Properties

Label 5225.2.a.x.1.2
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5225,2,Mod(1,5225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,5,4,17,0,-1,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 5 x^{14} - 11 x^{13} + 85 x^{12} + 6 x^{11} - 537 x^{10} + 327 x^{9} + 1556 x^{8} - 1451 x^{7} + \cdots - 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.15791\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.15791 q^{2} -2.27846 q^{3} +2.65657 q^{4} +4.91670 q^{6} +4.96679 q^{7} -1.41681 q^{8} +2.19136 q^{9} +1.00000 q^{11} -6.05287 q^{12} +7.07849 q^{13} -10.7179 q^{14} -2.25579 q^{16} -0.882524 q^{17} -4.72875 q^{18} -1.00000 q^{19} -11.3166 q^{21} -2.15791 q^{22} -0.450956 q^{23} +3.22814 q^{24} -15.2747 q^{26} +1.84245 q^{27} +13.1946 q^{28} +4.90646 q^{29} -4.59098 q^{31} +7.70140 q^{32} -2.27846 q^{33} +1.90440 q^{34} +5.82149 q^{36} +9.57939 q^{37} +2.15791 q^{38} -16.1280 q^{39} -3.73151 q^{41} +24.4202 q^{42} +6.29514 q^{43} +2.65657 q^{44} +0.973122 q^{46} -5.17054 q^{47} +5.13971 q^{48} +17.6690 q^{49} +2.01079 q^{51} +18.8045 q^{52} -3.00676 q^{53} -3.97584 q^{54} -7.03699 q^{56} +2.27846 q^{57} -10.5877 q^{58} +7.98874 q^{59} +2.63405 q^{61} +9.90692 q^{62} +10.8840 q^{63} -12.1073 q^{64} +4.91670 q^{66} +14.4306 q^{67} -2.34448 q^{68} +1.02748 q^{69} +11.8877 q^{71} -3.10474 q^{72} -11.3797 q^{73} -20.6714 q^{74} -2.65657 q^{76} +4.96679 q^{77} +34.8028 q^{78} +6.34343 q^{79} -10.7720 q^{81} +8.05225 q^{82} +17.2366 q^{83} -30.0633 q^{84} -13.5843 q^{86} -11.1791 q^{87} -1.41681 q^{88} +5.27278 q^{89} +35.1573 q^{91} -1.19799 q^{92} +10.4604 q^{93} +11.1575 q^{94} -17.5473 q^{96} -19.4258 q^{97} -38.1280 q^{98} +2.19136 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 5 q^{2} + 4 q^{3} + 17 q^{4} - q^{6} + 15 q^{7} + 15 q^{8} + 19 q^{9} + 15 q^{11} + 9 q^{12} + 13 q^{13} + 9 q^{14} + 21 q^{16} + 11 q^{17} + 16 q^{18} - 15 q^{19} + 5 q^{22} + 10 q^{23} + 17 q^{24}+ \cdots + 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.15791 −1.52587 −0.762936 0.646474i \(-0.776243\pi\)
−0.762936 + 0.646474i \(0.776243\pi\)
\(3\) −2.27846 −1.31547 −0.657733 0.753251i \(-0.728485\pi\)
−0.657733 + 0.753251i \(0.728485\pi\)
\(4\) 2.65657 1.32828
\(5\) 0 0
\(6\) 4.91670 2.00723
\(7\) 4.96679 1.87727 0.938634 0.344914i \(-0.112092\pi\)
0.938634 + 0.344914i \(0.112092\pi\)
\(8\) −1.41681 −0.500918
\(9\) 2.19136 0.730453
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) −6.05287 −1.74731
\(13\) 7.07849 1.96322 0.981610 0.190898i \(-0.0611400\pi\)
0.981610 + 0.190898i \(0.0611400\pi\)
\(14\) −10.7179 −2.86447
\(15\) 0 0
\(16\) −2.25579 −0.563947
\(17\) −0.882524 −0.214043 −0.107022 0.994257i \(-0.534131\pi\)
−0.107022 + 0.994257i \(0.534131\pi\)
\(18\) −4.72875 −1.11458
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −11.3166 −2.46948
\(22\) −2.15791 −0.460068
\(23\) −0.450956 −0.0940308 −0.0470154 0.998894i \(-0.514971\pi\)
−0.0470154 + 0.998894i \(0.514971\pi\)
\(24\) 3.22814 0.658941
\(25\) 0 0
\(26\) −15.2747 −2.99562
\(27\) 1.84245 0.354580
\(28\) 13.1946 2.49354
\(29\) 4.90646 0.911106 0.455553 0.890209i \(-0.349441\pi\)
0.455553 + 0.890209i \(0.349441\pi\)
\(30\) 0 0
\(31\) −4.59098 −0.824565 −0.412283 0.911056i \(-0.635268\pi\)
−0.412283 + 0.911056i \(0.635268\pi\)
\(32\) 7.70140 1.36143
\(33\) −2.27846 −0.396628
\(34\) 1.90440 0.326603
\(35\) 0 0
\(36\) 5.82149 0.970249
\(37\) 9.57939 1.57484 0.787421 0.616416i \(-0.211416\pi\)
0.787421 + 0.616416i \(0.211416\pi\)
\(38\) 2.15791 0.350059
\(39\) −16.1280 −2.58255
\(40\) 0 0
\(41\) −3.73151 −0.582764 −0.291382 0.956607i \(-0.594115\pi\)
−0.291382 + 0.956607i \(0.594115\pi\)
\(42\) 24.4202 3.76812
\(43\) 6.29514 0.960000 0.480000 0.877269i \(-0.340637\pi\)
0.480000 + 0.877269i \(0.340637\pi\)
\(44\) 2.65657 0.400493
\(45\) 0 0
\(46\) 0.973122 0.143479
\(47\) −5.17054 −0.754200 −0.377100 0.926173i \(-0.623079\pi\)
−0.377100 + 0.926173i \(0.623079\pi\)
\(48\) 5.13971 0.741853
\(49\) 17.6690 2.52414
\(50\) 0 0
\(51\) 2.01079 0.281567
\(52\) 18.8045 2.60771
\(53\) −3.00676 −0.413010 −0.206505 0.978446i \(-0.566209\pi\)
−0.206505 + 0.978446i \(0.566209\pi\)
\(54\) −3.97584 −0.541043
\(55\) 0 0
\(56\) −7.03699 −0.940358
\(57\) 2.27846 0.301789
\(58\) −10.5877 −1.39023
\(59\) 7.98874 1.04005 0.520023 0.854152i \(-0.325923\pi\)
0.520023 + 0.854152i \(0.325923\pi\)
\(60\) 0 0
\(61\) 2.63405 0.337256 0.168628 0.985680i \(-0.446066\pi\)
0.168628 + 0.985680i \(0.446066\pi\)
\(62\) 9.90692 1.25818
\(63\) 10.8840 1.37126
\(64\) −12.1073 −1.51342
\(65\) 0 0
\(66\) 4.91670 0.605204
\(67\) 14.4306 1.76298 0.881491 0.472200i \(-0.156540\pi\)
0.881491 + 0.472200i \(0.156540\pi\)
\(68\) −2.34448 −0.284310
