Defining parameters
| Level: | \( N \) | \(=\) | \( 5225 = 5^{2} \cdot 11 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5225.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 209 \) |
| Character field: | \(\Q\) | ||
| Sturm bound: | \(1200\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5225, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 612 | 386 | 226 |
| Cusp forms | 588 | 374 | 214 |
| Eisenstein series | 24 | 12 | 12 |
Decomposition of \(S_{2}^{\mathrm{new}}(5225, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5225, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5225, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1045, [\chi])\)\(^{\oplus 2}\)