Properties

Label 5225.2.a.s.1.7
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5225,2,Mod(1,5225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-5,-4,17,0,-1,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 5 x^{14} - 11 x^{13} + 85 x^{12} + 6 x^{11} - 537 x^{10} + 327 x^{9} + 1556 x^{8} - 1451 x^{7} + \cdots - 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.10124\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.10124 q^{2} +1.12617 q^{3} -0.787279 q^{4} -1.24018 q^{6} +1.81708 q^{7} +3.06945 q^{8} -1.73174 q^{9} +1.00000 q^{11} -0.886611 q^{12} +3.00590 q^{13} -2.00104 q^{14} -1.80563 q^{16} +0.396094 q^{17} +1.90705 q^{18} -1.00000 q^{19} +2.04635 q^{21} -1.10124 q^{22} +2.47213 q^{23} +3.45673 q^{24} -3.31020 q^{26} -5.32875 q^{27} -1.43055 q^{28} -4.66419 q^{29} -10.5803 q^{31} -4.15048 q^{32} +1.12617 q^{33} -0.436192 q^{34} +1.36336 q^{36} -3.18261 q^{37} +1.10124 q^{38} +3.38516 q^{39} -9.74534 q^{41} -2.25351 q^{42} -3.52635 q^{43} -0.787279 q^{44} -2.72240 q^{46} +3.07500 q^{47} -2.03345 q^{48} -3.69820 q^{49} +0.446069 q^{51} -2.36648 q^{52} -1.32628 q^{53} +5.86821 q^{54} +5.57745 q^{56} -1.12617 q^{57} +5.13637 q^{58} -6.08186 q^{59} +13.2731 q^{61} +11.6514 q^{62} -3.14672 q^{63} +8.18192 q^{64} -1.24018 q^{66} -9.86746 q^{67} -0.311836 q^{68} +2.78404 q^{69} +3.14591 q^{71} -5.31549 q^{72} +10.7607 q^{73} +3.50480 q^{74} +0.787279 q^{76} +1.81708 q^{77} -3.72786 q^{78} +2.48793 q^{79} -0.805865 q^{81} +10.7319 q^{82} +8.40591 q^{83} -1.61105 q^{84} +3.88335 q^{86} -5.25268 q^{87} +3.06945 q^{88} -4.18002 q^{89} +5.46197 q^{91} -1.94626 q^{92} -11.9152 q^{93} -3.38630 q^{94} -4.67415 q^{96} -5.66478 q^{97} +4.07260 q^{98} -1.73174 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 5 q^{2} - 4 q^{3} + 17 q^{4} - q^{6} - 15 q^{7} - 15 q^{8} + 19 q^{9} + 15 q^{11} - 9 q^{12} - 13 q^{13} + 9 q^{14} + 21 q^{16} - 11 q^{17} - 16 q^{18} - 15 q^{19} - 5 q^{22} - 10 q^{23} + 17 q^{24}+ \cdots + 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10124 −0.778691 −0.389346 0.921092i \(-0.627299\pi\)
−0.389346 + 0.921092i \(0.627299\pi\)
\(3\) 1.12617 0.650195 0.325098 0.945680i \(-0.394603\pi\)
0.325098 + 0.945680i \(0.394603\pi\)
\(4\) −0.787279 −0.393640
\(5\) 0 0
\(6\) −1.24018 −0.506301
\(7\) 1.81708 0.686793 0.343397 0.939190i \(-0.388422\pi\)
0.343397 + 0.939190i \(0.388422\pi\)
\(8\) 3.06945 1.08522
\(9\) −1.73174 −0.577246
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) −0.886611 −0.255943
\(13\) 3.00590 0.833687 0.416843 0.908978i \(-0.363136\pi\)
0.416843 + 0.908978i \(0.363136\pi\)
\(14\) −2.00104 −0.534800
\(15\) 0 0
\(16\) −1.80563 −0.451408
\(17\) 0.396094 0.0960668 0.0480334 0.998846i \(-0.484705\pi\)