\(69\) 1.02748 0.123694
\(70\) 0 0
\(71\) 11.8877 1.41081 0.705404 0.708805i \(-0.250765\pi\)
0.705404 + 0.708805i \(0.250765\pi\)
\(72\) −3.10474 −0.365897
\(73\) −11.3797 −1.33190 −0.665949 0.745997i \(-0.731973\pi\)
−0.665949 + 0.745997i \(0.731973\pi\)
\(74\) −20.6714 −2.40301
\(75\) 0 0
\(76\) −2.65657 −0.304729
\(77\) 4.96679 0.566018
\(78\) 34.8028 3.94064
\(79\) 6.34343 0.713691 0.356846 0.934163i \(-0.383852\pi\)
0.356846 + 0.934163i \(0.383852\pi\)
\(80\) 0 0
\(81\) −10.7720 −1.19689
\(82\) 8.05225 0.889223
\(83\) 17.2366 1.89196 0.945982 0.324221i \(-0.105102\pi\)
0.945982 + 0.324221i \(0.105102\pi\)
\(84\) −30.0633 −3.28018
\(85\) 0 0
\(86\) −13.5843 −1.46484
\(87\) −11.1791 −1.19853
\(88\) −1.41681 −0.151033
\(89\) 5.27278 0.558914 0.279457 0.960158i \(-0.409846\pi\)
0.279457 + 0.960158i \(0.409846\pi\)
\(90\) 0 0
\(91\) 35.1573 3.68549
\(92\) −1.19799 −0.124900
\(93\) 10.4604 1.08469
\(94\) 11.1575 1.15081
\(95\) 0 0
\(96\) −17.5473 −1.79091
\(97\) −19.4258 −1.97239 −0.986195 0.165587i \(-0.947048\pi\)
−0.986195 + 0.165587i \(0.947048\pi\)
\(98\) −38.1280 −3.85151
\(99\) 2.19136 0.220240
\(100\) 0 0
\(101\) −8.82167 −0.877789 −0.438895 0.898539i \(-0.644630\pi\)
−0.438895 + 0.898539i \(0.644630\pi\)
\(102\) −4.33910 −0.429635
\(103\) 5.46174 0.538161 0.269080 0.963118i \(-0.413280\pi\)
0.269080 + 0.963118i \(0.413280\pi\)
\(104\) −10.0289 −0.983413
\(105\) 0 0
\(106\) 6.48830 0.630200
\(107\) −17.9262 −1.73299 −0.866497 0.499182i \(-0.833634\pi\)
−0.866497 + 0.499182i \(0.833634\pi\)
\(108\) 4.89459 0.470983
\(109\) 17.0978 1.63767 0.818835 0.574029i \(-0.194620\pi\)
0.818835 + 0.574029i \(0.194620\pi\)
\(110\) 0 0
\(111\) −21.8262 −2.07165
\(112\) −11.2040 −1.05868
\(113\) 3.10231 0.291841 0.145920 0.989296i \(-0.453386\pi\)
0.145920 + 0.989296i \(0.453386\pi\)
\(114\) −4.91670 −0.460491
\(115\) 0 0
\(116\) 13.0343 1.21021
\(117\) 15.5115 1.43404
\(118\) −17.2390 −1.58698
\(119\) −4.38331 −0.401817
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −5.68405 −0.514609
\(123\) 8.50208 0.766606
\(124\) −12.1963 −1.09526
\(125\) 0 0
\(126\) −23.4867 −2.09236
\(127\) 16.3093 1.44722 0.723609 0.690210i \(-0.242482\pi\)
0.723609 + 0.690210i \(0.242482\pi\)
\(128\) 10.7237 0.947852
\(129\) −14.3432 −1.26285
\(130\) 0 0
\(131\) −19.3238 −1.68833 −0.844165 0.536083i \(-0.819904\pi\)
−0.844165 + 0.536083i \(0.819904\pi\)
\(132\) −6.05287 −0.526835
\(133\) −4.96679 −0.430675
\(134\) −31.1400 −2.69008
\(135\) 0 0
\(136\) 1.25037 0.107218
\(137\) 10.4835 0.895663 0.447832 0.894118i \(-0.352196\pi\)
0.447832 + 0.894118i \(0.352196\pi\)
\(138\) −2.21721 −0.188742
\(139\) −6.68861 −0.567321 −0.283660 0.958925i \(-0.591549\pi\)
−0.283660 + 0.958925i \(0.591549\pi\)
\(140\) 0 0
\(141\) 11.7808 0.992125
\(142\) −25.6525 −2.15271
\(143\) 7.07849 0.591933
\(144\) −4.94324 −0.411937
\(145\) 0 0
\(146\) 24.5564 2.03231
\(147\) −40.2579 −3.32042
\(148\) 25.4483 2.09184
\(149\) −18.7751 −1.53811 −0.769057 0.639180i \(-0.779274\pi\)
−0.769057 + 0.639180i \(0.779274\pi\)
\(150\) 0 0
\(151\) −6.60661 −0.537638 −0.268819 0.963191i \(-0.586633\pi\)
−0.268819 + 0.963191i \(0.586633\pi\)
\(152\) 1.41681 0.114919
\(153\) −1.93393 −0.156349
\(154\) −10.7179 −0.863670
\(155\) 0 0
\(156\) −42.8452 −3.43036
\(157\) 4.79891 0.382995 0.191497 0.981493i \(-0.438666\pi\)
0.191497 + 0.981493i \(0.438666\pi\)
\(158\) −13.6885 −1.08900
\(159\) 6.85076 0.543301
\(160\) 0 0
\(161\) −2.23980 −0.176521
\(162\) 23.2450 1.82630
\(163\) −13.1690 −1.03148 −0.515739 0.856746i \(-0.672483\pi\)
−0.515739 + 0.856746i \(0.672483\pi\)
\(164\) −9.91300 −0.774075
\(165\) 0 0
\(166\) −37.1950 −2.88689
\(167\) 3.07374 0.237853 0.118926 0.992903i \(-0.462055\pi\)
0.118926 + 0.992903i \(0.462055\pi\)
\(168\) 16.0335 1.23701
\(169\) 37.1050 2.85423
\(170\) 0 0
\(171\) −2.19136 −0.167577
\(172\) 16.7235 1.27515
\(173\) 5.63958 0.428769 0.214385 0.976749i \(-0.431225\pi\)
0.214385 + 0.976749i \(0.431225\pi\)
\(174\) 24.1236 1.82880
\(175\) 0 0
\(176\) −2.25579 −0.170036
\(177\) −18.2020 −1.36815
\(178\) −11.3782 −0.852831
\(179\) 1.40812 0.105248 0.0526239 0.998614i \(-0.483242\pi\)
0.0526239 + 0.998614i \(0.483242\pi\)
\(180\) 0 0
\(181\) −13.3227 −0.990270 −0.495135 0.868816i \(-0.664881\pi\)
−0.495135 + 0.868816i \(0.664881\pi\)
\(182\) −75.8663 −5.62358
\(183\) −6.00157 −0.443649
\(184\) 0.638919 0.0471018
\(185\) 0 0
\(186\) −22.5725 −1.65509
\(187\) −0.882524 −0.0645365
\(188\) −13.7359 −1.00179
\(189\) 9.15106 0.665642
\(190\) 0 0
\(191\) −10.0000 −0.723576 −0.361788 0.932260i \(-0.617834\pi\)
−0.361788 + 0.932260i \(0.617834\pi\)
\(192\) 27.5860 1.99085
\(193\) 9.04980 0.651419 0.325710 0.945470i \(-0.394397\pi\)
