Properties

 Label 525.2.a.j Level $525$ Weight $2$ Character orbit 525.a Self dual yes Analytic conductor $4.192$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [525,2,Mod(1,525)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(525, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("525.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$525 = 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 525.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.19214610612$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.148.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 3x + 1$$ x^3 - x^2 - 3*x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 105) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_1 q^{2} + q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} - \beta_1 q^{6} + q^{7} + ( - \beta_{2} - 2 \beta_1 - 2) q^{8} + q^{9}+O(q^{10})$$ q - b1 * q^2 + q^3 + (b2 + b1 + 1) * q^4 - b1 * q^6 + q^7 + (-b2 - 2*b1 - 2) * q^8 + q^9 $$q - \beta_1 q^{2} + q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} - \beta_1 q^{6} + q^{7} + ( - \beta_{2} - 2 \beta_1 - 2) q^{8} + q^{9} + 2 q^{11} + (\beta_{2} + \beta_1 + 1) q^{12} + (\beta_{2} - \beta_1 + 2) q^{13} - \beta_1 q^{14} + (4 \beta_1 + 3) q^{16} + ( - \beta_{2} + \beta_1) q^{17} - \beta_1 q^{18} + ( - \beta_{2} + \beta_1 + 2) q^{19} + q^{21} - 2 \beta_1 q^{22} + (\beta_{2} + \beta_1 - 2) q^{23} + ( - \beta_{2} - 2 \beta_1 - 2) q^{24} + (\beta_{2} - 3 \beta_1 + 4) q^{26} + q^{27} + (\beta_{2} + \beta_1 + 1) q^{28} + ( - 2 \beta_{2} - 2 \beta_1 + 2) q^{29} + ( - \beta_{2} - 3 \beta_1 + 2) q^{31} + ( - 2 \beta_{2} - 3 \beta_1 - 8) q^{32} + 2 q^{33} + ( - \beta_{2} + \beta_1 - 4) q^{34} + (\beta_{2} + \beta_1 + 1) q^{36} + 4 \beta_1 q^{37} + ( - \beta_{2} - \beta_1 - 4) q^{38} + (\beta_{2} - \beta_1 + 2) q^{39} + ( - \beta_{2} + 3 \beta_1) q^{41} - \beta_1 q^{42} - 4 \beta_{2} q^{43} + (2 \beta_{2} + 2 \beta_1 + 2) q^{44} + ( - \beta_{2} - \beta_1 - 2) q^{46} + (2 \beta_{2} + 2 \beta_1 - 4) q^{47} + (4 \beta_1 + 3) q^{48} + q^{49} + ( - \beta_{2} + \beta_1) q^{51} + (\beta_{2} - \beta_1 + 6) q^{52} + (\beta_{2} + 3 \beta_1 - 6) q^{53} - \beta_1 q^{54} + ( - \beta_{2} - 2 \beta_1 - 2) q^{56} + ( - \beta_{2} + \beta_1 + 2) q^{57} + (2 \beta_{2} + 4 \beta_1 + 4) q^{58} + (4 \beta_{2} + 4) q^{59} + (2 \beta_{2} - 2 \beta_1 - 