0.0480334 + 0.998846i \(0.484705\pi\)
\(18\) 1.90705 0.449497
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 2.04635 0.446550
\(22\) −1.10124 −0.234784
\(23\) 2.47213 0.515475 0.257737 0.966215i \(-0.417023\pi\)
0.257737 + 0.966215i \(0.417023\pi\)
\(24\) 3.45673 0.705602
\(25\) 0 0
\(26\) −3.31020 −0.649185
\(27\) −5.32875 −1.02552
\(28\) −1.43055 −0.270349
\(29\) −4.66419 −0.866118 −0.433059 0.901366i \(-0.642566\pi\)
−0.433059 + 0.901366i \(0.642566\pi\)
\(30\) 0 0
\(31\) −10.5803 −1.90027 −0.950135 0.311838i \(-0.899055\pi\)
−0.950135 + 0.311838i \(0.899055\pi\)
\(32\) −4.15048 −0.733708
\(33\) 1.12617 0.196041
\(34\) −0.436192 −0.0748064
\(35\) 0 0
\(36\) 1.36336 0.227227
\(37\) −3.18261 −0.523217 −0.261609 0.965174i \(-0.584253\pi\)
−0.261609 + 0.965174i \(0.584253\pi\)
\(38\) 1.10124 0.178644
\(39\) 3.38516 0.542059
\(40\) 0 0
\(41\) −9.74534 −1.52197 −0.760983 0.648772i \(-0.775283\pi\)
−0.760983 + 0.648772i \(0.775283\pi\)
\(42\) −2.25351 −0.347724
\(43\) −3.52635 −0.537764 −0.268882 0.963173i \(-0.586654\pi\)
−0.268882 + 0.963173i \(0.586654\pi\)
\(44\) −0.787279 −0.118687
\(45\) 0 0
\(46\) −2.72240 −0.401396
\(47\) 3.07500 0.448535 0.224267 0.974528i \(-0.428001\pi\)
0.224267 + 0.974528i \(0.428001\pi\)
\(48\) −2.03345 −0.293503
\(49\) −3.69820 −0.528315
\(50\) 0 0
\(51\) 0.446069 0.0624622
\(52\) −2.36648 −0.328172
\(53\) −1.32628 −0.182179 −0.0910893 0.995843i \(-0.529035\pi\)
−0.0910893 + 0.995843i \(0.529035\pi\)
\(54\) 5.86821 0.798562
\(55\) 0 0
\(56\) 5.57745 0.745319
\(57\) −1.12617 −0.149165
\(58\) 5.13637 0.674439
\(59\) −6.08186 −0.791791 −0.395895 0.918296i \(-0.629566\pi\)
−0.395895 + 0.918296i \(0.629566\pi\)
\(60\) 0 0
\(61\) 13.2731 1.69944 0.849721 0.527233i \(-0.176770\pi\)
0.849721 + 0.527233i \(0.176770\pi\)
\(62\) 11.6514 1.47972
\(63\) −3.14672 −0.396449
\(64\) 8.18192 1.02274
\(65\) 0 0
\(66\) −1.24018 −0.152656
\(67\) −9.86746 −1.20550 −0.602751 0.797930i \(-0.705929\pi\)
−0.602751 + 0.797930i \(0.705929\pi\)
\(68\) −0.311836 −0.0378157
\(69\) 2.78404 0.335159
\(70\) 0 0
\(71\) 3.14591 0.373351 0.186675 0.982422i \(-0.440229\pi\)
0.186675 + 0.982422i \(0.440229\pi\)
\(72\) −5.31549 −0.626436
\(73\) 10.7607 1.25944 0.629720 0.776822i \(-0.283170\pi\)
0.629720 + 0.776822i \(0.283170\pi\)
\(74\) 3.50480 0.407425
\(75\) 0 0
\(76\) 0.787279 0.0903071
\(77\) 1.81708 0.207076
\(78\) −3.72786 −0.422097
\(79\) 2.48793 0.279914 0.139957 0.990158i \(-0.455304\pi\)
0.139957 + 0.990158i \(0.455304\pi\)
\(80\) 0 0
\(81\) −0.805865 −0.0895405
\(82\) 10.7319 1.18514
\(83\) 8.40591 0.922668 0.461334 0.887227i \(-0.347371\pi\)
0.461334 + 0.887227i \(0.347371\pi\)
\(84\) −1.61105 −0.175780
\(85\) 0 0