0.325710 + 0.945470i \(0.394397\pi\)
\(194\) 41.9191 3.00961
\(195\) 0 0
\(196\) 46.9388 3.35277
\(197\) −4.60794 −0.328302 −0.164151 0.986435i \(-0.552488\pi\)
−0.164151 + 0.986435i \(0.552488\pi\)
\(198\) −4.72875 −0.336058
\(199\) 6.28722 0.445689 0.222845 0.974854i \(-0.428466\pi\)
0.222845 + 0.974854i \(0.428466\pi\)
\(200\) 0 0
\(201\) −32.8796 −2.31915
\(202\) 19.0364 1.33939
\(203\) 24.3693 1.71039
\(204\) 5.34180 0.374001
\(205\) 0 0
\(206\) −11.7859 −0.821164
\(207\) −0.988207 −0.0686851
\(208\) −15.9676 −1.10715
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −8.43652 −0.580794 −0.290397 0.956906i \(-0.593787\pi\)
−0.290397 + 0.956906i \(0.593787\pi\)
\(212\) −7.98765 −0.548594
\(213\) −27.0856 −1.85587
\(214\) 38.6832 2.64433
\(215\) 0 0
\(216\) −2.61040 −0.177616
\(217\) −22.8024 −1.54793
\(218\) −36.8954 −2.49887
\(219\) 25.9282 1.75207
\(220\) 0 0
\(221\) −6.24693 −0.420214
\(222\) 47.0989 3.16107
\(223\) 7.41729 0.496699 0.248349 0.968671i \(-0.420112\pi\)
0.248349 + 0.968671i \(0.420112\pi\)
\(224\) 38.2512 2.55577
\(225\) 0 0
\(226\) −6.69450 −0.445312
\(227\) −26.0253 −1.72736 −0.863680 0.504040i \(-0.831846\pi\)
−0.863680 + 0.504040i \(0.831846\pi\)
\(228\) 6.05287 0.400861
\(229\) −4.45087 −0.294122 −0.147061 0.989127i \(-0.546981\pi\)
−0.147061 + 0.989127i \(0.546981\pi\)
\(230\) 0 0
\(231\) −11.3166 −0.744578
\(232\) −6.95152 −0.456390
\(233\) 6.22176 0.407601 0.203801 0.979012i \(-0.434671\pi\)
0.203801 + 0.979012i \(0.434671\pi\)
\(234\) −33.4724 −2.18816
\(235\) 0 0
\(236\) 21.2226 1.38148
\(237\) −14.4532 −0.938837
\(238\) 9.45877 0.613121
\(239\) −3.20257 −0.207157 −0.103578 0.994621i \(-0.533029\pi\)
−0.103578 + 0.994621i \(0.533029\pi\)
\(240\) 0 0
\(241\) 6.27683 0.404326 0.202163 0.979352i \(-0.435203\pi\)
0.202163 + 0.979352i \(0.435203\pi\)
\(242\) −2.15791 −0.138716
\(243\) 19.0162 1.21989
\(244\) 6.99754 0.447972
\(245\) 0 0
\(246\) −18.3467 −1.16974
\(247\) −7.07849 −0.450393
\(248\) 6.50456 0.413040
\(249\) −39.2728 −2.48881
\(250\) 0 0
\(251\) −2.74929 −0.173534 −0.0867668 0.996229i \(-0.527654\pi\)
−0.0867668 + 0.996229i \(0.527654\pi\)
\(252\) 28.9141 1.82142
\(253\) −0.450956 −0.0283514
\(254\) −35.1940 −2.20827
\(255\) 0 0
\(256\) 1.07387 0.0671167
\(257\) 10.7158 0.668433 0.334216 0.942496i \(-0.391528\pi\)
0.334216 + 0.942496i \(0.391528\pi\)
\(258\) 30.9513 1.92694
\(259\) 47.5788 2.95640
\(260\) 0 0
\(261\) 10.7518 0.665521
\(262\) 41.6990 2.57618
\(263\) 23.5337 1.45115 0.725577 0.688141i \(-0.241573\pi\)
0.725577 + 0.688141i \(0.241573\pi\)
\(264\) 3.22814 0.198678
\(265\) 0 0
\(266\) 10.7179 0.657155
\(267\) −12.0138 −0.735233
\(268\) 38.3359 2.34174
\(269\) −9.95531 −0.606986 −0.303493 0.952834i \(-0.598153\pi\)
−0.303493 + 0.952834i \(0.598153\pi\)
\(270\) 0 0
\(271\) −23.8531 −1.44897 −0.724485 0.689291i \(-0.757922\pi\)
−0.724485 + 0.689291i \(0.757922\pi\)
\(272\) 1.99078 0.120709
\(273\) −80.1044 −4.84814
\(274\) −22.6224 −1.36667
\(275\) 0 0
\(276\) 2.72958 0.164301
\(277\) 3.64629 0.219084 0.109542 0.993982i \(-0.465062\pi\)
0.109542 + 0.993982i \(0.465062\pi\)
\(278\) 14.4334 0.865658
\(279\) −10.0605 −0.602306
\(280\) 0 0
\(281\) −17.4125 −1.03875 −0.519373 0.854548i \(-0.673834\pi\)
−0.519373 + 0.854548i \(0.673834\pi\)
\(282\) −25.4220 −1.51386
\(283\) −4.12829 −0.245401 −0.122701 0.992444i \(-0.539155\pi\)
−0.122701 + 0.992444i \(0.539155\pi\)
\(284\) 31.5804 1.87395
\(285\) 0 0
\(286\) −15.2747 −0.903214
\(287\) −18.5336 −1.09400
\(288\) 16.8765 0.994460
\(289\) −16.2212 −0.954185
\(290\) 0 0
\(291\) 44.2608 2.59461
\(292\) −30.2310 −1.76914
\(293\) −15.3602 −0.897354 −0.448677 0.893694i \(-0.648105\pi\)
−0.448677 + 0.893694i \(0.648105\pi\)
\(294\) 86.8729 5.06653
\(295\) 0 0
\(296\) −13.5722 −0.788867
\(297\) 1.84245 0.106910
\(298\) 40.5149 2.34696
\(299\) −3.19209 −0.184603
\(300\) 0 0
\(301\) 31.2666 1.80218
\(302\) 14.2565 0.820367
\(303\) 20.0998 1.15470
\(304\) 2.25579 0.129378
\(305\) 0 0
\(306\) 4.17324 0.238568
\(307\) −15.3305 −0.874955 −0.437478 0.899229i \(-0.644128\pi\)
−0.437478 + 0.899229i \(0.644128\pi\)
\(308\) 13.1946 0.751832
\(309\) −12.4443 −0.707933
\(310\) 0 0
\(311\) 18.7433 1.06284 0.531418 0.847110i \(-0.321659\pi\)
0.531418 + 0.847110i \(0.321659\pi\)
\(312\) 22.8504 1.29365
\(313\) 15.9384 0.900894 0.450447 0.892803i \(-0.351265\pi\)
0.450447 + 0.892803i \(0.351265\pi\)
\(314\) −10.3556 −0.584401
\(315\) 0 0
\(316\) 16.8517 0.947984
\(317\) 9.04934 0.508261 0.254131 0.967170i \(-0.418211\pi\)
0.254131 + 0.967170i \(0.418211\pi\)
\(318\) −14.7833 −0.829007
\(319\) 4.90646 0.274709
\(320\) 0 0
\(321\) 40.8441 2.27970
\(322\) 4.83329 0.269348
\(323\) 0.882524 0.0491049
