11955 1.11955i
\(518\) 0 0
\(519\) 18.0000i 0.790112i
\(520\) 0 0
\(521\) −9.00000 5.19615i −0.394297 0.227648i 0.289723 0.957110i \(-0.406437\pi\)
−0.684020 + 0.729463i \(0.739770\pi\)
\(522\) 0 0
\(523\) 1.81173 6.76148i 0.0792216 0.295659i −0.914936 0.403599i \(-0.867759\pi\)
0.994157 + 0.107941i \(0.0344256\pi\)
\(524\) 20.7846 0.907980
\(525\) 0 0
\(526\) 0 0
\(527\) 8.06918 30.1146i 0.351499 1.31181i
\(528\) 23.1822 6.21166i 1.00888 0.270328i
\(529\) −19.9186 11.5000i −0.866025 0.500000i
\(530\) 0 0
\(531\) 10.3923i 0.450988i
\(532\) 1.31268 + 18.2832i 0.0569118 + 0.792679i
\(533\) 14.6969 14.6969i 0.636595 0.636595i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −23.1822 6.21166i −1.00039 0.268053i
\(538\) 0 0
\(539\) −15.5885 + 39.0000i −0.671442 + 1.67985i
\(540\) 0 0
\(541\) 5.00000 + 8.66025i 0.214967 + 0.372333i 0.953262 0.302144i \(-0.0977023\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(542\) 0 0
\(543\) −1.34486 5.01910i −0.0577136 0.215390i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −22.0454 22.0454i −0.942594 0.942594i 0.0558458 0.998439i \(-0.482214\pi\)
−0.998439 + 0.0558458i \(0.982214\pi\)
\(548\) 40.1528 + 10.7589i 1.71524 + 0.459598i
\(549\) 4.33013 7.50000i 0.184805 0.320092i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 10.9534 7.41782i 0.465784 0.315438i
\(554\) 0 0
\(555\) 0 0
\(556\) −3.00000 1.73205i −0.127228 0.0734553i
\(557\) −10.0382 + 2.68973i −0.425332 + 0.113967i −0.465134 0.885240i \(-0.653994\pi\)
0.0398021 + 0.999208i \(0.487327\pi\)
\(558\) 0 0
\(559\) −10.3923 −0.439548
\(560\) 0 0
\(561\) 36.0000 1.51992
\(562\) 0 0
\(563\) −5.79555 + 1.55291i −0.244254 + 0.0654475i −0.378869 0.925450i \(-0.623687\pi\)
0.134615 + 0.990898i \(0.457020\pi\)
\(564\) 10.3923 + 6.00000i 0.437595 + 0.252646i
\(565\) 0 0
\(566\) 0 0
\(567\) −1.15539 + 2.38014i −0.0485220 + 0.0999565i
\(568\) 0 0
\(569\) 20.7846 12.0000i 0.871336 0.503066i 0.00354413 0.999994i \(-0.498872\pi\)
0.867792 + 0.496928i \(0.165539\pi\)
\(570\) 0 0
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) 23.1822 + 6.21166i 0.969297 + 0.259722i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 4.00000 + 6.92820i 0.166667 + 0.288675i
\(577\) −1.81173 6.76148i −0.0754234 0.281484i 0.917906 0.396799i \(-0.129879\pi\)
−0.993329 + 0.115315i \(0.963212\pi\)
\(578\) 0 0
\(579\) 7.79423 + 13.5000i 0.323917 + 0.561041i
\(580\) 0 0
\(581\) −12.0000 10.3923i −0.497844 0.431145i
\(582\) 0 0
\(583\) −60.2292 16.1384i −2.49444 0.668383i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.7279 + 12.7279i −0.525338 + 0.525338i −0.919179 0.393841i \(-0.871146\pi\)
0.393841 + 0.919179i \(0.371146\pi\)
