Properties

Label 5239.2.a.t.1.10
Level $5239$
Weight $2$
Character 5239.1
Self dual yes
Analytic conductor $41.834$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5239,2,Mod(1,5239)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5239.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5239, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5239 = 13^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5239.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,2,-5,28,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.8336256189\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 5239.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.33705 q^{2} +2.56782 q^{3} -0.212302 q^{4} -1.42532 q^{5} -3.43329 q^{6} +2.10054 q^{7} +2.95795 q^{8} +3.59368 q^{9} +1.90573 q^{10} +4.03430 q^{11} -0.545153 q^{12} -2.80852 q^{14} -3.65997 q^{15} -3.53032 q^{16} -0.0164471 q^{17} -4.80493 q^{18} -1.87489 q^{19} +0.302600 q^{20} +5.39380 q^{21} -5.39405 q^{22} -8.64037 q^{23} +7.59549 q^{24} -2.96845 q^{25} +1.52447 q^{27} -0.445949 q^{28} -8.05850 q^{29} +4.89356 q^{30} -1.00000 q^{31} -1.19570 q^{32} +10.3593 q^{33} +0.0219905 q^{34} -2.99395 q^{35} -0.762947 q^{36} -7.64204 q^{37} +2.50682 q^{38} -4.21605 q^{40} +6.36287 q^{41} -7.21177 q^{42} -7.57422 q^{43} -0.856491 q^{44} -5.12216 q^{45} +11.5526 q^{46} -2.01909 q^{47} -9.06522 q^{48} -2.58774 q^{49} +3.96896 q^{50} -0.0422331 q^{51} -0.597398 q^{53} -2.03829 q^{54} -5.75019 q^{55} +6.21330 q^{56} -4.81438 q^{57} +10.7746 q^{58} -12.6781 q^{59} +0.777021 q^{60} +0.0410727 q^{61} +1.33705 q^{62} +7.54867 q^{63} +8.65935 q^{64} -13.8509 q^{66} -5.97968 q^{67} +0.00349175 q^{68} -22.1869 q^{69} +4.00305 q^{70} +7.55012 q^{71} +10.6299 q^{72} +0.874248 q^{73} +10.2178 q^{74} -7.62243 q^{75} +0.398044 q^{76} +8.47420 q^{77} -1.71482 q^{79} +5.03186 q^{80} -6.86650 q^{81} -8.50747 q^{82} -0.609918 q^{83} -1.14512 q^{84} +0.0234424 q^{85} +10.1271 q^{86} -20.6928 q^{87} +11.9333 q^{88} -9.35368 q^{89} +6.84858 q^{90} +1.83437 q^{92} -2.56782 q^{93} +2.69963 q^{94} +2.67233 q^{95} -3.07033 q^{96} -2.07646 q^{97} +3.45993 q^{98} +14.4980 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 2 q^{2} - 5 q^{3} + 28 q^{4} + 5 q^{5} - 3 q^{6} + 5 q^{7} + 3 q^{8} + 5 q^{9} - 15 q^{10} - q^{11} - 13 q^{12} - 19 q^{14} - 10 q^{15} + 4 q^{16} - 46 q^{17} - 9 q^{18} + 8 q^{19} - 5 q^{20} - 16 q^{21}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33705 −0.945436 −0.472718 0.881214i \(-0.656727\pi\)
−0.472718 + 0.881214i \(0.656727\pi\)
\(3\) 2.56782 1.48253 0.741265 0.671213i \(-0.234226\pi\)
0.741265 + 0.671213i \(0.234226\pi\)
\(4\) −0.212302 −0.106151
\(5\) −1.42532 −0.637425 −0.318712 0.947852i \(-0.603250\pi\)
−0.318712 + 0.947852i \(0.603250\pi\)
\(6\) −3.43329 −1.40164
\(7\) 2.10054 0.793929 0.396964 0.917834i \(-0.370064\pi\)
0.396964 + 0.917834i \(0.370064\pi\)
\(8\) 2.95795 1.04579
\(9\) 3.59368 1.19789
\(10\) 1.90573 0.602644
\(11\) 4.03430 1.21639 0.608193 0.793789i \(-0.291895\pi\)
0.608193 + 0.793789i \(0.291895\pi\)
\(12\) −0.545153 −0.157372
\(13\) 0 0
\(14\) −2.80852 −0.750609
\(15\) −3.65997 −0.945001
\(16\) −3.53032 −0.882581
\(17\) −0.0164471 −0.00398900 −0.00199450 0.999998i \(-0.500635\pi\)
−0.00199450 + 0.999998i \(0.500635\pi\)
\(18\) −4.80493 −1.13253
\(19\) −1.87489 −0.430130 −0.215065 0.976600i \(-0.568996\pi\)
−0.215065 + 0.976600i \(0.568996\pi\)
\(20\) 0.302600 0.0676634
\(21\) 5.39380 1.17702
\(22\) −5.39405 −1.15002
\(23\) −8.64037 −1.80164 −0.900821 0.434191i \(-0.857034\pi\)
−0.900821 + 0.434191i \(0.857034\pi\)
\(24\) 7.59549 1.55042
\(25\) −2.96845 −0.593690
\(26\) 0 0
\(27\) 1.52447 0.293384
\(28\) −0.445949 −0.0842765
\(29\) −8.05850 −1.49643 −0.748213 0.663458i \(-0.769088\pi\)
−0.748213 + 0.663458i \(0.769088\pi\)
\(30\) 4.89356 0.893438
\(31\) −1.00000 −0.179605
\(32\) −1.19570 −0.211371
\(33\) 10.3593 1.80333
\(34\) 0.0219905 0.00377135
\(35\) −2.99395 −0.506070
\(36\) −0.762947 −0.127158
\(37\) −7.64204 −1.25634 −0.628172 0.778075i \(-0.716197\pi\)
−0.628172 + 0.778075i \(0.716197\pi\)
\(38\) 2.50682 0.406660
\(39\) 0 0
\(40\) −4.21605 −0.666615
\(41\) 6.36287 0.993714 0.496857 0.867832i \(-0.334487\pi\)
0.496857 + 0.867832i \(0.334487\pi\)
\(42\) −7.21177 −1.11280
\(43\) −7.57422 −1.15506 −0.577529 0.816370i \(-0.695983\pi\)
−0.577529 + 0.816370i \(0.695983\pi\)
\(44\) −0.856491 −0.129121
\(45\) −5.12216 −0.763567
\(46\) 11.5526 1.70334
\(47\) −2.01909 −0.294515 −0.147258 0.989098i \(-0.547045\pi\)
−0.147258 + 0.989098i \(0.547045\pi\)
\(48\) −9.06522 −1.30845
\(49\) −2.58774 −0.369677
\(50\) 3.96896 0.561296
\(51\) −0.0422331 −0.00591381
\(52\) 0 0
\(53\) −0.597398 −0.0820590 −0.0410295 0.999158i \(-0.513064\pi\)
−0.0410295 + 0.999158i \(0.513064\pi\)
\(54\) −2.03829 −0.277376
\(55\) −5.75019 −0.775355
\(56\) 6.21330 0.830287
\(57\) −4.81438 −0.637680
\(58\) 10.7746 1.41478
\(59\) −12.6781 −1.65055 −0.825274 0.564733i \(-0.808979\pi\)
−0.825274 + 0.564733i \(0.808979\pi\)
\(60\) 0.777021 0.100313