\(324\) −28.6166 −1.58981
\(325\) 0 0
\(326\) 28.4175 1.57390
\(327\) −38.9565 −2.15430
\(328\) 5.28684 0.291917
\(329\) −25.6809 −1.41584
\(330\) 0 0
\(331\) −5.01790 −0.275809 −0.137904 0.990446i \(-0.544037\pi\)
−0.137904 + 0.990446i \(0.544037\pi\)
\(332\) 45.7902 2.51306
\(333\) 20.9919 1.15035
\(334\) −6.63284 −0.362933
\(335\) 0 0
\(336\) 25.5278 1.39266
\(337\) −10.0176 −0.545696 −0.272848 0.962057i \(-0.587966\pi\)
−0.272848 + 0.962057i \(0.587966\pi\)
\(338\) −80.0692 −4.35519
\(339\) −7.06848 −0.383907
\(340\) 0 0
\(341\) −4.59098 −0.248616
\(342\) 4.72875 0.255702
\(343\) 52.9904 2.86121
\(344\) −8.91902 −0.480881
\(345\) 0 0
\(346\) −12.1697 −0.654246
\(347\) 8.03717 0.431458 0.215729 0.976453i \(-0.430787\pi\)
0.215729 + 0.976453i \(0.430787\pi\)
\(348\) −29.6981 −1.59199
\(349\) 12.1481 0.650271 0.325135 0.945668i \(-0.394590\pi\)
0.325135 + 0.945668i \(0.394590\pi\)
\(350\) 0 0
\(351\) 13.0418 0.696118
\(352\) 7.70140 0.410486
\(353\) −23.7465 −1.26390 −0.631949 0.775010i \(-0.717745\pi\)
−0.631949 + 0.775010i \(0.717745\pi\)
\(354\) 39.2782 2.08761
\(355\) 0 0
\(356\) 14.0075 0.742396
\(357\) 9.98717 0.528577
\(358\) −3.03859 −0.160595
\(359\) −3.60073 −0.190040 −0.0950198 0.995475i \(-0.530291\pi\)
−0.0950198 + 0.995475i \(0.530291\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 28.7492 1.51102
\(363\) −2.27846 −0.119588
\(364\) 93.3978 4.89538
\(365\) 0 0
\(366\) 12.9508 0.676952
\(367\) −17.7138 −0.924651 −0.462325 0.886710i \(-0.652985\pi\)
−0.462325 + 0.886710i \(0.652985\pi\)
\(368\) 1.01726 0.0530284
\(369\) −8.17708 −0.425682
\(370\) 0 0
\(371\) −14.9339 −0.775330
\(372\) 27.7886 1.44077
\(373\) 23.9253 1.23881 0.619403 0.785073i \(-0.287375\pi\)
0.619403 + 0.785073i \(0.287375\pi\)
\(374\) 1.90440 0.0984744
\(375\) 0 0
\(376\) 7.32567 0.377793
\(377\) 34.7303 1.78870
\(378\) −19.7471 −1.01568
\(379\) 15.5016 0.796261 0.398131 0.917329i \(-0.369659\pi\)
0.398131 + 0.917329i \(0.369659\pi\)
\(380\) 0 0
\(381\) −37.1601 −1.90377
\(382\) 21.5791 1.10408
\(383\) −5.45842 −0.278912 −0.139456 0.990228i \(-0.544535\pi\)
−0.139456 + 0.990228i \(0.544535\pi\)
\(384\) −24.4335 −1.24687
\(385\) 0 0
\(386\) −19.5286 −0.993982
\(387\) 13.7949 0.701235
\(388\) −51.6059 −2.61989
\(389\) −33.2696 −1.68683 −0.843417 0.537260i \(-0.819459\pi\)
−0.843417 + 0.537260i \(0.819459\pi\)
\(390\) 0 0
\(391\) 0.397979 0.0201267
\(392\) −25.0336 −1.26439
\(393\) 44.0285 2.22094
\(394\) 9.94351 0.500947
\(395\) 0 0
\(396\) 5.82149 0.292541
\(397\) −5.90789 −0.296509 −0.148254 0.988949i \(-0.547365\pi\)
−0.148254 + 0.988949i \(0.547365\pi\)
\(398\) −13.5672 −0.680064
\(399\) 11.3166 0.566539
\(400\) 0 0
\(401\) −23.6503 −1.18104 −0.590520 0.807023i \(-0.701077\pi\)
−0.590520 + 0.807023i \(0.701077\pi\)
\(402\) 70.9511 3.53872
\(403\) −32.4972 −1.61880
\(404\) −23.4354 −1.16595
\(405\) 0 0
\(406\) −52.5868 −2.60984
\(407\) 9.57939 0.474833
\(408\) −2.84891 −0.141042
\(409\) −18.7712 −0.928177 −0.464089 0.885789i \(-0.653618\pi\)
−0.464089 + 0.885789i \(0.653618\pi\)
\(410\) 0 0
\(411\) −23.8861 −1.17822
\(412\) 14.5095 0.714830
\(413\) 39.6784 1.95244
\(414\) 2.13246 0.104805
\(415\) 0 0
\(416\) 54.5143 2.67278
\(417\) 15.2397 0.746292
\(418\) 2.15791 0.105547
\(419\) 18.8197 0.919403 0.459701 0.888074i \(-0.347956\pi\)
0.459701 + 0.888074i \(0.347956\pi\)
\(420\) 0 0
\(421\) −7.61118 −0.370946 −0.185473 0.982649i \(-0.559382\pi\)
−0.185473 + 0.982649i \(0.559382\pi\)
\(422\) 18.2052 0.886217
\(423\) −11.3305 −0.550908
\(424\) 4.26000 0.206884
\(425\) 0 0
\(426\) 58.4481 2.83182
\(427\) 13.0828 0.633120
\(428\) −47.6222 −2.30191
\(429\) −16.1280 −0.778668
\(430\) 0 0
\(431\) 10.7318 0.516931 0.258465 0.966021i \(-0.416783\pi\)
0.258465 + 0.966021i \(0.416783\pi\)
\(432\) −4.15618 −0.199964
\(433\) −30.3651 −1.45925 −0.729626 0.683846i \(-0.760306\pi\)
−0.729626 + 0.683846i \(0.760306\pi\)
\(434\) 49.2056 2.36194
\(435\) 0 0
\(436\) 45.4214 2.17529
\(437\) 0.450956 0.0215722
\(438\) −55.9508 −2.67343
\(439\) 12.6527 0.603880 0.301940 0.953327i \(-0.402366\pi\)
0.301940 + 0.953327i \(0.402366\pi\)
\(440\) 0 0
\(441\) 38.7190 1.84376
\(442\) 13.4803 0.641193
\(443\) −23.6862 −1.12537 −0.562683 0.826673i \(-0.690231\pi\)
−0.562683 + 0.826673i \(0.690231\pi\)
\(444\) −57.9828 −2.75174
\(445\) 0 0
\(446\) −16.0058 −0.757898
\(447\) 42.7782 2.02334
\(448\) −60.1346 −2.84109
\(449\) 20.2496 0.955638 0.477819 0.878458i \(-0.341428\pi\)
0.477819 + 0.878458i \(0.341428\pi\)
\(450\) 0 0
\(451\) −3.73151 −0.175710
\(452\) 8.24150 0.387647
\(453\) 15.0529 0.707245
\(454\) 56.1602 2.63573
\(455\) 0 0
\(456\) −3.22814 −0.151172
\(457\) −13.1720 −0.616159 −0.308080 0.951361i \(-0.599686\pi\)