2) q^{61} + (3 \beta_{2} + 3 \beta_1 + 8) q^{62} + q^{63} + (3 \beta_{2} + 7 \beta_1 + 1) q^{64} - 2 \beta_1 q^{66} + (2 \beta_{2} + 2 \beta_1 - 4) q^{67} + (\beta_{2} + 3 \beta_1 - 4) q^{68} + (\beta_{2} + \beta_1 - 2) q^{69} + 2 q^{71} + ( - \beta_{2} - 2 \beta_1 - 2) q^{72} + ( - \beta_{2} + \beta_1 + 6) q^{73} + ( - 4 \beta_{2} - 4 \beta_1 - 12) q^{74} + (3 \beta_{2} + 5 \beta_1 - 2) q^{76} + 2 q^{77} + (\beta_{2} - 3 \beta_1 + 4) q^{78} + ( - 2 \beta_{2} + 2 \beta_1 + 4) q^{79} + q^{81} + ( - 3 \beta_{2} - \beta_1 - 10) q^{82} + (4 \beta_1 - 4) q^{83} + (\beta_{2} + \beta_1 + 1) q^{84} + (8 \beta_1 - 4) q^{86} + ( - 2 \beta_{2} - 2 \beta_1 + 2) q^{87} + ( - 2 \beta_{2} - 4 \beta_1 - 4) q^{88} + (\beta_{2} + \beta_1 + 4) q^{89} + (\beta_{2} - \beta_1 + 2) q^{91} + ( - \beta_{2} + 3 \beta_1 + 6) q^{92} + ( - \beta_{2} - 3 \beta_1 + 2) q^{93} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{94} + ( - 2 \beta_{2} - 3 \beta_1 - 8) q^{96} + ( - 3 \beta_{2} - 5 \beta_1 + 10) q^{97} - \beta_1 q^{98} + 2 q^{99}+O(q^{100})$$ q - b1 * q^2 + q^3 + (b2 + b1 + 1) * q^4 - b1 * q^6 + q^7 + (-b2 - 2*b1 - 2) * q^8 + q^9 + 2 * q^11 + (b2 + b1 + 1) * q^12 + (b2 - b1 + 2) * q^13 - b1 * q^14 + (4*b1 + 3) * q^16 + (-b2 + b1) * q^17 - b1 * q^18 + (-b2 + b1 + 2) * q^19 + q^21 - 2*b1 * q^22 + (b2 + b1 - 2) * q^23 + (-b2 - 2*b1 - 2) * q^24 + (b2 - 3*b1 + 4) * q^26 + q^27 + (b2 + b1 + 1) * q^28 + (-2*b2 - 2*b1 + 2) * q^29 + (-b2 - 3*b1 + 2) * q^31 + (-2*b2 - 3*b1 - 8) * q^32 + 2 * q^33 + (-b2 + b1 - 4) * q^34 + (b2 + b1 + 1) * q^36 + 4*b1 * q^37 + (-b2 - b1 - 4) * q^38 + (b2 - b1 + 2) * q^39 + (-b2 + 3*b1) * q^41 - b1 * q^42 - 4*b2 * q^43 + (2*b2 + 2*b1 + 2) * q^44 + (-b2 - b1 - 2) * q^46 + (2*b2 + 2*b1 - 4) * q^47 + (4*b1 + 3) * q^48 + q^49 + (-b2 + b1) * q^51 + (b2 - b1 + 6) * q^52 + (b2 + 3*b1 - 6) * q^53 - b1 * q^54 + (-b2 - 2*b1 - 2) * q^56 + (-b2 + b1 + 2) * q^57 + (2*b2 + 4*b1 + 4) * q^58 + (4*b2 + 4) * q^59 + (2*b2 - 2*b1 - 2) * q^61 + (3*b2 + 3*b1 + 8) * q^62 + q^63 + (3*b2 + 7*b1 + 1) * q^64 - 2*b1 * q^66 + (2*b2 + 2*b1 - 4) * q^67 + (b2 + 3*b1 - 4) * q^68 + (b2 + b1 - 2) * q^69 + 2 * q^71 + (-b2 - 2*b1 - 2) * q^72 + (-b2 + b1 + 6) * q^73 + (-4*b2 - 4*b1 - 12) * q^74 + (3*b2 + 5*b1 - 2) * q^76 + 2 * q^77 + (b2 - 3*b1 + 4) * q^78 + (-2*b2 + 2*b1 + 4) * q^79 + q^81 + (-3*b2 - b1 - 10) * q^82 + (4*b1 - 