\(61\) 0.0410727 0.00525882 0.00262941 0.999997i \(-0.499163\pi\)
0.00262941 + 0.999997i \(0.499163\pi\)
\(62\) 1.33705 0.169805
\(63\) 7.54867 0.951043
\(64\) 8.65935 1.08242
\(65\) 0 0
\(66\) −13.8509 −1.70493
\(67\) −5.97968 −0.730534 −0.365267 0.930903i \(-0.619022\pi\)
−0.365267 + 0.930903i \(0.619022\pi\)
\(68\) 0.00349175 0.000423437 0
\(69\) −22.1869 −2.67099
\(70\) 4.00305 0.478456
\(71\) 7.55012 0.896034 0.448017 0.894025i \(-0.352130\pi\)
0.448017 + 0.894025i \(0.352130\pi\)
\(72\) 10.6299 1.25275
\(73\) 0.874248 0.102323 0.0511615 0.998690i \(-0.483708\pi\)
0.0511615 + 0.998690i \(0.483708\pi\)
\(74\) 10.2178 1.18779
\(75\) −7.62243 −0.880163
\(76\) 0.398044 0.0456588
\(77\) 8.47420 0.965725
\(78\) 0 0
\(79\) −1.71482 −0.192932 −0.0964662 0.995336i \(-0.530754\pi\)
−0.0964662 + 0.995336i \(0.530754\pi\)
\(80\) 5.03186 0.562579
\(81\) −6.86650 −0.762944
\(82\) −8.50747 −0.939493
\(83\) −0.609918 −0.0669472 −0.0334736 0.999440i \(-0.510657\pi\)
−0.0334736 + 0.999440i \(0.510657\pi\)
\(84\) −1.14512 −0.124942
\(85\) 0.0234424 0.00254269
\(86\) 10.1271 1.09203
\(87\) −20.6928 −2.21850
\(88\) 11.9333 1.27209
\(89\) −9.35368 −0.991488 −0.495744 0.868469i \(-0.665105\pi\)
−0.495744 + 0.868469i \(0.665105\pi\)
\(90\) 6.84858 0.721904
\(91\) 0 0
\(92\) 1.83437 0.191246
\(93\) −2.56782 −0.266270
\(94\) 2.69963 0.278445
\(95\) 2.67233 0.274175
\(96\) −3.07033 −0.313364
\(97\) −2.07646 −0.210833 −0.105416 0.994428i \(-0.533618\pi\)
−0.105416 + 0.994428i \(0.533618\pi\)
\(98\) 3.45993 0.349506
\(99\) 14.4980 1.45710
\(100\) 0.630209 0.0630209
\(101\) −2.99814 −0.298327 −0.149163 0.988813i \(-0.547658\pi\)
−0.149163 + 0.988813i \(0.547658\pi\)
\(102\) 0.0564677 0.00559113
\(103\) 11.2861 1.11205 0.556025 0.831166i \(-0.312326\pi\)
0.556025 + 0.831166i \(0.312326\pi\)
\(104\) 0 0
\(105\) −7.68791 −0.750263
\(106\) 0.798750 0.0775815
\(107\) −1.72168 −0.166441 −0.0832204 0.996531i \(-0.526521\pi\)
−0.0832204 + 0.996531i \(0.526521\pi\)
\(108\) −0.323648 −0.0311430
\(109\) −14.6807 −1.40615 −0.703076 0.711114i \(-0.748191\pi\)
−0.703076 + 0.711114i \(0.748191\pi\)
\(110\) 7.68827 0.733048
\(111\) −19.6234 −1.86257
\(112\) −7.41558 −0.700706
\(113\) −10.1246 −0.952441 −0.476220 0.879326i \(-0.657994\pi\)
−0.476220 + 0.879326i \(0.657994\pi\)
\(114\) 6.43706 0.602886
\(115\) 12.3153 1.14841
\(116\) 1.71084 0.158847
\(117\) 0 0
\(118\) 16.9512 1.56049
\(119\) −0.0345477 −0.00316698
\(120\) −10.8260 −0.988277
\(121\) 5.27557 0.479597
\(122\) −0.0549162 −0.00497188
\(123\) 16.3387 1.47321
\(124\) 0.212302 0.0190653
\(125\) 11.3576 1.01586
\(126\) −10.0929 −0.899150
\(127\) 18.1165 1.60758 0.803791 0.594912i \(-0.202813\pi\)
0.803791 + 0.594912i \(0.202813\pi\)
\(128\) −9.18657 −0.811986
\(129\) −19.4492 −1.71241
\(130\) 0 0
\(131\) 9.21433 0.805060 0.402530 0.915407i \(-0.368131\pi\)
0.402530 + 0.915407i \(0.368131\pi\)
\(132\) −2.19931 −0.191426
\(133\) −3.93828 −0.341493
\(134\) 7.99511 0.690673
\(135\) −2.17286 −0.187010
\(136\) −0.0486497 −0.00417168
\(137\) −5.09013 −0.434879 −0.217440 0.976074i \(-0.569771\pi\)
−0.217440 + 0.976074i \(0.569771\pi\)
\(138\) 29.6649 2.52525
\(139\) 4.48117 0.380088 0.190044 0.981776i \(-0.439137\pi\)
0.190044 + 0.981776i \(0.439137\pi\)
\(140\) 0.635622 0.0537199
\(141\) −5.18466 −0.436627
\(142\) −10.0949 −0.847143
\(143\) 0 0
\(144\) −12.6869 −1.05724
\(145\) 11.4860 0.953859
\(146\) −1.16891 −0.0967398
\(147\) −6.64484 −0.548057
\(148\) 1.62242 0.133362
\(149\) 23.9803 1.96454 0.982272 0.187460i \(-0.0600256\pi\)
0.982272 + 0.187460i \(0.0600256\pi\)
\(150\) 10.1916 0.832137
\(151\) 16.0690 1.30768 0.653840 0.756633i \(-0.273157\pi\)
0.653840 + 0.756633i \(0.273157\pi\)
\(152\) −5.54585 −0.449828
\(153\) −0.0591056 −0.00477840
\(154\) −11.3304 −0.913031
\(155\) 1.42532 0.114485
\(156\) 0 0
\(157\) 23.6539 1.88779 0.943894 0.330249i \(-0.107133\pi\)
0.943894 + 0.330249i \(0.107133\pi\)
\(158\) 2.29280 0.182405
\(159\) −1.53401 −0.121655
\(160\) 1.70426 0.134733
\(161\) −18.1494 −1.43038
\(162\) 9.18083 0.721314
\(163\) −0.610632 −0.0478284 −0.0239142 0.999714i \(-0.507613\pi\)
−0.0239142 + 0.999714i \(0.507613\pi\)
\(164\) −1.35085 −0.105484
\(165\) −14.7654 −1.14949
\(166\) 0.815490 0.0632943
\(167\) 15.6320 1.20964 0.604821 0.796361i \(-0.293245\pi\)
0.604821 + 0.796361i \(0.293245\pi\)
\(168\) 15.9546 1.23092
\(169\) 0 0
\(170\) −0.0313437 −0.00240395
\(171\) −6.73777 −0.515250
\(172\) 1.60802 0.122611
\(173\) −25.1668 −1.91340 −0.956700 0.291076i \(-0.905987\pi\)
−0.956700 + 0.291076i \(0.905987\pi\)
\(174\) 27.6672 2.09745
\(175\) −6.23534 −0.471348
\(176\) −14.2424 −1.07356
\(177\) −32.5550 −2.44699
\(178\) 12.5063 0.937388
\(179\) −10.6107 −0.793082 −0.396541 0.918017i \(-0.629790\pi\)
−0.396541 + 0.918017i \(0.629790\pi\)
\(180\) 1.08745 0.0810535
\(181\) 16.1834 1.20291 0.601453 0.798908i \(-0.294589\pi\)
0.601453 + 0.798908i \(0.294589\pi\)
\(182\) 0 0
\(183\) 0.105467 0.00779636
\(184\) −25.5578 −1.88415
\(185\) 10.8924 0.800824
\(186\) 3.43329 0.251741
\(187\) −0.0663524 −0.00485217