−0.308080 + 0.951361i \(0.599686\pi\)
\(458\) 9.60457 0.448792
\(459\) −1.62601 −0.0758955
\(460\) 0 0
\(461\) 22.4846 1.04721 0.523605 0.851961i \(-0.324587\pi\)
0.523605 + 0.851961i \(0.324587\pi\)
\(462\) 24.4202 1.13613
\(463\) 19.4962 0.906064 0.453032 0.891494i \(-0.350342\pi\)
0.453032 + 0.891494i \(0.350342\pi\)
\(464\) −11.0679 −0.513815
\(465\) 0 0
\(466\) −13.4260 −0.621947
\(467\) 13.5551 0.627254 0.313627 0.949546i \(-0.398456\pi\)
0.313627 + 0.949546i \(0.398456\pi\)
\(468\) 41.2074 1.90481
\(469\) 71.6739 3.30959
\(470\) 0 0
\(471\) −10.9341 −0.503817
\(472\) −11.3185 −0.520978
\(473\) 6.29514 0.289451
\(474\) 31.1887 1.43254
\(475\) 0 0
\(476\) −11.6445 −0.533727
\(477\) −6.58888 −0.301684
\(478\) 6.91084 0.316095
\(479\) −23.0340 −1.05245 −0.526224 0.850346i \(-0.676393\pi\)
−0.526224 + 0.850346i \(0.676393\pi\)
\(480\) 0 0
\(481\) 67.8076 3.09176
\(482\) −13.5448 −0.616950
\(483\) 5.10329 0.232208
\(484\) 2.65657 0.120753
\(485\) 0 0
\(486\) −41.0353 −1.86140
\(487\) −29.5256 −1.33793 −0.668966 0.743293i \(-0.733263\pi\)
−0.668966 + 0.743293i \(0.733263\pi\)
\(488\) −3.73196 −0.168938
\(489\) 30.0050 1.35687
\(490\) 0 0
\(491\) 4.66909 0.210713 0.105357 0.994435i \(-0.466402\pi\)
0.105357 + 0.994435i \(0.466402\pi\)
\(492\) 22.5863 1.01827
\(493\) −4.33006 −0.195016
\(494\) 15.2747 0.687243
\(495\) 0 0
\(496\) 10.3563 0.465011
\(497\) 59.0436 2.64847
\(498\) 84.7472 3.79761
\(499\) 6.17644 0.276495 0.138248 0.990398i \(-0.455853\pi\)
0.138248 + 0.990398i \(0.455853\pi\)
\(500\) 0 0
\(501\) −7.00337 −0.312888
\(502\) 5.93272 0.264790
\(503\) 30.2556 1.34903 0.674514 0.738262i \(-0.264353\pi\)
0.674514 + 0.738262i \(0.264353\pi\)
\(504\) −15.4206 −0.686887
\(505\) 0 0
\(506\) 0.973122 0.0432605
\(507\) −84.5421 −3.75465
\(508\) 43.3268 1.92232
\(509\) 40.9940 1.81703 0.908515 0.417853i \(-0.137217\pi\)
0.908515 + 0.417853i \(0.137217\pi\)
\(510\) 0 0
\(511\) −56.5207 −2.50033
\(512\) −23.7648 −1.05026
\(513\) −1.84245 −0.0813462
\(514\) −23.1237 −1.01994
\(515\) 0 0
\(516\) −38.1037 −1.67742
\(517\) −5.17054 −0.227400
\(518\) −102.671 −4.51109
\(519\) −12.8495 −0.564031
\(520\) 0 0
\(521\) −1.91886 −0.0840666 −0.0420333 0.999116i \(-0.513384\pi\)
−0.0420333 + 0.999116i \(0.513384\pi\)
\(522\) −23.2014 −1.01550
\(523\) −7.45333 −0.325911 −0.162956 0.986633i \(-0.552103\pi\)
−0.162956 + 0.986633i \(0.552103\pi\)
\(524\) −51.3350 −2.24258
\(525\) 0 0
\(526\) −50.7837 −2.21427
\(527\) 4.05165 0.176493
\(528\) 5.13971 0.223677
\(529\) −22.7966 −0.991158
\(530\) 0 0
\(531\) 17.5062 0.759704
\(532\) −13.1946 −0.572058
\(533\) −26.4134 −1.14409
\(534\) 25.9247 1.12187
\(535\) 0 0
\(536\) −20.4455 −0.883110
\(537\) −3.20834 −0.138450
\(538\) 21.4826 0.926182
\(539\) 17.6690 0.761056
\(540\) 0 0
\(541\) 9.31376 0.400430 0.200215 0.979752i \(-0.435836\pi\)
0.200215 + 0.979752i \(0.435836\pi\)
\(542\) 51.4727 2.21094
\(543\) 30.3552 1.30267
\(544\) −6.79667 −0.291405
\(545\) 0 0
\(546\) 172.858 7.39764
\(547\) 24.8678 1.06327 0.531636 0.846973i \(-0.321578\pi\)
0.531636 + 0.846973i \(0.321578\pi\)
\(548\) 27.8500 1.18969
\(549\) 5.77216 0.246350
\(550\) 0 0
\(551\) −4.90646 −0.209022
\(552\) −1.45575 −0.0619608
\(553\) 31.5064 1.33979
\(554\) −7.86835 −0.334294
\(555\) 0 0
\(556\) −17.7687 −0.753563
\(557\) 40.6011 1.72032 0.860161 0.510022i \(-0.170363\pi\)
0.860161 + 0.510022i \(0.170363\pi\)
\(558\) 21.7096 0.919042
\(559\) 44.5601 1.88469
\(560\) 0 0
\(561\) 2.01079 0.0848957
\(562\) 37.5747 1.58499
\(563\) −12.6733 −0.534114 −0.267057 0.963681i \(-0.586051\pi\)
−0.267057 + 0.963681i \(0.586051\pi\)
\(564\) 31.2966 1.31782
\(565\) 0 0
\(566\) 8.90846 0.374451
\(567\) −53.5023 −2.24689
\(568\) −16.8426 −0.706700
\(569\) 2.72793 0.114361 0.0571803 0.998364i \(-0.481789\pi\)
0.0571803 + 0.998364i \(0.481789\pi\)
\(570\) 0 0
\(571\) 19.8177 0.829346 0.414673 0.909971i \(-0.363896\pi\)
0.414673 + 0.909971i \(0.363896\pi\)
\(572\) 18.8045 0.786255
\(573\) 22.7846 0.951840
\(574\) 39.9938 1.66931
\(575\) 0 0
\(576\) −26.5315 −1.10548
\(577\) 4.34646 0.180946 0.0904728 0.995899i \(-0.471162\pi\)
0.0904728 + 0.995899i \(0.471162\pi\)
\(578\) 35.0038 1.45596
\(579\) −20.6196 −0.856920
\(580\) 0 0
\(581\) 85.6105 3.55172
\(582\) −95.5107 −3.95905
\(583\) −3.00676 −0.124527
\(584\) 16.1229 0.667172
\(585\) 0 0
\(586\) 33.1460 1.36925
\(587\) 15.4236 0.636601 0.318301 0.947990i \(-0.396888\pi\)
0.318301 + 0.947990i \(0.396888\pi\)
\(588\) −106.948 −4.41046
\(589\) 4.59098 0.189168
\(590\) 0 0
\(591\) 10.4990 0.431870
\(592\) −21.6090 −0.888126
\(593\) −41.6736 −1.71133 −0.855666 0.517529i \(-0.826852\pi\)
−0.855666 + 0.517529i \(0.826852\pi\)
\(594\) −3.97584 −0.163131
\(595\) 0 0