4) * q^83 + (b2 + b1 + 1) * q^84 + (8*b1 - 4) * q^86 + (-2*b2 - 2*b1 + 2) * q^87 + (-2*b2 - 4*b1 - 4) * q^88 + (b2 + b1 + 4) * q^89 + (b2 - b1 + 2) * q^91 + (-b2 + 3*b1 + 6) * q^92 + (-b2 - 3*b1 + 2) * q^93 + (-2*b2 - 2*b1 - 4) * q^94 + (-2*b2 - 3*b1 - 8) * q^96 + (-3*b2 - 5*b1 + 10) * q^97 - b1 * q^98 + 2 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} + 3 q^{7} - 9 q^{8} + 3 q^{9}+O(q^{10})$$ 3 * q - q^2 + 3 * q^3 + 5 * q^4 - q^6 + 3 * q^7 - 9 * q^8 + 3 * q^9 $$3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} + 3 q^{7} - 9 q^{8} + 3 q^{9} + 6 q^{11} + 5 q^{12} + 6 q^{13} - q^{14} + 13 q^{16} - q^{18} + 6 q^{19} + 3 q^{21} - 2 q^{22} - 4 q^{23} - 9 q^{24} + 10 q^{26} + 3 q^{27} + 5 q^{28} + 2 q^{29} + 2 q^{31} - 29 q^{32} + 6 q^{33} - 12 q^{34} + 5 q^{36} + 4 q^{37} - 14 q^{38} + 6 q^{39} + 2 q^{41} - q^{42} - 4 q^{43} + 10 q^{44} - 8 q^{46} - 8 q^{47} + 13 q^{48} + 3 q^{49} + 18 q^{52} - 14 q^{53} - q^{54} - 9 q^{56} + 6 q^{57} + 18 q^{58} + 16 q^{59} - 6 q^{61} + 30 q^{62} + 3 q^{63} + 13 q^{64} - 2 q^{66} - 8 q^{67} - 8 q^{68} - 4 q^{69} + 6 q^{71} - 9 q^{72} + 18 q^{73} - 44 q^{74} + 2 q^{76} + 6 q^{77} + 10 q^{78} + 12 q^{79} + 3 q^{81} - 34 q^{82} - 8 q^{83} + 5 q^{84} - 4 q^{86} + 2 q^{87} - 18 q^{88} + 14 q^{89} + 6 q^{91} + 20 q^{92} + 2 q^{93} - 16 q^{94} - 29 q^{96} + 22 q^{97} - q^{98} + 6 q^{99}+O(q^{100})$$ 3 * q - q^2 + 3 * q^3 + 5 * q^4 - q^6 + 3 * q^7 - 9 * q^8 + 3 * q^9 + 6 * q^11 + 5 * q^12 + 6 * q^13 - q^14 + 13 * q^16 - q^18 + 6 * q^19 + 3 * q^21 - 2 * q^22 - 4 * q^23 - 9 * q^24 + 10 * q^26 + 3 * q^27 + 5 * q^28 + 2 * q^29 + 2 * q^31 - 29 * q^32 + 6 * q^33 - 12 * q^34 + 5 * q^36 + 4 * q^37 - 14 * q^38 + 6 * q^39 + 2 * q^41 - q^42 - 4 * q^43 + 10 * q^44 - 8 * q^46 - 8 * q^47 + 13 * q^48 + 3 * q^49 + 18 * q^52 - 14 * q^53 - q^54 - 9 * q^56 + 6 * q^57 + 18 * q^58 + 16 * q^59 - 6 * q^61 + 30 * q^62 + 3 * q^63 + 13 * q^64 - 2 * q^66 - 8 * q^67 - 8 * q^68 - 4 * q^69 + 6 * q^71 - 9 * q^72 + 18 * q^73 - 44 * q^74 + 2 * q^76 + 6 * q^77 + 10 * q^78 + 12 * q^79 + 3 * q^81 - 34 * q^82 - 8 * q^83 + 5 * q^84 - 4 * q^86 + 2 * q^87 - 18 * q^88 + 14 * q^89 + 6 * q^91 + 20 * q^92 + 2 * q^93 - 16 * q^94 - 29 * q^96 + 22 * q^97 - q^98 + 6 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 3x + 1$$ :

 $$\beta_{1}$$ $$=$$ $$\nu^{2} - 2$$ v^2 - 2 $$\beta_{2}$$ $$=$$ $$-\nu^{2} + 2\nu + 2$$ -v^2 + 2*v + 2