\(188\) 0.428658 0.0312631
\(189\) 3.20220 0.232926
\(190\) −3.57303 −0.259215
\(191\) −13.7500 −0.994912 −0.497456 0.867489i \(-0.665732\pi\)
−0.497456 + 0.867489i \(0.665732\pi\)
\(192\) 22.2356 1.60472
\(193\) 18.9509 1.36411 0.682056 0.731300i \(-0.261086\pi\)
0.682056 + 0.731300i \(0.261086\pi\)
\(194\) 2.77633 0.199329
\(195\) 0 0
\(196\) 0.549383 0.0392416
\(197\) 22.2195 1.58308 0.791538 0.611120i \(-0.209281\pi\)
0.791538 + 0.611120i \(0.209281\pi\)
\(198\) −19.3845 −1.37760
\(199\) −4.66216 −0.330492 −0.165246 0.986252i \(-0.552842\pi\)
−0.165246 + 0.986252i \(0.552842\pi\)
\(200\) −8.78054 −0.620878
\(201\) −15.3547 −1.08304
\(202\) 4.00866 0.282049
\(203\) −16.9272 −1.18806
\(204\) 0.00896618 0.000627758 0
\(205\) −9.06916 −0.633418
\(206\) −15.0900 −1.05137
\(207\) −31.0507 −2.15818
\(208\) 0 0
\(209\) −7.56388 −0.523204
\(210\) 10.2791 0.709326
\(211\) −10.4552 −0.719769 −0.359884 0.932997i \(-0.617184\pi\)
−0.359884 + 0.932997i \(0.617184\pi\)
\(212\) 0.126829 0.00871065
\(213\) 19.3873 1.32840
\(214\) 2.30197 0.157359
\(215\) 10.7957 0.736262
\(216\) 4.50930 0.306819
\(217\) −2.10054 −0.142594
\(218\) 19.6288 1.32943
\(219\) 2.24491 0.151697
\(220\) 1.22078 0.0823048
\(221\) 0 0
\(222\) 26.2374 1.76094
\(223\) −2.62263 −0.175624 −0.0878122 0.996137i \(-0.527988\pi\)
−0.0878122 + 0.996137i \(0.527988\pi\)
\(224\) −2.51161 −0.167814
\(225\) −10.6677 −0.711178
\(226\) 13.5371 0.900471
\(227\) 0.249112 0.0165342 0.00826708 0.999966i \(-0.497368\pi\)
0.00826708 + 0.999966i \(0.497368\pi\)
\(228\) 1.02210 0.0676905
\(229\) −10.7722 −0.711848 −0.355924 0.934515i \(-0.615834\pi\)
−0.355924 + 0.934515i \(0.615834\pi\)
\(230\) −16.4662 −1.08575
\(231\) 21.7602 1.43172
\(232\) −23.8367 −1.56496
\(233\) −15.3667 −1.00671 −0.503354 0.864080i \(-0.667901\pi\)
−0.503354 + 0.864080i \(0.667901\pi\)
\(234\) 0 0
\(235\) 2.87786 0.187731
\(236\) 2.69159 0.175208
\(237\) −4.40334 −0.286028
\(238\) 0.0461920 0.00299418
\(239\) −8.10070 −0.523991 −0.261995 0.965069i \(-0.584381\pi\)
−0.261995 + 0.965069i \(0.584381\pi\)
\(240\) 12.9209 0.834040
\(241\) −10.5809 −0.681574 −0.340787 0.940141i \(-0.610694\pi\)
−0.340787 + 0.940141i \(0.610694\pi\)
\(242\) −7.05369 −0.453428
\(243\) −22.2053 −1.42447
\(244\) −0.00871983 −0.000558230 0
\(245\) 3.68837 0.235641
\(246\) −21.8456 −1.39283
\(247\) 0 0
\(248\) −2.95795 −0.187830
\(249\) −1.56616 −0.0992513
\(250\) −15.1857 −0.960428
\(251\) −15.7876 −0.996507 −0.498254 0.867031i \(-0.666025\pi\)
−0.498254 + 0.867031i \(0.666025\pi\)
\(252\) −1.60260 −0.100954
\(253\) −34.8578 −2.19149
\(254\) −24.2227 −1.51987
\(255\) 0.0601959 0.00376961
\(256\) −5.03581 −0.314738
\(257\) −16.5299 −1.03111 −0.515554 0.856857i \(-0.672414\pi\)
−0.515554 + 0.856857i \(0.672414\pi\)
\(258\) 26.0045 1.61897
\(259\) −16.0524 −0.997447
\(260\) 0 0
\(261\) −28.9597 −1.79256
\(262\) −12.3200 −0.761132
\(263\) 9.97680 0.615196 0.307598 0.951516i \(-0.400475\pi\)
0.307598 + 0.951516i \(0.400475\pi\)
\(264\) 30.6425 1.88591
\(265\) 0.851486 0.0523064
\(266\) 5.26568 0.322859
\(267\) −24.0185 −1.46991
\(268\) 1.26950 0.0775470
\(269\) 16.8578 1.02784 0.513918 0.857839i \(-0.328194\pi\)
0.513918 + 0.857839i \(0.328194\pi\)
\(270\) 2.90522 0.176806
\(271\) 6.39352 0.388379 0.194189 0.980964i \(-0.437792\pi\)
0.194189 + 0.980964i \(0.437792\pi\)
\(272\) 0.0580635 0.00352062
\(273\) 0 0
\(274\) 6.80575 0.411150
\(275\) −11.9756 −0.722157
\(276\) 4.71033 0.283528
\(277\) −13.5224 −0.812480 −0.406240 0.913766i \(-0.633160\pi\)
−0.406240 + 0.913766i \(0.633160\pi\)
\(278\) −5.99154 −0.359349
\(279\) −3.59368 −0.215148
\(280\) −8.85597 −0.529245
\(281\) 1.43056 0.0853401 0.0426701 0.999089i \(-0.486414\pi\)
0.0426701 + 0.999089i \(0.486414\pi\)
\(282\) 6.93214 0.412803
\(283\) 11.0118 0.654582 0.327291 0.944924i \(-0.393864\pi\)
0.327291 + 0.944924i \(0.393864\pi\)
\(284\) −1.60291 −0.0951150
\(285\) 6.86206 0.406473
\(286\) 0 0
\(287\) 13.3655 0.788938
\(288\) −4.29696 −0.253201
\(289\) −16.9997 −0.999984
\(290\) −15.3573 −0.901812
\(291\) −5.33197 −0.312566
\(292\) −0.185605 −0.0108617
\(293\) −15.4462 −0.902379 −0.451190 0.892428i \(-0.649000\pi\)
−0.451190 + 0.892428i \(0.649000\pi\)
\(294\) 8.88447 0.518153
\(295\) 18.0704 1.05210
\(296\) −22.6048 −1.31388
\(297\) 6.15015 0.356868
\(298\) −32.0628 −1.85735
\(299\) 0 0
\(300\) 1.61826 0.0934303
\(301\) −15.9099 −0.917034
\(302\) −21.4851 −1.23633
\(303\) −7.69869 −0.442278
\(304\) 6.61898 0.379624
\(305\) −0.0585420 −0.00335210
\(306\) 0.0790270 0.00451767
\(307\) 31.2288 1.78232 0.891162 0.453685i \(-0.149891\pi\)
0.891162 + 0.453685i \(0.149891\pi\)
\(308\) −1.79909 −0.102513
\(309\) 28.9806 1.64865
\(310\) −1.90573 −0.108238
\(311\) 27.6307 1.56679 0.783396 0.621523i \(-0.213486\pi\)
0.783396 + 0.621523i \(0.213486\pi\)
\(312\) 0 0
\(313\) −8.46905 −0.478699 −0.239349 0.970933i \(-0.576934\pi\)
−0.239349 + 0.970933i \(0.576934\pi\)
\(314\) −31.6264 −1.78478
\(315\) −10.7593 −0.606218
\(316\) 0.364060 0.0204800
\(317\) 22.3123 1.25318 0.626592 0.779347i \(-0.284449\pi\)