\(596\) −49.8772 −2.04305
\(597\) −14.3251 −0.586289
\(598\) 6.88823 0.281681
\(599\) 7.51792 0.307174 0.153587 0.988135i \(-0.450917\pi\)
0.153587 + 0.988135i \(0.450917\pi\)
\(600\) 0 0
\(601\) −13.1820 −0.537705 −0.268853 0.963181i \(-0.586645\pi\)
−0.268853 + 0.963181i \(0.586645\pi\)
\(602\) −67.4705 −2.74989
\(603\) 31.6227 1.28778
\(604\) −17.5509 −0.714136
\(605\) 0 0
\(606\) −43.3735 −1.76193
\(607\) 18.0725 0.733542 0.366771 0.930311i \(-0.380463\pi\)
0.366771 + 0.930311i \(0.380463\pi\)
\(608\) −7.70140 −0.312333
\(609\) −55.5244 −2.24996
\(610\) 0 0
\(611\) −36.5996 −1.48066
\(612\) −5.13761 −0.207675
\(613\) −7.35354 −0.297007 −0.148503 0.988912i \(-0.547446\pi\)
−0.148503 + 0.988912i \(0.547446\pi\)
\(614\) 33.0817 1.33507
\(615\) 0 0
\(616\) −7.03699 −0.283529
\(617\) 36.9153 1.48615 0.743077 0.669206i \(-0.233366\pi\)
0.743077 + 0.669206i \(0.233366\pi\)
\(618\) 26.8537 1.08021
\(619\) 35.6415 1.43255 0.716276 0.697817i \(-0.245845\pi\)
0.716276 + 0.697817i \(0.245845\pi\)
\(620\) 0 0
\(621\) −0.830864 −0.0333414
\(622\) −40.4463 −1.62175
\(623\) 26.1888 1.04923
\(624\) 36.3814 1.45642
\(625\) 0 0
\(626\) −34.3937 −1.37465
\(627\) 2.27846 0.0909927
\(628\) 12.7486 0.508726
\(629\) −8.45403 −0.337084
\(630\) 0 0
\(631\) −0.205084 −0.00816426 −0.00408213 0.999992i \(-0.501299\pi\)
−0.00408213 + 0.999992i \(0.501299\pi\)
\(632\) −8.98743 −0.357501
\(633\) 19.2222 0.764015
\(634\) −19.5276 −0.775541
\(635\) 0 0
\(636\) 18.1995 0.721657
\(637\) 125.070 4.95543
\(638\) −10.5877 −0.419170
\(639\) 26.0502 1.03053
\(640\) 0 0
\(641\) 10.3863 0.410234 0.205117 0.978737i \(-0.434242\pi\)
0.205117 + 0.978737i \(0.434242\pi\)
\(642\) −88.1379 −3.47852
\(643\) −4.09055 −0.161315 −0.0806577 0.996742i \(-0.525702\pi\)
−0.0806577 + 0.996742i \(0.525702\pi\)
\(644\) −5.95018 −0.234470
\(645\) 0 0
\(646\) −1.90440 −0.0749278
\(647\) −31.7398 −1.24782 −0.623910 0.781496i \(-0.714457\pi\)
−0.623910 + 0.781496i \(0.714457\pi\)
\(648\) 15.2619 0.599545
\(649\) 7.98874 0.313585
\(650\) 0 0
\(651\) 51.9543 2.03625
\(652\) −34.9844 −1.37009
\(653\) −27.0609 −1.05898 −0.529488 0.848317i \(-0.677616\pi\)
−0.529488 + 0.848317i \(0.677616\pi\)
\(654\) 84.0646 3.28718
\(655\) 0 0
\(656\) 8.41749 0.328648
\(657\) −24.9371 −0.972889
\(658\) 55.4171 2.16038
\(659\) −40.6494 −1.58348 −0.791738 0.610861i \(-0.790823\pi\)
−0.791738 + 0.610861i \(0.790823\pi\)
\(660\) 0 0
\(661\) −26.1629 −1.01762 −0.508810 0.860879i \(-0.669914\pi\)
−0.508810 + 0.860879i \(0.669914\pi\)
\(662\) 10.8282 0.420849
\(663\) 14.2334 0.552778
\(664\) −24.4210 −0.947719
\(665\) 0 0
\(666\) −45.2985 −1.75528
\(667\) −2.21260 −0.0856721
\(668\) 8.16559 0.315936
\(669\) −16.9000 −0.653391
\(670\) 0 0
\(671\) 2.63405 0.101687
\(672\) −87.1537 −3.36203
\(673\) −12.1030 −0.466537 −0.233269 0.972412i \(-0.574942\pi\)
−0.233269 + 0.972412i \(0.574942\pi\)
\(674\) 21.6171 0.832661
\(675\) 0 0
\(676\) 98.5719 3.79123
\(677\) 3.66596 0.140894 0.0704471 0.997516i \(-0.477557\pi\)
0.0704471 + 0.997516i \(0.477557\pi\)
\(678\) 15.2531 0.585793
\(679\) −96.4837 −3.70271
\(680\) 0 0
\(681\) 59.2975 2.27229
\(682\) 9.90692 0.379356
\(683\) −39.3905 −1.50724 −0.753618 0.657313i \(-0.771693\pi\)
−0.753618 + 0.657313i \(0.771693\pi\)
\(684\) −5.82149 −0.222590
\(685\) 0 0
\(686\) −114.348 −4.36584
\(687\) 10.1411 0.386907
\(688\) −14.2005 −0.541389
\(689\) −21.2833 −0.810829
\(690\) 0 0
\(691\) 15.8240 0.601972 0.300986 0.953629i \(-0.402684\pi\)
0.300986 + 0.953629i \(0.402684\pi\)
\(692\) 14.9819 0.569527
\(693\) 10.8840 0.413449
\(694\) −17.3435 −0.658349
\(695\) 0 0
\(696\) 15.8387 0.600366
\(697\) 3.29314 0.124737
\(698\) −26.2144 −0.992229
\(699\) −14.1760 −0.536186
\(700\) 0 0
\(701\) −48.1331 −1.81796 −0.908980 0.416839i \(-0.863138\pi\)
−0.908980 + 0.416839i \(0.863138\pi\)
\(702\) −28.1429 −1.06219
\(703\) −9.57939 −0.361293
\(704\) −12.1073 −0.456313
\(705\) 0 0
\(706\) 51.2427 1.92854
\(707\) −43.8153 −1.64785
\(708\) −48.3548 −1.81728
\(709\) 26.1687 0.982785 0.491392 0.870938i \(-0.336488\pi\)
0.491392 + 0.870938i \(0.336488\pi\)
\(710\) 0 0
\(711\) 13.9007 0.521318
\(712\) −7.47053 −0.279970
\(713\) 2.07033 0.0775345
\(714\) −21.5514 −0.806540
\(715\) 0 0
\(716\) 3.74077 0.139799
\(717\) 7.29690 0.272508
\(718\) 7.77005 0.289976
\(719\) −29.4161 −1.09703 −0.548517 0.836140i \(-0.684807\pi\)
−0.548517 + 0.836140i \(0.684807\pi\)
\(720\) 0 0
\(721\) 27.1273 1.01027
\(722\) −2.15791 −0.0803090
\(723\) −14.3015 −0.531878
\(724\) −35.3927 −1.31536
\(725\) 0 0
\(726\) 4.91670 0.182476
\(727\) 42.1640 1.56378 0.781888 0.623419i \(-0.214257\pi\)
0.781888 + 0.623419i \(0.214257\pi\)
\(728\) −49.8113 −1.84613
\(729\) −11.0115 −0.407835