\(86\) 3.88335 0.418752
\(87\) −5.25268 −0.563146
\(88\) 3.06945 0.327205
\(89\) −4.18002 −0.443081 −0.221540 0.975151i \(-0.571108\pi\)
−0.221540 + 0.975151i \(0.571108\pi\)
\(90\) 0 0
\(91\) 5.46197 0.572570
\(92\) −1.94626 −0.202911
\(93\) −11.9152 −1.23555
\(94\) −3.38630 −0.349270
\(95\) 0 0
\(96\) −4.67415 −0.477053
\(97\) −5.66478 −0.575172 −0.287586 0.957755i \(-0.592853\pi\)
−0.287586 + 0.957755i \(0.592853\pi\)
\(98\) 4.07260 0.411394
\(99\) −1.73174 −0.174046
\(100\) 0 0
\(101\) 8.17189 0.813134 0.406567 0.913621i \(-0.366726\pi\)
0.406567 + 0.913621i \(0.366726\pi\)
\(102\) −0.491227 −0.0486388
\(103\) 5.11727 0.504219 0.252110 0.967699i \(-0.418876\pi\)
0.252110 + 0.967699i \(0.418876\pi\)
\(104\) 9.22647 0.904729
\(105\) 0 0
\(106\) 1.46055 0.141861
\(107\) −11.0610 −1.06931 −0.534653 0.845072i \(-0.679558\pi\)
−0.534653 + 0.845072i \(0.679558\pi\)
\(108\) 4.19521 0.403684
\(109\) 1.77465 0.169981 0.0849904 0.996382i \(-0.472914\pi\)
0.0849904 + 0.996382i \(0.472914\pi\)
\(110\) 0 0
\(111\) −3.58416 −0.340193
\(112\) −3.28099 −0.310024
\(113\) −17.0343 −1.60245 −0.801225 0.598363i \(-0.795818\pi\)
−0.801225 + 0.598363i \(0.795818\pi\)
\(114\) 1.24018 0.116154
\(115\) 0 0
\(116\) 3.67202 0.340938
\(117\) −5.20543 −0.481242
\(118\) 6.69756 0.616561
\(119\) 0.719735 0.0659780
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −14.6168 −1.32334
\(123\) −10.9749 −0.989575
\(124\) 8.32962 0.748022
\(125\) 0 0
\(126\) 3.46528 0.308711
\(127\) −8.14604 −0.722844 −0.361422 0.932402i \(-0.617709\pi\)
−0.361422 + 0.932402i \(0.617709\pi\)
\(128\) −0.709272 −0.0626913
\(129\) −3.97128 −0.349651
\(130\) 0 0
\(131\) −10.3533 −0.904569 −0.452284 0.891874i \(-0.649391\pi\)
−0.452284 + 0.891874i \(0.649391\pi\)
\(132\) −0.886611 −0.0771696
\(133\) −1.81708 −0.157561
\(134\) 10.8664 0.938714
\(135\) 0 0
\(136\) 1.21579 0.104253
\(137\) 0.222099 0.0189752 0.00948761 0.999955i \(-0.496980\pi\)
0.00948761 + 0.999955i \(0.496980\pi\)
\(138\) −3.06589 −0.260986
\(139\) 1.52039 0.128958 0.0644790 0.997919i \(-0.479461\pi\)
0.0644790 + 0.997919i \(0.479461\pi\)
\(140\) 0 0
\(141\) 3.46298 0.291635
\(142\) −3.46439 −0.290725
\(143\) 3.00590 0.251366
\(144\) 3.12688 0.260574
\(145\) 0 0
\(146\) −11.8500 −0.980715
\(147\) −4.16481 −0.343508
\(148\) 2.50560 0.205959
\(149\) 13.4208 1.09947 0.549737 0.835338i \(-0.314728\pi\)
0.549737 + 0.835338i \(0.314728\pi\)
\(150\) 0 0
\(151\) −1.77240 −0.144236 −0.0721180 0.997396i \(-0.522976\pi\)
−0.0721180 + 0.997396i \(0.522976\pi\)
\(152\) −3.06945 −0.248965
\(153\) −0.685931 −0.0554542
\(154\) −2.00104 −0.161248
\(155\) 0 0
\(156\) −2.66506 −0.213376
\(157\) −17.6002 −1.40465 −0.702326 0.711856i \(-0.747855\pi\)