\(588\) −13.9019 1.65445i −0.573305 0.0682284i
\(589\) 18.0000i 0.741677i
\(590\) 0 0
\(591\) 9.00000 + 5.19615i 0.370211 + 0.213741i
\(592\) −33.4607 + 8.96575i −1.37522 + 0.368490i
\(593\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −24.0000 −0.983078
\(597\) 4.93117 18.4034i 0.201819 0.753199i
\(598\) 0 0
\(599\) 10.3923 + 6.00000i 0.424618 + 0.245153i 0.697051 0.717021i \(-0.254495\pi\)
−0.272433 + 0.962175i \(0.587828\pi\)
\(600\) 0 0
\(601\) 34.6410i 1.41304i −0.707695 0.706518i \(-0.750265\pi\)
0.707695 0.706518i \(-0.249735\pi\)
\(602\) 0 0
\(603\) 2.44949 2.44949i 0.0997509 0.0997509i
\(604\) −8.66025 + 5.00000i −0.352381 + 0.203447i
\(605\) 0 0
\(606\) 0 0
\(607\) 24.1481 + 6.47048i 0.980143 + 0.262629i 0.713105 0.701057i \(-0.247288\pi\)
0.267038 + 0.963686i \(0.413955\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 + 10.3923i 0.242734 + 0.420428i
\(612\) 3.10583 + 11.5911i 0.125546 + 0.468543i
\(613\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.34847 7.34847i −0.295838 0.295838i 0.543543 0.839381i \(-0.317082\pi\)
−0.839381 + 0.543543i \(0.817082\pi\)
\(618\) 0 0
\(619\) 23.3827 40.5000i 0.939829 1.62783i 0.174042 0.984738i \(-0.444317\pi\)
0.765787 0.643094i \(-0.222350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.4176 + 22.7661i 0.617695 + 0.912105i
\(624\) 8.00000i 0.320256i
\(625\) 0 0
\(626\) 0 0
\(627\) −20.0764 + 5.37945i −0.801774 + 0.214835i
\(628\) −3.62347 + 13.5230i −0.144592 + 0.539625i
\(629\) −51.9615 −2.07184
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) −6.76148 + 1.81173i −0.268745 + 0.0720099i
\(634\) 0 0
\(635\) 0 0
\(636\) 20.7846i 0.824163i
\(637\) −11.2122 8.38375i −0.444242 0.332176i
\(638\) 0 0
\(639\) −5.19615 + 3.00000i −0.205557 + 0.118678i
\(640\) 0 0
\(641\) 9.00000 15.5885i 0.355479 0.615707i −0.631721 0.775196i \(-0.717651\pi\)
0.987200 + 0.159489i \(0.0509845\pi\)
\(642\) 0 0
\(643\) 20.5061 + 20.5061i 0.808682 + 0.808682i 0.984434 0.175753i \(-0.0562359\pi\)
−0.175753 + 0.984434i \(0.556236\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.65874 + 17.3867i 0.183154 + 0.683540i 0.995018 + 0.0996938i \(0.0317863\pi\)
−0.811864 + 0.583846i \(0.801547\pi\)
\(648\) 0 0
\(649\) 31.1769 + 54.0000i 1.22380 + 2.11969i
\(650\) 0 0
\(651\) −13.5000 2.59808i −0.529107 0.101827i
\(652\) 12.2474 + 12.2474i 0.479647 + 0.479647i
\(653\) −10.0382 2.68973i −0.392825 0.105257i 0.0569993 0.998374i \(-0.481847\pi\)
−0.449824 + 0.893117i \(0.648513\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −36.0000 + 20.7846i −1.40556 + 0.811503i
\(657\) 0.707107 0.707107i 0.0275869 0.0275869i
\(658\) 0 0