\(730\) 0 0
\(731\) −5.55561 −0.205482
\(732\) −15.9436 −0.589292
\(733\) −36.0591 −1.33187 −0.665937 0.746008i \(-0.731968\pi\)
−0.665937 + 0.746008i \(0.731968\pi\)
\(734\) 38.2247 1.41090
\(735\) 0 0
\(736\) −3.47299 −0.128016
\(737\) 14.4306 0.531559
\(738\) 17.6454 0.649535
\(739\) −17.3701 −0.638969 −0.319484 0.947592i \(-0.603510\pi\)
−0.319484 + 0.947592i \(0.603510\pi\)
\(740\) 0 0
\(741\) 16.1280 0.592478
\(742\) 32.2260 1.18305
\(743\) 31.8035 1.16676 0.583378 0.812201i \(-0.301731\pi\)
0.583378 + 0.812201i \(0.301731\pi\)
\(744\) −14.8203 −0.543340
\(745\) 0 0
\(746\) −51.6286 −1.89026
\(747\) 37.7716 1.38199
\(748\) −2.34448 −0.0857228
\(749\) −89.0358 −3.25330
\(750\) 0 0
\(751\) −23.6143 −0.861699 −0.430850 0.902424i \(-0.641786\pi\)
−0.430850 + 0.902424i \(0.641786\pi\)
\(752\) 11.6636 0.425329
\(753\) 6.26414 0.228278
\(754\) −74.9448 −2.72933
\(755\) 0 0
\(756\) 24.3104 0.884161
\(757\) −38.5407 −1.40079 −0.700393 0.713757i \(-0.746992\pi\)
−0.700393 + 0.713757i \(0.746992\pi\)
\(758\) −33.4509 −1.21499
\(759\) 1.02748 0.0372953
\(760\) 0 0
\(761\) −2.30664 −0.0836156 −0.0418078 0.999126i \(-0.513312\pi\)
−0.0418078 + 0.999126i \(0.513312\pi\)
\(762\) 80.1880 2.90490
\(763\) 84.9210 3.07435
\(764\) −26.5657 −0.961114
\(765\) 0 0
\(766\) 11.7788 0.425584
\(767\) 56.5482 2.04184
\(768\) −2.44676 −0.0882899
\(769\) −25.9610 −0.936178 −0.468089 0.883681i \(-0.655057\pi\)
−0.468089 + 0.883681i \(0.655057\pi\)
\(770\) 0 0
\(771\) −24.4155 −0.879301
\(772\) 24.0414 0.865269
\(773\) 21.2402 0.763958 0.381979 0.924171i \(-0.375243\pi\)
0.381979 + 0.924171i \(0.375243\pi\)
\(774\) −29.7682 −1.06999
\(775\) 0 0
\(776\) 27.5227 0.988006
\(777\) −108.406 −3.88905
\(778\) 71.7926 2.57389
\(779\) 3.73151 0.133695
\(780\) 0 0
\(781\) 11.8877 0.425375
\(782\) −0.858803 −0.0307107
\(783\) 9.03991 0.323060
\(784\) −39.8574 −1.42348
\(785\) 0 0
\(786\) −95.0094 −3.38887
\(787\) 3.82340 0.136290 0.0681448 0.997675i \(-0.478292\pi\)
0.0681448 + 0.997675i \(0.478292\pi\)
\(788\) −12.2413 −0.436078
\(789\) −53.6206 −1.90894
\(790\) 0 0
\(791\) 15.4085 0.547864
\(792\) −3.10474 −0.110322
\(793\) 18.6451 0.662108
\(794\) 12.7487 0.452434
\(795\) 0 0
\(796\) 16.7024 0.592001
\(797\) −0.761886 −0.0269874 −0.0134937 0.999909i \(-0.504295\pi\)
−0.0134937 + 0.999909i \(0.504295\pi\)
\(798\) −24.4202 −0.864465
\(799\) 4.56312 0.161432
\(800\) 0 0
\(801\) 11.5546 0.408260
\(802\) 51.0352 1.80211
\(803\) −11.3797 −0.401582
\(804\) −87.3467 −3.08048
\(805\) 0 0
\(806\) 70.1260 2.47008
\(807\) 22.6827 0.798470
\(808\) 12.4986 0.439701
\(809\) 31.0757 1.09256 0.546282 0.837601i \(-0.316043\pi\)
0.546282 + 0.837601i \(0.316043\pi\)
\(810\) 0 0
\(811\) −9.80439 −0.344279 −0.172139 0.985073i \(-0.555068\pi\)
−0.172139 + 0.985073i \(0.555068\pi\)
\(812\) 64.7387 2.27188
\(813\) 54.3481 1.90607
\(814\) −20.6714 −0.724533
\(815\) 0 0
\(816\) −4.53591 −0.158789
\(817\) −6.29514 −0.220239
\(818\) 40.5066 1.41628
\(819\) 77.0424 2.69208
\(820\) 0 0
\(821\) −29.5439 −1.03109 −0.515544 0.856863i \(-0.672410\pi\)
−0.515544 + 0.856863i \(0.672410\pi\)
\(822\) 51.5441 1.79781
\(823\) 35.9452 1.25297 0.626486 0.779433i \(-0.284493\pi\)
0.626486 + 0.779433i \(0.284493\pi\)
\(824\) −7.73825 −0.269575
\(825\) 0 0
\(826\) −85.6222 −2.97918
\(827\) 37.2264 1.29449 0.647244 0.762283i \(-0.275922\pi\)
0.647244 + 0.762283i \(0.275922\pi\)
\(828\) −2.62524 −0.0912333
\(829\) −20.3779 −0.707755 −0.353878 0.935292i \(-0.615137\pi\)
−0.353878 + 0.935292i \(0.615137\pi\)
\(830\) 0 0
\(831\) −8.30790 −0.288198
\(832\) −85.7017 −2.97117
\(833\) −15.5933 −0.540275
\(834\) −32.8859 −1.13874
\(835\) 0 0
\(836\) −2.65657 −0.0918793
\(837\) −8.45866 −0.292374
\(838\) −40.6112 −1.40289
\(839\) −22.0874 −0.762543 −0.381271 0.924463i \(-0.624514\pi\)
−0.381271 + 0.924463i \(0.624514\pi\)
\(840\) 0 0
\(841\) −4.92667 −0.169885
\(842\) 16.4242 0.566017
\(843\) 39.6737 1.36643
\(844\) −22.4122 −0.771459
\(845\) 0 0
\(846\) 24.4502 0.840615
\(847\) 4.96679 0.170661
\(848\) 6.78260 0.232915
\(849\) 9.40612 0.322817
\(850\) 0 0
\(851\) −4.31988 −0.148084
\(852\) −71.9546 −2.46512
\(853\) −36.5266 −1.25065 −0.625323 0.780366i \(-0.715033\pi\)
−0.625323 + 0.780366i \(0.715033\pi\)
\(854\) −28.2314 −0.966060
\(855\) 0 0
\(856\) 25.3981 0.868089
\(857\) −35.3847 −1.20872 −0.604359 0.796712i \(-0.706571\pi\)
−0.604359 + 0.796712i \(0.706571\pi\)
\(858\) 34.8028 1.18815
\(859\) 14.4130 0.491765 0.245883 0.969300i \(-0.420922\pi\)
0.245883 + 0.969300i \(0.420922\pi\)
\(860\) 0 0
\(861\) 42.2280 1.43913
\(862\) −23.1581 −0.788770
\(863\) 16.8842 0.574745 0.287372 0.957819i \(-0.407218\pi\)
0.287372 + 0.957819i \(0.407218\pi\)
\(864\) 14.1895 0.482735