 $$\nu$$ $$=$$ $$( \beta_{2} + \beta_1 ) / 2$$ (b2 + b1) / 2 $$\nu^{2}$$ $$=$$ $$\beta _1 + 2$$ b1 + 2

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.17009 −1.48119 0.311108
−2.70928 1.00000 5.34017 0 −2.70928 1.00000 −9.04945 1.00000 0
1.2 −0.193937 1.00000 −1.96239 0 −0.193937 1.00000 0.768452 1.00000 0
1.3 1.90321 1.00000 1.62222 0 1.90321 1.00000 −0.719004 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.a.j 3
3.b odd 2 1 1575.2.a.x 3
4.b odd 2 1 8400.2.a.dg 3
5.b even 2 1 525.2.a.k 3
5.c odd 4 2 105.2.d.b 6
7.b odd 2 1 3675.2.a.bi 3
15.d odd 2 1 1575.2.a.w 3
15.e even 4 2 315.2.d.e 6
20.d odd 2 1 8400.2.a.dj 3
20.e even 4 2 1680.2.t.k 6
35.c odd 2 1 3675.2.a.bj 3
35.f even 4 2 735.2.d.b 6
35.k even 12 4 735.2.q.f 12
35.l odd 12 4 735.2.q.e 12
60.l odd 4 2 5040.2.t.v 6
105.k odd 4 2 2205.2.d.l 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.d.b 6 5.c odd 4 2
315.2.d.e 6 15.e even 4 2
525.2.a.j 3 1.a even 1 1 trivial
525.2.a.k 3 5.b even 2 1
735.2.d.b 6 35.f even 4 2
735.2.q.e 12 35.l odd 12 4
735.2.q.f 12 35.k even 12 4
1575.2.a.w 3 15.d odd 2 1
1575.2.a.x 3 3.b odd 2 1
1680.2.t.k 6 20.e even 4 2
2205.2.d.l 6 105.k odd 4 2
3675.2.a.bi 3 7.b odd 2 1
3675.2.a.bj 3 35.c odd 2 1
5040.2.t.v 6 60.l odd 4 2
8400.2.a.dg 3 4.b odd 2 1
8400.2.a.dj 3 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(525))$$:

 $$T_{2}^{3} + T_{2}^{2} - 5T_{2} - 1$$ T2^3 + T2^2 - 5*T2 - 1 $$T_{11} - 2$$ T11 - 2

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3} + T^{2} - 5T - 1$$
$3$ $$(T - 1)^{3}$$
$5$ $$T^{3}$$
$7$ $$(T - 1)^{3}$$
$11$ $$(T - 2)^{3}$$
$13$ $$T^{3} - 6 T^{2} - 4 T + 8$$
$17$ $$T^{3} - 16T + 16$$
$19$ $$T^{3} - 6 T^{2} - 4 T + 40$$
$23$ $$T^{3} + 4 T^{2} - 8 T - 16$$
$29$ $$T^{3} - 2 T^{2} - 52 T + 40$$
$31$ $$T^{3} - 2 T^{2} - 52 T + 184$$
$37$ $$T^{3} - 4 T^{2} - 80 T + 64$$
$41$ $$T^{3} - 2 T^{2} - 60 T + 200$$
$43$ $$T^{3} + 4 T^{2} - 144 T - 832$$
$47$ $$T^{3} + 8 T^{2} - 32 T - 128$$
$53$ $$T^{3} + 14 T^{2} + 12 T - 296$$
$59$ $$T^{3} - 16 T^{2} - 64 T + 1280$$
$61$ $$T^{3} + 6 T^{2} - 52 T - 248$$
$67$ $$T^{3} + 8 T^{2} - 32 T - 128$$
$71$ $$(T - 2)^{3}$$
$73$ $$T^{3} - 18 T^{2} + 92 T - 104$$
$79$ $$T^{3} - 12 T^{2} - 16 T + 320$$
$83$ $$T^{3} + 8 T^{2} - 64 T - 256$$
$89$ $$T^{3} - 14 T^{2} + 52 T - 40$$
$97$ $$T^{3} - 22 T^{2} - 36 T + 1864$$