\(659\) 6.00000i 0.233727i 0.993148 + 0.116863i \(0.0372840\pi\)
−0.993148 + 0.116863i \(0.962716\pi\)
\(660\) 0 0
\(661\) 37.5000 + 21.6506i 1.45858 + 0.842112i 0.998942 0.0459936i \(-0.0146454\pi\)
0.459639 + 0.888106i \(0.347979\pi\)
\(662\) 0 0
\(663\) −3.10583 + 11.5911i −0.120620 + 0.450161i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −23.1822 + 6.21166i −0.896947 + 0.240336i
\(669\) −4.33013 2.50000i −0.167412 0.0966556i
\(670\) 0 0
\(671\) 51.9615i 2.00595i
\(672\) 0 0
\(673\) −8.57321 + 8.57321i −0.330473 + 0.330473i −0.852766 0.522293i \(-0.825077\pi\)
0.522293 + 0.852766i \(0.325077\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 9.00000 15.5885i 0.346154 0.599556i
\(677\) 46.3644 + 12.4233i 1.78193 + 0.477467i 0.990933 0.134354i \(-0.0428958\pi\)
0.790997 + 0.611820i \(0.209562\pi\)
\(678\) 0 0
\(679\) −22.5167 + 26.0000i −0.864110 + 0.997788i
\(680\) 0 0
\(681\) −3.00000 5.19615i −0.114960 0.199117i
\(682\) 0 0
\(683\) 8.06918 + 30.1146i 0.308759 + 1.15230i 0.929661 + 0.368415i \(0.120099\pi\)
−0.620903 + 0.783888i \(0.713234\pi\)
\(684\) −3.46410 6.00000i −0.132453 0.229416i
\(685\) 0 0
\(686\) 0 0
\(687\) 4.89898 + 4.89898i 0.186908 + 0.186908i
\(688\) 20.0764 + 5.37945i 0.765405 + 0.205090i
\(689\) 10.3923 18.0000i 0.395915 0.685745i
\(690\) 0 0
\(691\) 10.5000 6.06218i 0.399439 0.230616i −0.286803 0.957990i \(-0.592593\pi\)
0.686242 + 0.727373i \(0.259259\pi\)
\(692\) −25.4558 + 25.4558i −0.967686 + 0.967686i
\(693\) −1.13681 15.8338i −0.0431839 0.601474i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −60.2292 + 16.1384i −2.28134 + 0.611284i
\(698\) 0 0
\(699\) 20.7846 0.786146
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 28.9778 7.76457i 1.09292 0.292846i
\(704\) −41.5692 24.0000i −1.56670 0.904534i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) −14.6969 + 14.6969i −0.552345 + 0.552345i
\(709\) 26.8468 15.5000i 1.00825 0.582115i 0.0975728 0.995228i \(-0.468892\pi\)
0.910679 + 0.413114i \(0.135559\pi\)
\(710\) 0 0
\(711\) −2.50000 + 4.33013i −0.0937573 + 0.162392i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 24.0000 + 41.5692i 0.896922 + 1.55351i
\(717\) −4.65874 17.3867i −0.173984 0.649317i
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) −3.50000 + 18.1865i −0.130347 + 0.677302i
\(722\) 0 0
\(723\) −18.4034 4.93117i −0.684428 0.183392i
\(724\) −5.19615 + 9.00000i −0.193113 + 0.334482i
\(725\) 0 0
\(726\) 0 0
\(727\) −28.2843 + 28.2843i −1.04901 + 1.04901i −0.0502699 + 0.998736i \(0.516008\pi\)
−0.998736 + 0.0502699i \(0.983992\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 27.0000 + 15.5885i 0.998631 + 0.576560i
\(732\) −16.7303 + 4.48288i −0.618371 + 0.165692i