0.626592 + 0.779347i \(0.284449\pi\)
\(318\) 2.05104 0.115017
\(319\) −32.5104 −1.82023
\(320\) −12.3424 −0.689960
\(321\) −4.42095 −0.246753
\(322\) 24.2667 1.35233
\(323\) 0.0308365 0.00171579
\(324\) 1.45777 0.0809874
\(325\) 0 0
\(326\) 0.816444 0.0452187
\(327\) −37.6973 −2.08466
\(328\) 18.8211 1.03922
\(329\) −4.24118 −0.233824
\(330\) 19.7421 1.08677
\(331\) −19.6971 −1.08265 −0.541326 0.840813i \(-0.682078\pi\)
−0.541326 + 0.840813i \(0.682078\pi\)
\(332\) 0.129487 0.00710653
\(333\) −27.4631 −1.50497
\(334\) −20.9008 −1.14364
\(335\) 8.52298 0.465660
\(336\) −19.0418 −1.03882
\(337\) 14.7663 0.804373 0.402186 0.915558i \(-0.368250\pi\)
0.402186 + 0.915558i \(0.368250\pi\)
\(338\) 0 0
\(339\) −25.9981 −1.41202
\(340\) −0.00497688 −0.000269909 0
\(341\) −4.03430 −0.218470
\(342\) 9.00872 0.487136
\(343\) −20.1394 −1.08743
\(344\) −22.4042 −1.20795
\(345\) 31.6235 1.70255
\(346\) 33.6493 1.80900
\(347\) 27.5314 1.47796 0.738982 0.673725i \(-0.235307\pi\)
0.738982 + 0.673725i \(0.235307\pi\)
\(348\) 4.39312 0.235496
\(349\) 0.0998581 0.00534528 0.00267264 0.999996i \(-0.499149\pi\)
0.00267264 + 0.999996i \(0.499149\pi\)
\(350\) 8.33695 0.445629
\(351\) 0 0
\(352\) −4.82380 −0.257109
\(353\) −23.9520 −1.27484 −0.637418 0.770518i \(-0.719998\pi\)
−0.637418 + 0.770518i \(0.719998\pi\)
\(354\) 43.5276 2.31347
\(355\) −10.7614 −0.571154
\(356\) 1.98581 0.105248
\(357\) −0.0887122 −0.00469515
\(358\) 14.1870 0.749808
\(359\) −2.63001 −0.138807 −0.0694033 0.997589i \(-0.522110\pi\)
−0.0694033 + 0.997589i \(0.522110\pi\)
\(360\) −15.1511 −0.798535
\(361\) −15.4848 −0.814988
\(362\) −21.6380 −1.13727
\(363\) 13.5467 0.711017
\(364\) 0 0
\(365\) −1.24609 −0.0652232
\(366\) −0.141015 −0.00737096
\(367\) −6.41524 −0.334873 −0.167436 0.985883i \(-0.553549\pi\)
−0.167436 + 0.985883i \(0.553549\pi\)
\(368\) 30.5033 1.59009
\(369\) 22.8661 1.19036
\(370\) −14.5636 −0.757128
\(371\) −1.25486 −0.0651490
\(372\) 0.545153 0.0282649
\(373\) 35.4958 1.83790 0.918952 0.394369i \(-0.129037\pi\)
0.918952 + 0.394369i \(0.129037\pi\)
\(374\) 0.0887164 0.00458742
\(375\) 29.1643 1.50604
\(376\) −5.97239 −0.308002
\(377\) 0 0
\(378\) −4.28150 −0.220216
\(379\) 1.74807 0.0897924 0.0448962 0.998992i \(-0.485704\pi\)
0.0448962 + 0.998992i \(0.485704\pi\)
\(380\) −0.567342 −0.0291040
\(381\) 46.5199 2.38329
\(382\) 18.3844 0.940626
\(383\) −28.9265 −1.47808 −0.739038 0.673664i \(-0.764720\pi\)
−0.739038 + 0.673664i \(0.764720\pi\)
\(384\) −23.5894 −1.20379
\(385\) −12.0785 −0.615577
\(386\) −25.3382 −1.28968
\(387\) −27.2193 −1.38364
\(388\) 0.440837 0.0223801
\(389\) 27.6900 1.40394 0.701969 0.712208i \(-0.252305\pi\)
0.701969 + 0.712208i \(0.252305\pi\)
\(390\) 0 0
\(391\) 0.142109 0.00718675
\(392\) −7.65441 −0.386606
\(393\) 23.6607 1.19352
\(394\) −29.7086 −1.49670
\(395\) 2.44418 0.122980
\(396\) −3.07796 −0.154673
\(397\) 23.9754 1.20329 0.601645 0.798764i \(-0.294512\pi\)
0.601645 + 0.798764i \(0.294512\pi\)
\(398\) 6.23354 0.312459
\(399\) −10.1128 −0.506273
\(400\) 10.4796 0.523979
\(401\) −5.25188 −0.262266 −0.131133 0.991365i \(-0.541862\pi\)
−0.131133 + 0.991365i \(0.541862\pi\)
\(402\) 20.5300 1.02394
\(403\) 0 0
\(404\) 0.636513 0.0316677
\(405\) 9.78699 0.486319
\(406\) 22.6325 1.12323
\(407\) −30.8303 −1.52820
\(408\) −0.124924 −0.00618464
\(409\) −0.121700 −0.00601767 −0.00300883 0.999995i \(-0.500958\pi\)
−0.00300883 + 0.999995i \(0.500958\pi\)
\(410\) 12.1259 0.598856
\(411\) −13.0705 −0.644721
\(412\) −2.39606 −0.118045
\(413\) −26.6308 −1.31042
\(414\) 41.5163 2.04042
\(415\) 0.869332 0.0426738
\(416\) 0 0
\(417\) 11.5068 0.563491
\(418\) 10.1133 0.494656
\(419\) −21.3135 −1.04123 −0.520616 0.853791i \(-0.674298\pi\)
−0.520616 + 0.853791i \(0.674298\pi\)
\(420\) 1.63216 0.0796413
\(421\) 19.3803 0.944538 0.472269 0.881455i \(-0.343435\pi\)
0.472269 + 0.881455i \(0.343435\pi\)
\(422\) 13.9792 0.680495
\(423\) −7.25598 −0.352798
\(424\) −1.76708 −0.0858168
\(425\) 0.0488223 0.00236823
\(426\) −25.9218 −1.25591
\(427\) 0.0862748 0.00417513
\(428\) 0.365516 0.0176679
\(429\) 0 0
\(430\) −14.4344 −0.696089
\(431\) −30.0225 −1.44614 −0.723068 0.690777i \(-0.757269\pi\)
−0.723068 + 0.690777i \(0.757269\pi\)
\(432\) −5.38186 −0.258935
\(433\) −26.8912 −1.29231 −0.646155 0.763206i \(-0.723624\pi\)
−0.646155 + 0.763206i \(0.723624\pi\)
\(434\) 2.80852 0.134813
\(435\) 29.4939 1.41412
\(436\) 3.11674 0.149265
\(437\) 16.1998 0.774940
\(438\) −3.00155 −0.143420
\(439\) −1.48920 −0.0710755 −0.0355378 0.999368i \(-0.511314\pi\)
−0.0355378 + 0.999368i \(0.511314\pi\)
\(440\) −17.0088 −0.810862
\(441\) −9.29951 −0.442834
\(442\) 0 0
\(443\) 13.9431 0.662457 0.331228 0.943551i \(-0.392537\pi\)
0.331228 + 0.943551i \(0.392537\pi\)
\(444\) 4.16608 0.197714
\(445\) 13.3320 0.631999
\(446\) 3.50659 0.166042
\(447\) 61.5771 2.91250
\(448\) 18.1893 0.859364
\(449\) −26.8813 −1.26861 −0.634304 0.773084i \(-0.718713\pi\)
−0.634304 + 0.773084i \(0.718713\pi\)
\(450\) 14.2632 0.672373
\(451\) 25.6697 1.20874