−0.702326 + 0.711856i \(0.747855\pi\)
\(158\) −2.73980 −0.217967
\(159\) −1.49362 −0.118452
\(160\) 0 0
\(161\) 4.49207 0.354024
\(162\) 0.887447 0.0697244
\(163\) −13.7583 −1.07763 −0.538816 0.842423i \(-0.681128\pi\)
−0.538816 + 0.842423i \(0.681128\pi\)
\(164\) 7.67230 0.599106
\(165\) 0 0
\(166\) −9.25689 −0.718474
\(167\) 4.42753 0.342612 0.171306 0.985218i \(-0.445201\pi\)
0.171306 + 0.985218i \(0.445201\pi\)
\(168\) 6.28117 0.484603
\(169\) −3.96457 −0.304967
\(170\) 0 0
\(171\) 1.73174 0.132429
\(172\) 2.77622 0.211685
\(173\) −8.62772 −0.655953 −0.327977 0.944686i \(-0.606367\pi\)
−0.327977 + 0.944686i \(0.606367\pi\)
\(174\) 5.78444 0.438517
\(175\) 0 0
\(176\) −1.80563 −0.136105
\(177\) −6.84922 −0.514819
\(178\) 4.60319 0.345023
\(179\) 4.62285 0.345528 0.172764 0.984963i \(-0.444730\pi\)
0.172764 + 0.984963i \(0.444730\pi\)
\(180\) 0 0
\(181\) −3.43691 −0.255464 −0.127732 0.991809i \(-0.540770\pi\)
−0.127732 + 0.991809i \(0.540770\pi\)
\(182\) −6.01492 −0.445856
\(183\) 14.9477 1.10497
\(184\) 7.58808 0.559401
\(185\) 0 0
\(186\) 13.1214 0.962110
\(187\) 0.396094 0.0289652
\(188\) −2.42088 −0.176561
\(189\) −9.68278 −0.704319
\(190\) 0 0
\(191\) 5.94862 0.430427 0.215213 0.976567i \(-0.430955\pi\)
0.215213 + 0.976567i \(0.430955\pi\)
\(192\) 9.21424 0.664981
\(193\) 6.33082 0.455702 0.227851 0.973696i \(-0.426830\pi\)
0.227851 + 0.973696i \(0.426830\pi\)
\(194\) 6.23826 0.447881
\(195\) 0 0
\(196\) 2.91152 0.207966
\(197\) 10.9220 0.778163 0.389082 0.921203i \(-0.372792\pi\)
0.389082 + 0.921203i \(0.372792\pi\)
\(198\) 1.90705 0.135528
\(199\) −17.0111 −1.20588 −0.602941 0.797786i \(-0.706005\pi\)
−0.602941 + 0.797786i \(0.706005\pi\)
\(200\) 0 0
\(201\) −11.1124 −0.783811
\(202\) −8.99918 −0.633180
\(203\) −8.47523 −0.594844
\(204\) −0.351181 −0.0245876
\(205\) 0 0
\(206\) −5.63532 −0.392631
\(207\) −4.28108 −0.297556
\(208\) −5.42755 −0.376333
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 4.62775 0.318588 0.159294 0.987231i \(-0.449078\pi\)
0.159294 + 0.987231i \(0.449078\pi\)
\(212\) 1.04415 0.0717127
\(213\) 3.54283 0.242751
\(214\) 12.1808 0.832659
\(215\) 0 0
\(216\) −16.3563 −1.11291
\(217\) −19.2252 −1.30509
\(218\) −1.95431 −0.132363
\(219\) 12.1183 0.818882
\(220\) 0 0
\(221\) 1.19062 0.0800896
\(222\) 3.94700 0.264906
\(223\) 6.92101 0.463465 0.231733 0.972780i \(-0.425561\pi\)
0.231733 + 0.972780i \(0.425561\pi\)
\(224\) −7.54177 −0.503905
\(225\) 0 0
\(226\) 18.7588 1.24781
\(227\) −20.9784 −1.39238 −0.696192 0.717855i \(-0.745124\pi\)
−0.696192 + 0.717855i \(0.745124\pi\)
\(228\) 0.886611 0.0587173
\(229\) −4.01914 −0.265592 −0.132796 0.991143i \(-0.542396\pi\)
−0.132796 + 0.991143i \(0.542396\pi\)