\(733\) 12.1645 45.3985i 0.449306 1.67683i −0.255004 0.966940i \(-0.582077\pi\)
0.704310 0.709892i \(-0.251256\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.37945 + 20.0764i −0.198155 + 0.739523i
\(738\) 0 0
\(739\) 0.866025 + 0.500000i 0.0318573 + 0.0183928i 0.515844 0.856683i \(-0.327478\pi\)
−0.483987 + 0.875075i \(0.660812\pi\)
\(740\) 0 0
\(741\) 6.92820i 0.254514i
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5.79555 + 1.55291i 0.212048 + 0.0568182i
\(748\) −50.9117 50.9117i −1.86152 1.86152i
\(749\) 0 0
\(750\) 0 0
\(751\) −5.50000 9.52628i −0.200698 0.347619i 0.748056 0.663636i \(-0.230988\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) −6.21166 23.1822i −0.226516 0.845369i
\(753\) −5.37945 20.0764i −0.196038 0.731624i
\(754\) 0 0
\(755\) 0 0
\(756\) 5.00000 1.73205i 0.181848 0.0629941i
\(757\) 20.8207 + 20.8207i 0.756740 + 0.756740i 0.975728 0.218988i \(-0.0702755\pi\)
−0.218988 + 0.975728i \(0.570275\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 + 10.3923i −0.652499 + 0.376721i −0.789413 0.613862i \(-0.789615\pi\)
0.136914 + 0.990583i \(0.456282\pi\)
\(762\) 0 0
\(763\) −23.8014 11.5539i −0.861668 0.418281i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −20.0764 + 5.37945i −0.724916 + 0.194241i
\(768\) 4.14110 15.4548i 0.149429 0.557678i
\(769\) −5.19615 −0.187378 −0.0936890 0.995602i \(-0.529866\pi\)
−0.0936890 + 0.995602i \(0.529866\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 8.06918 30.1146i 0.290416 1.08385i
\(773\) 23.1822 6.21166i 0.833806 0.223418i 0.183433 0.983032i \(-0.441279\pi\)
0.650374 + 0.759614i \(0.274612\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.64085 + 22.8541i 0.0588651 + 0.819884i
\(778\) 0 0
\(779\) 31.1769 18.0000i 1.11703 0.644917i
\(780\) 0 0
\(781\) 18.0000 31.1769i 0.644091 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 17.3205 + 22.0000i 0.618590 + 0.785714i
\(785\) 0 0
\(786\) 0 0
\(787\) 2.84701 + 10.6252i 0.101485 + 0.378747i 0.997923 0.0644227i \(-0.0205206\pi\)
−0.896438 + 0.443170i \(0.853854\pi\)
\(788\) −5.37945 20.0764i −0.191635 0.715192i
\(789\) 15.5885 + 27.0000i 0.554964 + 0.961225i
\(790\) 0 0
\(791\) −18.0000 + 20.7846i −0.640006 + 0.739016i
\(792\) 0 0
\(793\) −16.7303 4.48288i −0.594111 0.159192i
\(794\) 0 0
\(795\) 0 0
\(796\) −33.0000 + 19.0526i −1.16965 + 0.675300i
\(797\) −8.48528 + 8.48528i −0.300564 + 0.300564i −0.841235 0.540670i \(-0.818171\pi\)
0.540670 + 0.841235i \(0.318171\pi\)
\(798\) 0 0
\(799\) 36.0000i 1.27359i
\(800\) 0 0
\(801\) −9.00000 5.19615i −0.317999 0.183597i
\(802\) 0 0
\(803\) −1.55291 + 5.79555i −0.0548012 + 0.204521i
\(804\) −6.92820 −0.244339