\(452\) 2.14947 0.101103
\(453\) 41.2623 1.93867
\(454\) −0.333075 −0.0156320
\(455\) 0 0
\(456\) −14.2407 −0.666883
\(457\) 10.1838 0.476378 0.238189 0.971219i \(-0.423446\pi\)
0.238189 + 0.971219i \(0.423446\pi\)
\(458\) 14.4030 0.673006
\(459\) −0.0250730 −0.00117031
\(460\) −2.61457 −0.121905
\(461\) 21.2608 0.990212 0.495106 0.868833i \(-0.335129\pi\)
0.495106 + 0.868833i \(0.335129\pi\)
\(462\) −29.0944 −1.35359
\(463\) −20.5840 −0.956621 −0.478311 0.878191i \(-0.658751\pi\)
−0.478311 + 0.878191i \(0.658751\pi\)
\(464\) 28.4491 1.32072
\(465\) 3.65997 0.169727
\(466\) 20.5461 0.951778
\(467\) −31.8339 −1.47310 −0.736548 0.676385i \(-0.763546\pi\)
−0.736548 + 0.676385i \(0.763546\pi\)
\(468\) 0 0
\(469\) −12.5605 −0.579992
\(470\) −3.84784 −0.177488
\(471\) 60.7389 2.79870
\(472\) −37.5012 −1.72613
\(473\) −30.5567 −1.40500
\(474\) 5.88748 0.270421
\(475\) 5.56552 0.255364
\(476\) 0.00733456 0.000336179 0
\(477\) −2.14686 −0.0982979
\(478\) 10.8310 0.495400
\(479\) −1.53857 −0.0702990 −0.0351495 0.999382i \(-0.511191\pi\)
−0.0351495 + 0.999382i \(0.511191\pi\)
\(480\) 4.37622 0.199746
\(481\) 0 0
\(482\) 14.1471 0.644385
\(483\) −46.6044 −2.12057
\(484\) −1.12001 −0.0509098
\(485\) 2.95963 0.134390
\(486\) 29.6896 1.34675
\(487\) 3.23073 0.146398 0.0731992 0.997317i \(-0.476679\pi\)
0.0731992 + 0.997317i \(0.476679\pi\)
\(488\) 0.121491 0.00549965
\(489\) −1.56799 −0.0709070
\(490\) −4.93153 −0.222784
\(491\) 1.50855 0.0680799 0.0340399 0.999420i \(-0.489163\pi\)
0.0340399 + 0.999420i \(0.489163\pi\)
\(492\) −3.46874 −0.156383
\(493\) 0.132539 0.00596925
\(494\) 0 0
\(495\) −20.6643 −0.928793
\(496\) 3.53032 0.158516
\(497\) 15.8593 0.711387
\(498\) 2.09403 0.0938357
\(499\) 13.8204 0.618686 0.309343 0.950950i \(-0.399891\pi\)
0.309343 + 0.950950i \(0.399891\pi\)
\(500\) −2.41125 −0.107834
\(501\) 40.1402 1.79333
\(502\) 21.1088 0.942134
\(503\) −17.1588 −0.765073 −0.382536 0.923940i \(-0.624949\pi\)
−0.382536 + 0.923940i \(0.624949\pi\)
\(504\) 22.3286 0.994596
\(505\) 4.27333 0.190161
\(506\) 46.6066 2.07192
\(507\) 0 0
\(508\) −3.84618 −0.170647
\(509\) 24.8200 1.10013 0.550064 0.835122i \(-0.314603\pi\)
0.550064 + 0.835122i \(0.314603\pi\)
\(510\) −0.0804847 −0.00356392
\(511\) 1.83639 0.0812372
\(512\) 25.1063 1.10955
\(513\) −2.85821 −0.126193
\(514\) 22.1013 0.974846
\(515\) −16.0863 −0.708848
\(516\) 4.12911 0.181774
\(517\) −8.14563 −0.358244
\(518\) 21.4628 0.943023
\(519\) −64.6238 −2.83667
\(520\) 0 0
\(521\) −40.2422 −1.76304 −0.881520 0.472146i \(-0.843479\pi\)
−0.881520 + 0.472146i \(0.843479\pi\)
\(522\) 38.7205 1.69475
\(523\) −11.9605 −0.522997 −0.261499 0.965204i \(-0.584217\pi\)
−0.261499 + 0.965204i \(0.584217\pi\)
\(524\) −1.95622 −0.0854580
\(525\) −16.0112 −0.698787
\(526\) −13.3395 −0.581628
\(527\) 0.0164471 0.000716446 0
\(528\) −36.5718 −1.59158
\(529\) 51.6560 2.24591
\(530\) −1.13848 −0.0494523
\(531\) −45.5610 −1.97718
\(532\) 0.836107 0.0362498
\(533\) 0 0
\(534\) 32.1139 1.38971
\(535\) 2.45395 0.106093
\(536\) −17.6876 −0.763988
\(537\) −27.2464 −1.17577
\(538\) −22.5396 −0.971752
\(539\) −10.4397 −0.449670
\(540\) 0.461303 0.0198513
\(541\) 27.2011 1.16947 0.584733 0.811226i \(-0.301199\pi\)
0.584733 + 0.811226i \(0.301199\pi\)
\(542\) −8.54845 −0.367187
\(543\) 41.5561 1.78334
\(544\) 0.0196657 0.000843161 0
\(545\) 20.9247 0.896316
\(546\) 0 0
\(547\) 9.62388 0.411488 0.205744 0.978606i \(-0.434039\pi\)
0.205744 + 0.978606i \(0.434039\pi\)
\(548\) 1.08065 0.0461629
\(549\) 0.147602 0.00629951
\(550\) 16.0120 0.682753
\(551\) 15.1088 0.643658
\(552\) −65.6278 −2.79331
\(553\) −3.60205 −0.153175
\(554\) 18.0801 0.768148
\(555\) 27.9697 1.18725
\(556\) −0.951363 −0.0403468
\(557\) 17.6937 0.749707 0.374854 0.927084i \(-0.377693\pi\)
0.374854 + 0.927084i \(0.377693\pi\)
\(558\) 4.80493 0.203409
\(559\) 0 0
\(560\) 10.5696 0.446647
\(561\) −0.170381 −0.00719349
\(562\) −1.91273 −0.0806836
\(563\) 5.53995 0.233481 0.116740 0.993162i \(-0.462755\pi\)
0.116740 + 0.993162i \(0.462755\pi\)
\(564\) 1.10072 0.0463485
\(565\) 14.4308 0.607109
\(566\) −14.7233 −0.618865
\(567\) −14.4233 −0.605723
\(568\) 22.3329 0.937068
\(569\) 10.8728 0.455811 0.227906 0.973683i \(-0.426812\pi\)
0.227906 + 0.973683i \(0.426812\pi\)
\(570\) −9.17490 −0.384294
\(571\) 17.4474 0.730153 0.365076 0.930978i \(-0.381043\pi\)
0.365076 + 0.930978i \(0.381043\pi\)
\(572\) 0 0
\(573\) −35.3074 −1.47499
\(574\) −17.8703 −0.745890
\(575\) 25.6485 1.06962
\(576\) 31.1190 1.29662
\(577\) 19.1962 0.799150 0.399575 0.916701i \(-0.369158\pi\)
0.399575 + 0.916701i \(0.369158\pi\)
\(578\) 22.7295 0.945421
\(579\) 48.6623 2.02234
\(580\) −2.43850 −0.101253
\(581\) −1.28116 −0.0531514
\(582\) 7.12910 0.295511
\(583\) −2.41008 −0.0998154
\(584\) 2.58599 0.107009
\(585\) 0 0
\(586\) 20.6524 0.853142
\(587\) −47.5323 −1.96187 −0.980935 0.194338i \(-0.937744\pi\)
−0.980935 + 0.194338i \(0.937744\pi\)
\(588\) 1.41071 0.0581769
\(589\) 1.87489 0.0772536
\(590\) −24.1610 −0.994692
\(591\) 57.0557 2.34696
\(592\) 26.9789 1.10882