\(865\) 0 0
\(866\) 65.5250 2.22663
\(867\) 36.9592 1.25520
\(868\) −60.5762 −2.05609
\(869\) 6.34343 0.215186
\(870\) 0 0
\(871\) 102.147 3.46112
\(872\) −24.2243 −0.820338
\(873\) −42.5689 −1.44074
\(874\) −0.973122 −0.0329163
\(875\) 0 0
\(876\) 68.8801 2.32724
\(877\) 5.83820 0.197142 0.0985711 0.995130i \(-0.468573\pi\)
0.0985711 + 0.995130i \(0.468573\pi\)
\(878\) −27.3034 −0.921444
\(879\) 34.9976 1.18044
\(880\) 0 0
\(881\) 17.6524 0.594723 0.297361 0.954765i \(-0.403893\pi\)
0.297361 + 0.954765i \(0.403893\pi\)
\(882\) −83.5521 −2.81335
\(883\) −22.4787 −0.756468 −0.378234 0.925710i \(-0.623469\pi\)
−0.378234 + 0.925710i \(0.623469\pi\)
\(884\) −16.5954 −0.558164
\(885\) 0 0
\(886\) 51.1127 1.71716
\(887\) 34.9174 1.17241 0.586205 0.810163i \(-0.300621\pi\)
0.586205 + 0.810163i \(0.300621\pi\)
\(888\) 30.9236 1.03773
\(889\) 81.0049 2.71682
\(890\) 0 0
\(891\) −10.7720 −0.360876
\(892\) 19.7045 0.659757
\(893\) 5.17054 0.173025
\(894\) −92.3113 −3.08735
\(895\) 0 0
\(896\) 53.2624 1.77937
\(897\) 7.27303 0.242839
\(898\) −43.6968 −1.45818
\(899\) −22.5255 −0.751267
\(900\) 0 0
\(901\) 2.65353 0.0884020
\(902\) 8.05225 0.268111
\(903\) −71.2396 −2.37070
\(904\) −4.39539 −0.146188
\(905\) 0 0
\(906\) −32.4827 −1.07917
\(907\) −2.00996 −0.0667395 −0.0333698 0.999443i \(-0.510624\pi\)
−0.0333698 + 0.999443i \(0.510624\pi\)
\(908\) −69.1380 −2.29442
\(909\) −19.3315 −0.641184
\(910\) 0 0
\(911\) 21.7282 0.719887 0.359944 0.932974i \(-0.382796\pi\)
0.359944 + 0.932974i \(0.382796\pi\)
\(912\) −5.13971 −0.170193
\(913\) 17.2366 0.570448
\(914\) 28.4239 0.940179
\(915\) 0 0
\(916\) −11.8240 −0.390677
\(917\) −95.9773 −3.16945
\(918\) 3.50877 0.115807
\(919\) −32.8035 −1.08209 −0.541044 0.840995i \(-0.681971\pi\)
−0.541044 + 0.840995i \(0.681971\pi\)
\(920\) 0 0
\(921\) 34.9298 1.15097
\(922\) −48.5196 −1.59791
\(923\) 84.1468 2.76973
\(924\) −30.0633 −0.989010
\(925\) 0 0
\(926\) −42.0709 −1.38254
\(927\) 11.9686 0.393101
\(928\) 37.7866 1.24041
\(929\) −8.32036 −0.272982 −0.136491 0.990641i \(-0.543582\pi\)
−0.136491 + 0.990641i \(0.543582\pi\)
\(930\) 0 0
\(931\) −17.6690 −0.579077
\(932\) 16.5285 0.541410
\(933\) −42.7058 −1.39813
\(934\) −29.2506 −0.957109
\(935\) 0 0
\(936\) −21.9769 −0.718337
\(937\) −11.2558 −0.367709 −0.183855 0.982953i \(-0.558858\pi\)
−0.183855 + 0.982953i \(0.558858\pi\)
\(938\) −154.666 −5.05001
\(939\) −36.3150 −1.18510
\(940\) 0 0
\(941\) 30.8893 1.00696 0.503480 0.864007i \(-0.332053\pi\)
0.503480 + 0.864007i \(0.332053\pi\)
\(942\) 23.5948 0.768760
\(943\) 1.68275 0.0547978
\(944\) −18.0209 −0.586530
\(945\) 0 0
\(946\) −13.5843 −0.441665
\(947\) 8.80666 0.286178 0.143089 0.989710i \(-0.454296\pi\)
0.143089 + 0.989710i \(0.454296\pi\)
\(948\) −38.3959 −1.24704
\(949\) −80.5514 −2.61481
\(950\) 0 0
\(951\) −20.6185 −0.668601
\(952\) 6.21031 0.201277
\(953\) 34.0563 1.10319 0.551595 0.834112i \(-0.314019\pi\)
0.551595 + 0.834112i \(0.314019\pi\)
\(954\) 14.2182 0.460331
\(955\) 0 0
\(956\) −8.50783 −0.275163
\(957\) −11.1791 −0.361370
\(958\) 49.7052 1.60590
\(959\) 52.0692 1.68140
\(960\) 0 0
\(961\) −9.92286 −0.320092
\(962\) −146.323 −4.71763
\(963\) −39.2828 −1.26587
\(964\) 16.6748 0.537060
\(965\) 0 0
\(966\) −11.0124 −0.354319
\(967\) 36.4838 1.17324 0.586619 0.809863i \(-0.300459\pi\)
0.586619 + 0.809863i \(0.300459\pi\)
\(968\) −1.41681 −0.0455380
\(969\) −2.01079 −0.0645959
\(970\) 0 0
\(971\) 12.7147 0.408035 0.204017 0.978967i \(-0.434600\pi\)
0.204017 + 0.978967i \(0.434600\pi\)
\(972\) 50.5179 1.62036
\(973\) −33.2209 −1.06501
\(974\) 63.7135 2.04151
\(975\) 0 0
\(976\) −5.94186 −0.190194
\(977\) −7.45252 −0.238427 −0.119214 0.992869i \(-0.538037\pi\)
−0.119214 + 0.992869i \(0.538037\pi\)
\(978\) −64.7481 −2.07042
\(979\) 5.27278 0.168519
\(980\) 0 0
\(981\) 37.4674 1.19624
\(982\) −10.0755 −0.321521
\(983\) 56.6122 1.80565 0.902824 0.430011i \(-0.141490\pi\)
0.902824 + 0.430011i \(0.141490\pi\)
\(984\) −12.0458 −0.384007
\(985\) 0 0
\(986\) 9.34388 0.297570
\(987\) 58.5129 1.86249
\(988\) −18.8045 −0.598250
\(989\) −2.83883 −0.0902696
\(990\) 0 0
\(991\) −10.6165 −0.337244 −0.168622 0.985681i \(-0.553932\pi\)
−0.168622 + 0.985681i \(0.553932\pi\)
\(992\) −35.3570 −1.12259
\(993\) 11.4331 0.362817
\(994\) −127.411 −4.04122
\(995\) 0 0
\(996\) −104.331 −3.30585
\(997\) 25.1438 0.796311 0.398155 0.917318i \(-0.369650\pi\)
0.398155 + 0.917318i \(0.369650\pi\)
\(998\) −13.3282 −0.421896
\(999\) 17.6495 0.558407
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.x.1.2 yes 15
5.4 even 2 5225.2.a.s.1.14 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5225.2.a.s.1.14 15 5.4 even 2
5225.2.a.x.1.2 yes 15 1.1 even 1 trivial