\(805\) 0 0
\(806\) 0 0
\(807\) −5.37945 + 20.0764i −0.189366 + 0.706722i
\(808\) 0 0
\(809\) −20.7846 12.0000i −0.730748 0.421898i 0.0879478 0.996125i \(-0.471969\pi\)
−0.818696 + 0.574228i \(0.805302\pi\)
\(810\) 0 0
\(811\) 39.8372i 1.39887i 0.714695 + 0.699436i \(0.246565\pi\)
−0.714695 + 0.699436i \(0.753435\pi\)
\(812\) 0 0
\(813\) 22.0454 22.0454i 0.773166 0.773166i
\(814\) 0 0
\(815\) 0 0
\(816\) 12.0000 20.7846i 0.420084 0.727607i
\(817\) −17.3867 4.65874i −0.608282 0.162989i
\(818\) 0 0
\(819\) 5.19615 + 1.00000i 0.181568 + 0.0349428i
\(820\) 0 0
\(821\) 12.0000 + 20.7846i 0.418803 + 0.725388i 0.995819 0.0913446i \(-0.0291165\pi\)
−0.577016 + 0.816733i \(0.695783\pi\)
\(822\) 0 0
\(823\) −10.3106 38.4797i −0.359406 1.34132i −0.874849 0.484396i \(-0.839039\pi\)
0.515443 0.856924i \(-0.327627\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22.0454 22.0454i −0.766594 0.766594i 0.210911 0.977505i \(-0.432357\pi\)
−0.977505 + 0.210911i \(0.932357\pi\)
\(828\) 0 0
\(829\) −4.33013 + 7.50000i −0.150392 + 0.260486i −0.931371 0.364070i \(-0.881387\pi\)
0.780980 + 0.624556i \(0.214720\pi\)
\(830\) 0 0
\(831\) 12.0000 6.92820i 0.416275 0.240337i
\(832\) 11.3137 11.3137i 0.392232 0.392232i
\(833\) 16.5545 + 38.5999i 0.573578 + 1.33741i
\(834\) 0 0
\(835\) 0 0
\(836\) 36.0000 + 20.7846i 1.24509 + 0.718851i
\(837\) 5.01910 1.34486i 0.173485 0.0464853i
\(838\) 0 0
\(839\) −31.1769 −1.07635 −0.538173 0.842834i \(-0.680885\pi\)
−0.538173 + 0.842834i \(0.680885\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 5.79555 1.55291i 0.199610 0.0534852i
\(844\) 12.1244 + 7.00000i 0.417338 + 0.240950i
\(845\) 0 0
\(846\) 0 0
\(847\) 37.0891 + 54.7668i 1.27440 + 1.88181i
\(848\) −29.3939 + 29.3939i −1.00939 + 1.00939i
\(849\) 13.8564 8.00000i 0.475551 0.274559i
\(850\) 0 0
\(851\) 0 0
\(852\) 11.5911 + 3.10583i 0.397105 + 0.106404i
\(853\) 13.4350 + 13.4350i 0.460007 + 0.460007i 0.898658 0.438651i \(-0.144544\pi\)
−0.438651 + 0.898658i \(0.644544\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.21166 23.1822i −0.212186 0.791890i −0.987138 0.159869i \(-0.948893\pi\)
0.774952 0.632020i \(-0.217774\pi\)
\(858\) 0 0
\(859\) −5.19615 9.00000i −0.177290 0.307076i 0.763661 0.645617i \(-0.223400\pi\)
−0.940952 + 0.338541i \(0.890067\pi\)
\(860\) 0 0
\(861\) 9.00000 + 25.9808i 0.306719 + 0.885422i
\(862\) 0 0
\(863\) −30.1146 8.06918i −1.02511 0.274678i −0.293181 0.956057i \(-0.594714\pi\)
−0.731931 + 0.681379i \(0.761381\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 13.4350 13.4350i 0.456278 0.456278i
\(868\) 15.4176 + 22.7661i 0.523309 + 0.772732i
\(869\) 30.0000i 1.01768i
\(870\) 0 0