\(593\) −36.8014 −1.51125 −0.755627 0.655002i \(-0.772668\pi\)
−0.755627 + 0.655002i \(0.772668\pi\)
\(594\) −8.22305 −0.337396
\(595\) 0.0492417 0.00201871
\(596\) −5.09108 −0.208539
\(597\) −11.9716 −0.489964
\(598\) 0 0
\(599\) 11.3893 0.465355 0.232678 0.972554i \(-0.425251\pi\)
0.232678 + 0.972554i \(0.425251\pi\)
\(600\) −22.5468 −0.920470
\(601\) 21.6702 0.883947 0.441974 0.897028i \(-0.354278\pi\)
0.441974 + 0.897028i \(0.354278\pi\)
\(602\) 21.2724 0.866997
\(603\) −21.4891 −0.875102
\(604\) −3.41149 −0.138812
\(605\) −7.51939 −0.305707
\(606\) 10.2935 0.418145
\(607\) 33.5350 1.36114 0.680571 0.732682i \(-0.261732\pi\)
0.680571 + 0.732682i \(0.261732\pi\)
\(608\) 2.24180 0.0909172
\(609\) −43.4659 −1.76133
\(610\) 0.0782734 0.00316920
\(611\) 0 0
\(612\) 0.0125483 0.000507233 0
\(613\) 36.2209 1.46295 0.731474 0.681869i \(-0.238833\pi\)
0.731474 + 0.681869i \(0.238833\pi\)
\(614\) −41.7545 −1.68507
\(615\) −23.2879 −0.939060
\(616\) 25.0663 1.00995
\(617\) 32.0991 1.29226 0.646131 0.763227i \(-0.276386\pi\)
0.646131 + 0.763227i \(0.276386\pi\)
\(618\) −38.7484 −1.55869
\(619\) 5.95611 0.239396 0.119698 0.992810i \(-0.461807\pi\)
0.119698 + 0.992810i \(0.461807\pi\)
\(620\) −0.302600 −0.0121527
\(621\) −13.1720 −0.528572
\(622\) −36.9436 −1.48130
\(623\) −19.6478 −0.787171
\(624\) 0 0
\(625\) −1.34606 −0.0538424
\(626\) 11.3235 0.452579
\(627\) −19.4226 −0.775666
\(628\) −5.02178 −0.200391
\(629\) 0.125689 0.00501156
\(630\) 14.3857 0.573140
\(631\) −26.7521 −1.06498 −0.532492 0.846435i \(-0.678744\pi\)
−0.532492 + 0.846435i \(0.678744\pi\)
\(632\) −5.07236 −0.201768
\(633\) −26.8471 −1.06708
\(634\) −29.8326 −1.18481
\(635\) −25.8219 −1.02471
\(636\) 0.325674 0.0129138
\(637\) 0 0
\(638\) 43.4680 1.72091
\(639\) 27.1327 1.07335
\(640\) 13.0939 0.517580
\(641\) 34.8042 1.37468 0.687342 0.726334i \(-0.258778\pi\)
0.687342 + 0.726334i \(0.258778\pi\)
\(642\) 5.91102 0.233290
\(643\) 28.7699 1.13457 0.567287 0.823520i \(-0.307993\pi\)
0.567287 + 0.823520i \(0.307993\pi\)
\(644\) 3.85317 0.151836
\(645\) 27.7214 1.09153
\(646\) −0.0412299 −0.00162217
\(647\) −7.32163 −0.287843 −0.143921 0.989589i \(-0.545971\pi\)
−0.143921 + 0.989589i \(0.545971\pi\)
\(648\) −20.3108 −0.797883
\(649\) −51.1472 −2.00770
\(650\) 0 0
\(651\) −5.39380 −0.211400
\(652\) 0.129639 0.00507704
\(653\) −46.9350 −1.83671 −0.918354 0.395761i \(-0.870481\pi\)
−0.918354 + 0.395761i \(0.870481\pi\)
\(654\) 50.4031 1.97092
\(655\) −13.1334 −0.513165
\(656\) −22.4630 −0.877033
\(657\) 3.14177 0.122572
\(658\) 5.67067 0.221066
\(659\) 13.3860 0.521443 0.260722 0.965414i \(-0.416040\pi\)
0.260722 + 0.965414i \(0.416040\pi\)
\(660\) 3.13473 0.122019
\(661\) −6.50063 −0.252845 −0.126423 0.991976i \(-0.540350\pi\)
−0.126423 + 0.991976i \(0.540350\pi\)
\(662\) 26.3360 1.02358
\(663\) 0 0
\(664\) −1.80411 −0.0700131
\(665\) 5.61333 0.217676
\(666\) 36.7194 1.42285
\(667\) 69.6285 2.69602
\(668\) −3.31872 −0.128405
\(669\) −6.73444 −0.260368
\(670\) −11.3956 −0.440252
\(671\) 0.165700 0.00639676
\(672\) −6.44935 −0.248789
\(673\) −6.76665 −0.260835 −0.130418 0.991459i \(-0.541632\pi\)
−0.130418 + 0.991459i \(0.541632\pi\)
\(674\) −19.7433 −0.760483
\(675\) −4.52530 −0.174179
\(676\) 0 0
\(677\) −47.3270 −1.81893 −0.909463 0.415785i \(-0.863507\pi\)
−0.909463 + 0.415785i \(0.863507\pi\)
\(678\) 34.7607 1.33498
\(679\) −4.36168 −0.167386
\(680\) 0.0693416 0.00265913
\(681\) 0.639675 0.0245124
\(682\) 5.39405 0.206549
\(683\) 36.1273 1.38237 0.691186 0.722677i \(-0.257089\pi\)
0.691186 + 0.722677i \(0.257089\pi\)
\(684\) 1.43044 0.0546944
\(685\) 7.25509 0.277203
\(686\) 26.9274 1.02809
\(687\) −27.6611 −1.05534
\(688\) 26.7394 1.01943
\(689\) 0 0
\(690\) −42.2822 −1.60965
\(691\) −38.5583 −1.46683 −0.733413 0.679783i \(-0.762074\pi\)
−0.733413 + 0.679783i \(0.762074\pi\)
\(692\) 5.34298 0.203110
\(693\) 30.4536 1.15684
\(694\) −36.8108 −1.39732
\(695\) −6.38712 −0.242277
\(696\) −61.2082 −2.32009
\(697\) −0.104651 −0.00396393
\(698\) −0.133515 −0.00505362
\(699\) −39.4590 −1.49248
\(700\) 1.32378 0.0500341
\(701\) −14.8160 −0.559594 −0.279797 0.960059i \(-0.590267\pi\)
−0.279797 + 0.960059i \(0.590267\pi\)
\(702\) 0 0
\(703\) 14.3280 0.540391
\(704\) 34.9344 1.31664
\(705\) 7.38983 0.278317
\(706\) 32.0250 1.20528
\(707\) −6.29772 −0.236850
\(708\) 6.91151 0.259750
\(709\) −24.5278 −0.921162 −0.460581 0.887618i \(-0.652359\pi\)
−0.460581 + 0.887618i \(0.652359\pi\)
\(710\) 14.3885 0.539989
\(711\) −6.16252 −0.231113
\(712\) −27.6678 −1.03689
\(713\) 8.64037 0.323584
\(714\) 0.118612 0.00443896
\(715\) 0 0
\(716\) 2.25268 0.0841866
\(717\) −20.8011 −0.776832
\(718\) 3.51645 0.131233
\(719\) −41.2110 −1.53691 −0.768456 0.639903i \(-0.778974\pi\)
−0.768456 + 0.639903i \(0.778974\pi\)
\(720\) 18.0829 0.673910
\(721\) 23.7068 0.882889
\(722\) 20.7039 0.770519
\(723\) −27.1697 −1.01045
\(724\) −3.43578 −0.127690
\(725\) 23.9213 0.888413
\(726\) −18.1126 −0.672221
\(727\) 26.4051 0.979312 0.489656 0.871916i \(-0.337122\pi\)
