Properties

Label 525.1.be
Level $525$
Weight $1$
Character orbit 525.be
Rep. character $\chi_{525}(68,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $8$
Newform subspaces $1$
Sturm bound $80$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 525.be (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(80\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(525, [\chi])\).

Total New Old
Modular forms 56 24 32
Cusp forms 8 8 0
Eisenstein series 48 16 32

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 4 q^{16} - 4 q^{21} - 8 q^{36} - 12 q^{61} + 4 q^{81} - 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(525, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
525.1.be.a 525.be 105.w $8$ $0.262$ \(\Q(\zeta_{24})\) $D_{6}$ \(\Q(\sqrt{-3}) \) None 525.1.be.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{5}q^{3}+\zeta_{24}^{2}q^{4}-\zeta_{24}^{11}q^{7}+\cdots\)