\(871\) −6.00000 3.46410i −0.203302 0.117377i
\(872\) 0 0
\(873\) 3.36465 12.5570i 0.113876 0.424991i
\(874\) 0 0
\(875\) 0 0
\(876\) −2.00000 −0.0675737
\(877\) 5.82774 21.7494i 0.196789 0.734426i −0.795008 0.606599i \(-0.792533\pi\)
0.991797 0.127827i \(-0.0408001\pi\)
\(878\) 0 0
\(879\) 15.5885 + 9.00000i 0.525786 + 0.303562i
\(880\) 0 0
\(881\) 10.3923i 0.350126i 0.984557 + 0.175063i \(0.0560129\pi\)
−0.984557 + 0.175063i \(0.943987\pi\)
\(882\) 0 0
\(883\) −2.44949 + 2.44949i −0.0824319 + 0.0824319i −0.747121 0.664689i \(-0.768564\pi\)
0.664689 + 0.747121i \(0.268564\pi\)
\(884\) 20.7846 12.0000i 0.699062 0.403604i
\(885\) 0 0
\(886\) 0 0
\(887\) 17.3867 + 4.65874i 0.583787 + 0.156425i 0.538612 0.842554i \(-0.318949\pi\)
0.0451749 + 0.998979i \(0.485615\pi\)
\(888\) 0 0
\(889\) −24.2487 21.0000i −0.813276 0.704317i
\(890\) 0 0
\(891\) 3.00000 + 5.19615i 0.100504 + 0.174078i
\(892\) 2.58819 + 9.65926i 0.0866590 + 0.323416i
\(893\) 5.37945 + 20.0764i 0.180017 + 0.671831i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −54.0000 + 31.1769i −1.79900 + 1.03865i
\(902\) 0 0
\(903\) 6.00361 12.3676i 0.199787 0.411567i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.67303 + 0.448288i −0.0555521 + 0.0148851i −0.286488 0.958084i \(-0.592488\pi\)
0.230936 + 0.972969i \(0.425821\pi\)
\(908\) −3.10583 + 11.5911i −0.103071 + 0.384664i
\(909\) 0 0
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) −3.58630 + 13.3843i −0.118754 + 0.443197i
\(913\) −34.7733 + 9.31749i −1.15083 + 0.308364i
\(914\) 0 0
\(915\) 0 0
\(916\) 13.8564i 0.457829i
\(917\) −22.7661 + 15.4176i −0.751803 + 0.509136i
\(918\) 0 0
\(919\) 21.6506 12.5000i 0.714189 0.412337i −0.0984214 0.995145i \(-0.531379\pi\)
0.812610 + 0.582808i \(0.198046\pi\)
\(920\) 0 0
\(921\) 3.50000 6.06218i 0.115329 0.199756i
\(922\) 0 0
\(923\) 8.48528 + 8.48528i 0.279296 + 0.279296i
\(924\) −20.7846 + 24.0000i −0.683763 + 0.789542i
\(925\) 0 0
\(926\) 0 0
\(927\) −1.81173 6.76148i −0.0595051 0.222076i
\(928\) 0 0
\(929\) 5.19615 + 9.00000i 0.170480 + 0.295280i 0.938588 0.345040i \(-0.112135\pi\)
−0.768108 + 0.640321i \(0.778801\pi\)
\(930\) 0 0
\(931\) −15.0000 19.0526i −0.491605 0.624422i
\(932\) −29.3939 29.3939i −0.962828 0.962828i
\(933\) −20.0764 5.37945i −0.657272 0.176115i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20.5061 + 20.5061i −0.669905 + 0.669905i −0.957694 0.287789i \(-0.907080\pi\)
0.287789 + 0.957694i \(0.407080\pi\)
\(938\) 0 0
\(939\) 19.0000i 0.620042i
\(940\) 0 0
\(941\) −27.0000 15.5885i −0.880175 0.508169i −0.00945879 0.999955i \(-0.503011\pi\)
−0.870716 + 0.491786i \(0.836344\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 41.5692 1.35296