0.489656 + 0.871916i \(0.337122\pi\)
\(728\) 0 0
\(729\) −36.4197 −1.34888
\(730\) 1.66608 0.0616643
\(731\) 0.124574 0.00460753
\(732\) −0.0223909 −0.000827593 0
\(733\) −7.74570 −0.286094 −0.143047 0.989716i \(-0.545690\pi\)
−0.143047 + 0.989716i \(0.545690\pi\)
\(734\) 8.57749 0.316601
\(735\) 9.47105 0.349345
\(736\) 10.3313 0.380816
\(737\) −24.1238 −0.888611
\(738\) −30.5731 −1.12541
\(739\) 19.3502 0.711808 0.355904 0.934523i \(-0.384173\pi\)
0.355904 + 0.934523i \(0.384173\pi\)
\(740\) −2.31248 −0.0850084
\(741\) 0 0
\(742\) 1.67781 0.0615942
\(743\) −8.44821 −0.309935 −0.154967 0.987920i \(-0.549527\pi\)
−0.154967 + 0.987920i \(0.549527\pi\)
\(744\) −7.59549 −0.278464
\(745\) −34.1797 −1.25225
\(746\) −47.4596 −1.73762
\(747\) −2.19185 −0.0801957
\(748\) 0.0140868 0.000515063 0
\(749\) −3.61645 −0.132142
\(750\) −38.9941 −1.42386
\(751\) 12.3289 0.449887 0.224944 0.974372i \(-0.427780\pi\)
0.224944 + 0.974372i \(0.427780\pi\)
\(752\) 7.12805 0.259933
\(753\) −40.5398 −1.47735
\(754\) 0 0
\(755\) −22.9036 −0.833547
\(756\) −0.679835 −0.0247253
\(757\) −41.5370 −1.50969 −0.754844 0.655904i \(-0.772288\pi\)
−0.754844 + 0.655904i \(0.772288\pi\)
\(758\) −2.33726 −0.0848929
\(759\) −89.5085 −3.24895
\(760\) 7.90463 0.286731
\(761\) −21.4649 −0.778102 −0.389051 0.921216i \(-0.627197\pi\)
−0.389051 + 0.921216i \(0.627197\pi\)
\(762\) −62.1994 −2.25325
\(763\) −30.8373 −1.11639
\(764\) 2.91915 0.105611
\(765\) 0.0842446 0.00304587
\(766\) 38.6762 1.39743
\(767\) 0 0
\(768\) −12.9310 −0.466609
\(769\) 9.70089 0.349823 0.174911 0.984584i \(-0.444036\pi\)
0.174911 + 0.984584i \(0.444036\pi\)
\(770\) 16.1495 0.581988
\(771\) −42.4458 −1.52865
\(772\) −4.02331 −0.144802
\(773\) −31.1116 −1.11901 −0.559504 0.828828i \(-0.689008\pi\)
−0.559504 + 0.828828i \(0.689008\pi\)
\(774\) 36.3936 1.30814
\(775\) 2.96845 0.106630
\(776\) −6.14207 −0.220488
\(777\) −41.2196 −1.47875
\(778\) −37.0228 −1.32733
\(779\) −11.9297 −0.427426
\(780\) 0 0
\(781\) 30.4594 1.08992
\(782\) −0.190006 −0.00679461
\(783\) −12.2849 −0.439027
\(784\) 9.13555 0.326270
\(785\) −33.7145 −1.20332
\(786\) −31.6355 −1.12840
\(787\) 12.1713 0.433860 0.216930 0.976187i \(-0.430396\pi\)
0.216930 + 0.976187i \(0.430396\pi\)
\(788\) −4.71726 −0.168045
\(789\) 25.6186 0.912046
\(790\) −3.26798 −0.116270
\(791\) −21.2671 −0.756170
\(792\) 42.8844 1.52383
\(793\) 0 0
\(794\) −32.0562 −1.13763
\(795\) 2.18646 0.0775458
\(796\) 0.989788 0.0350821
\(797\) 47.5670 1.68491 0.842454 0.538768i \(-0.181110\pi\)
0.842454 + 0.538768i \(0.181110\pi\)
\(798\) 13.5213 0.478648
\(799\) 0.0332082 0.00117482
\(800\) 3.54937 0.125489
\(801\) −33.6142 −1.18770
\(802\) 7.02202 0.247956
\(803\) 3.52698 0.124464
\(804\) 3.25984 0.114966
\(805\) 25.8688 0.911757
\(806\) 0 0
\(807\) 43.2876 1.52380
\(808\) −8.86838 −0.311988
\(809\) −18.5449 −0.652006 −0.326003 0.945369i \(-0.605702\pi\)
−0.326003 + 0.945369i \(0.605702\pi\)
\(810\) −13.0857 −0.459784
\(811\) −9.31360 −0.327045 −0.163522 0.986540i \(-0.552286\pi\)
−0.163522 + 0.986540i \(0.552286\pi\)
\(812\) 3.59368 0.126114
\(813\) 16.4174 0.575783
\(814\) 41.2216 1.44481
\(815\) 0.870349 0.0304870
\(816\) 0.149096 0.00521942
\(817\) 14.2009 0.496825
\(818\) 0.162719 0.00568932
\(819\) 0 0
\(820\) 1.92540 0.0672380
\(821\) 43.2457 1.50928 0.754642 0.656137i \(-0.227811\pi\)
0.754642 + 0.656137i \(0.227811\pi\)
\(822\) 17.4759 0.609543
\(823\) −21.7577 −0.758427 −0.379214 0.925309i \(-0.623805\pi\)
−0.379214 + 0.925309i \(0.623805\pi\)
\(824\) 33.3837 1.16298
\(825\) −30.7512 −1.07062
\(826\) 35.6067 1.23892
\(827\) −17.1833 −0.597521 −0.298761 0.954328i \(-0.596573\pi\)
−0.298761 + 0.954328i \(0.596573\pi\)
\(828\) 6.59215 0.229093
\(829\) −4.73505 −0.164455 −0.0822276 0.996614i \(-0.526203\pi\)
−0.0822276 + 0.996614i \(0.526203\pi\)
\(830\) −1.16234 −0.0403454
\(831\) −34.7230 −1.20453
\(832\) 0 0
\(833\) 0.0425607 0.00147464
\(834\) −15.3852 −0.532745
\(835\) −22.2807 −0.771056
\(836\) 1.60583 0.0555388
\(837\) −1.52447 −0.0526933
\(838\) 28.4972 0.984419
\(839\) 2.34123 0.0808283 0.0404141 0.999183i \(-0.487132\pi\)
0.0404141 + 0.999183i \(0.487132\pi\)
\(840\) −22.7405 −0.784622
\(841\) 35.9395 1.23929
\(842\) −25.9124 −0.893000
\(843\) 3.67342 0.126519
\(844\) 2.21967 0.0764043
\(845\) 0 0
\(846\) 9.70160 0.333548
\(847\) 11.0815 0.380766
\(848\) 2.10901 0.0724237
\(849\) 28.2762 0.970437
\(850\) −0.0652778 −0.00223901
\(851\) 66.0301 2.26348
\(852\) −4.11597 −0.141011
\(853\) −37.8828 −1.29708 −0.648542 0.761179i \(-0.724621\pi\)
−0.648542 + 0.761179i \(0.724621\pi\)
\(854\) −0.115354 −0.00394732
\(855\) 9.60351 0.328433
\(856\) −5.09264 −0.174063
\(857\) −18.6049 −0.635532 −0.317766 0.948169i \(-0.602933\pi\)
−0.317766 + 0.948169i \(0.602933\pi\)
\(858\) 0 0
\(859\) −3.79631 −0.129528 −0.0647642 0.997901i \(-0.520630\pi\)
−0.0647642 + 0.997901i \(0.520630\pi\)
\(860\) −2.29196 −0.0781551
\(861\) 34.3200 1.16962
\(862\) 40.1416 1.36723
\(863\) −8.65975 −0.294781 −0.147391 0.989078i \(-0.547087\pi\)
−0.147391 + 0.989078i \(0.547087\pi\)