\(945\) 0 0
\(946\) 0 0
\(947\) 2.68973 10.0382i 0.0874044 0.326198i −0.908354 0.418202i \(-0.862661\pi\)
0.995759 + 0.0920040i \(0.0293273\pi\)
\(948\) 9.65926 2.58819i 0.313718 0.0840605i
\(949\) −1.73205 1.00000i −0.0562247 0.0324614i
\(950\) 0 0
\(951\) 10.3923i 0.336994i
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −18.0000 + 31.1769i −0.582162 + 1.00833i
\(957\) 0 0
\(958\) 0 0
\(959\) −51.9615 + 18.0000i −1.67793 + 0.581250i
\(960\) 0 0
\(961\) −2.00000 3.46410i −0.0645161 0.111745i
\(962\) 0 0
\(963\) 0 0
\(964\) 19.0526 + 33.0000i 0.613642 + 1.06286i
\(965\) 0 0
\(966\) 0 0
\(967\) −30.6186 30.6186i −0.984628 0.984628i 0.0152551 0.999884i \(-0.495144\pi\)
−0.999884 + 0.0152551i \(0.995144\pi\)
\(968\) 0 0
\(969\) −10.3923 + 18.0000i −0.333849 + 0.578243i
\(970\) 0 0
\(971\) 18.0000 10.3923i 0.577647 0.333505i −0.182550 0.983196i \(-0.558435\pi\)
0.760198 + 0.649692i \(0.225102\pi\)
\(972\) −1.41421 + 1.41421i −0.0453609 + 0.0453609i
\(973\) 4.57081 0.328169i 0.146533 0.0105206i
\(974\) 0 0
\(975\) 0 0
\(976\) 30.0000 + 17.3205i 0.960277 + 0.554416i
\(977\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(978\) 0 0
\(979\) 62.3538 1.99284
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) 40.5689 10.8704i 1.29395 0.346712i 0.454788 0.890600i \(-0.349715\pi\)
0.839158 + 0.543888i \(0.183048\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −15.8338 + 1.13681i −0.503994 + 0.0361851i
\(988\) −9.79796 + 9.79796i −0.311715 + 0.311715i
\(989\) 0 0
\(990\) 0 0
\(991\) 14.5000 25.1147i 0.460608 0.797796i −0.538384 0.842700i \(-0.680965\pi\)
0.998991 + 0.0449040i \(0.0142982\pi\)
\(992\) 0 0
\(993\) −3.53553 3.53553i −0.112197 0.112197i
\(994\) 0 0
\(995\) 0 0
\(996\) −6.00000 10.3923i −0.190117 0.329293i
\(997\) −1.29410 4.82963i −0.0409844 0.152956i 0.942401 0.334484i \(-0.108562\pi\)
−0.983386 + 0.181529i \(0.941896\pi\)
\(998\) 0 0
\(999\) −4.33013 7.50000i −0.136999 0.237289i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.bc.a.157.1 yes 8
5.2 odd 4 inner 525.2.bc.a.493.2 yes 8
5.3 odd 4 inner 525.2.bc.a.493.1 yes 8
5.4 even 2 inner 525.2.bc.a.157.2 yes 8
7.5 odd 6 inner 525.2.bc.a.82.1 8
35.12 even 12 inner 525.2.bc.a.418.2 yes 8
35.19 odd 6 inner 525.2.bc.a.82.2 yes 8
35.33 even 12 inner 525.2.bc.a.418.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.2.bc.a.82.1 8 7.5 odd 6 inner
525.2.bc.a.82.2 yes 8 35.19 odd 6 inner
525.2.bc.a.157.1 yes 8 1.1 even 1 trivial
525.2.bc.a.157.2 yes 8 5.4 even 2 inner
525.2.bc.a.418.1 yes 8 35.33 even 12 inner
525.2.bc.a.418.2 yes 8 35.12 even 12 inner
525.2.bc.a.493.1 yes 8 5.3 odd 4 inner
525.2.bc.a.493.2 yes 8 5.2 odd 4 inner