\(864\) −1.82280 −0.0620130
\(865\) 35.8709 1.21965
\(866\) 35.9549 1.22180
\(867\) −43.6522 −1.48251
\(868\) 0.445949 0.0151365
\(869\) −6.91810 −0.234680
\(870\) −39.4348 −1.33696
\(871\) 0 0
\(872\) −43.4247 −1.47055
\(873\) −7.46214 −0.252555
\(874\) −21.6599 −0.732656
\(875\) 23.8571 0.806518
\(876\) −0.476599 −0.0161028
\(877\) −11.2999 −0.381572 −0.190786 0.981632i \(-0.561104\pi\)
−0.190786 + 0.981632i \(0.561104\pi\)
\(878\) 1.99113 0.0671973
\(879\) −39.6631 −1.33780
\(880\) 20.3000 0.684313
\(881\) −44.4888 −1.49887 −0.749433 0.662080i \(-0.769674\pi\)
−0.749433 + 0.662080i \(0.769674\pi\)
\(882\) 12.4339 0.418671
\(883\) 1.32840 0.0447043 0.0223522 0.999750i \(-0.492884\pi\)
0.0223522 + 0.999750i \(0.492884\pi\)
\(884\) 0 0
\(885\) 46.4015 1.55977
\(886\) −18.6426 −0.626310
\(887\) 15.2509 0.512074 0.256037 0.966667i \(-0.417583\pi\)
0.256037 + 0.966667i \(0.417583\pi\)
\(888\) −58.0450 −1.94786
\(889\) 38.0545 1.27631
\(890\) −17.8256 −0.597514
\(891\) −27.7015 −0.928035
\(892\) 0.556791 0.0186427
\(893\) 3.78558 0.126680
\(894\) −82.3315 −2.75358
\(895\) 15.1237 0.505530
\(896\) −19.2968 −0.644659
\(897\) 0 0
\(898\) 35.9416 1.19939
\(899\) 8.05850 0.268766
\(900\) 2.26477 0.0754923
\(901\) 0.00982545 0.000327333 0
\(902\) −34.3217 −1.14279
\(903\) −40.8538 −1.35953
\(904\) −29.9481 −0.996057
\(905\) −23.0667 −0.766762
\(906\) −55.1697 −1.83289
\(907\) −44.2883 −1.47057 −0.735284 0.677759i \(-0.762951\pi\)
−0.735284 + 0.677759i \(0.762951\pi\)
\(908\) −0.0528871 −0.00175512
\(909\) −10.7744 −0.357364
\(910\) 0 0
\(911\) −41.1437 −1.36315 −0.681576 0.731748i \(-0.738705\pi\)
−0.681576 + 0.731748i \(0.738705\pi\)
\(912\) 16.9963 0.562804
\(913\) −2.46059 −0.0814338
\(914\) −13.6162 −0.450385
\(915\) −0.150325 −0.00496959
\(916\) 2.28696 0.0755634
\(917\) 19.3551 0.639160
\(918\) 0.0335238 0.00110645
\(919\) −18.6755 −0.616048 −0.308024 0.951379i \(-0.599668\pi\)
−0.308024 + 0.951379i \(0.599668\pi\)
\(920\) 36.4282 1.20100
\(921\) 80.1899 2.64235
\(922\) −28.4266 −0.936182
\(923\) 0 0
\(924\) −4.61974 −0.151978
\(925\) 22.6850 0.745879
\(926\) 27.5218 0.904424
\(927\) 40.5586 1.33212
\(928\) 9.63553 0.316302
\(929\) 35.4781 1.16400 0.581999 0.813190i \(-0.302271\pi\)
0.581999 + 0.813190i \(0.302271\pi\)
\(930\) −4.89356 −0.160466
\(931\) 4.85173 0.159009
\(932\) 3.26239 0.106863
\(933\) 70.9505 2.32282
\(934\) 42.5634 1.39272
\(935\) 0.0945737 0.00309289
\(936\) 0 0
\(937\) −25.0262 −0.817570 −0.408785 0.912631i \(-0.634047\pi\)
−0.408785 + 0.912631i \(0.634047\pi\)
\(938\) 16.7940 0.548345
\(939\) −21.7470 −0.709685
\(940\) −0.610977 −0.0199279
\(941\) 8.53670 0.278289 0.139144 0.990272i \(-0.455565\pi\)
0.139144 + 0.990272i \(0.455565\pi\)
\(942\) −81.2108 −2.64599
\(943\) −54.9776 −1.79032
\(944\) 44.7578 1.45674
\(945\) −4.56418 −0.148473
\(946\) 40.8557 1.32833
\(947\) −51.3960 −1.67015 −0.835073 0.550138i \(-0.814575\pi\)
−0.835073 + 0.550138i \(0.814575\pi\)
\(948\) 0.934840 0.0303622
\(949\) 0 0
\(950\) −7.44137 −0.241430
\(951\) 57.2939 1.85788
\(952\) −0.102191 −0.00331202
\(953\) 21.4764 0.695690 0.347845 0.937552i \(-0.386914\pi\)
0.347845 + 0.937552i \(0.386914\pi\)
\(954\) 2.87045 0.0929344
\(955\) 19.5982 0.634182
\(956\) 1.71980 0.0556222
\(957\) −83.4808 −2.69855
\(958\) 2.05714 0.0664631
\(959\) −10.6920 −0.345263
\(960\) −31.6930 −1.02289
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −6.18716 −0.199378
\(964\) 2.24634 0.0723499
\(965\) −27.0111 −0.869519
\(966\) 62.3123 2.00487
\(967\) 36.5435 1.17516 0.587580 0.809166i \(-0.300081\pi\)
0.587580 + 0.809166i \(0.300081\pi\)
\(968\) 15.6049 0.501560
\(969\) 0.0791825 0.00254371
\(970\) −3.95717 −0.127057
\(971\) −59.7630 −1.91788 −0.958942 0.283601i \(-0.908471\pi\)
−0.958942 + 0.283601i \(0.908471\pi\)
\(972\) 4.71424 0.151209
\(973\) 9.41287 0.301763
\(974\) −4.31964 −0.138410
\(975\) 0 0
\(976\) −0.145000 −0.00464134
\(977\) 54.7276 1.75089 0.875446 0.483315i \(-0.160568\pi\)
0.875446 + 0.483315i \(0.160568\pi\)
\(978\) 2.09648 0.0670380
\(979\) −37.7355 −1.20603
\(980\) −0.783049 −0.0250136
\(981\) −52.7577 −1.68442
\(982\) −2.01700 −0.0643651
\(983\) −41.4614 −1.32241 −0.661206 0.750204i \(-0.729955\pi\)
−0.661206 + 0.750204i \(0.729955\pi\)
\(984\) 48.3291 1.54068
\(985\) −31.6700 −1.00909
\(986\) −0.177211 −0.00564354
\(987\) −10.8906 −0.346651
\(988\) 0 0
\(989\) 65.4441 2.08100
\(990\) 27.6292 0.878114
\(991\) 4.13712 0.131420 0.0657099 0.997839i \(-0.479069\pi\)
0.0657099 + 0.997839i \(0.479069\pi\)
\(992\) 1.19570 0.0379634
\(993\) −50.5786 −1.60506
\(994\) −21.2047 −0.672571
\(995\) 6.64510 0.210664
\(996\) 0.332499 0.0105356
\(997\) −46.5359 −1.47381 −0.736904 0.675997i \(-0.763713\pi\)
−0.736904 + 0.675997i \(0.763713\pi\)
\(998\) −18.4785 −0.584928
\(999\) −11.6500 −0.368591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5239.2.a.t.1.10 yes 36
13.12 even 2 5239.2.a.s.1.27 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5239.2.a.s.1.27 36 13.12 even 2
5239.2.a.t.1.10 yes 36 1.1 even 1 trivial