\(230\) 0 0
\(231\) 2.04635 0.134640
\(232\) −14.3165 −0.939925
\(233\) −6.92311 −0.453548 −0.226774 0.973947i \(-0.572818\pi\)
−0.226774 + 0.973947i \(0.572818\pi\)
\(234\) 5.73241 0.374739
\(235\) 0 0
\(236\) 4.78812 0.311680
\(237\) 2.80184 0.181999
\(238\) −0.792598 −0.0513765
\(239\) 19.6937 1.27388 0.636941 0.770913i \(-0.280200\pi\)
0.636941 + 0.770913i \(0.280200\pi\)
\(240\) 0 0
\(241\) 0.140555 0.00905396 0.00452698 0.999990i \(-0.498559\pi\)
0.00452698 + 0.999990i \(0.498559\pi\)
\(242\) −1.10124 −0.0707901
\(243\) 15.0787 0.967299
\(244\) −10.4496 −0.668968
\(245\) 0 0
\(246\) 12.0860 0.770574
\(247\) −3.00590 −0.191261
\(248\) −32.4756 −2.06220
\(249\) 9.46649 0.599914
\(250\) 0 0
\(251\) 2.70575 0.170786 0.0853928 0.996347i \(-0.472785\pi\)
0.0853928 + 0.996347i \(0.472785\pi\)
\(252\) 2.47734 0.156058
\(253\) 2.47213 0.155421
\(254\) 8.97071 0.562872
\(255\) 0 0
\(256\) −15.5828 −0.973923
\(257\) −10.3982 −0.648622 −0.324311 0.945950i \(-0.605132\pi\)
−0.324311 + 0.945950i \(0.605132\pi\)
\(258\) 4.37331 0.272271
\(259\) −5.78306 −0.359342
\(260\) 0 0
\(261\) 8.07716 0.499964
\(262\) 11.4014 0.704380
\(263\) 23.0218 1.41959 0.709793 0.704410i \(-0.248789\pi\)
0.709793 + 0.704410i \(0.248789\pi\)
\(264\) 3.45673 0.212747
\(265\) 0 0
\(266\) 2.00104 0.122692
\(267\) −4.70741 −0.288089
\(268\) 7.76844 0.474533
\(269\) −5.97611 −0.364370 −0.182185 0.983264i \(-0.558317\pi\)
−0.182185 + 0.983264i \(0.558317\pi\)
\(270\) 0 0
\(271\) −30.7969 −1.87078 −0.935388 0.353623i \(-0.884950\pi\)
−0.935388 + 0.353623i \(0.884950\pi\)
\(272\) −0.715200 −0.0433653
\(273\) 6.15112 0.372282
\(274\) −0.244584 −0.0147758
\(275\) 0 0
\(276\) −2.19182 −0.131932
\(277\) 14.0355 0.843311 0.421655 0.906756i \(-0.361449\pi\)
0.421655 + 0.906756i \(0.361449\pi\)
\(278\) −1.67431 −0.100419
\(279\) 18.3222 1.09692
\(280\) 0 0
\(281\) −12.9615 −0.773221 −0.386610 0.922243i \(-0.626354\pi\)
−0.386610 + 0.922243i \(0.626354\pi\)
\(282\) −3.81355 −0.227094
\(283\) −25.3050 −1.50423 −0.752114 0.659033i \(-0.770966\pi\)
−0.752114 + 0.659033i \(0.770966\pi\)
\(284\) −2.47671 −0.146966
\(285\) 0 0
\(286\) −3.31020 −0.195737
\(287\) −17.7081 −1.04528
\(288\) 7.18754 0.423530
\(289\) −16.8431 −0.990771
\(290\) 0 0
\(291\) −6.37952 −0.373974
\(292\) −8.47164 −0.495765
\(293\) −22.9413 −1.34025 −0.670123 0.742250i \(-0.733759\pi\)
−0.670123 + 0.742250i \(0.733759\pi\)
\(294\) 4.58644 0.267487
\(295\) 0 0
\(296\) −9.76886 −0.567803
\(297\) −5.32875 −0.309205
\(298\) −14.7795 −0.856151
\(299\) 7.43097 0.429744
\(300\) 0 0
\(301\) −6.40768 −0.369333
\(302\) 1.95183 0.112315
\(303\) 9.20295 0.528696
\(304\) 1.80563 0.103560
\(305\) 0 0
\(306\) 0.755371 0.0431817
\(307\) −11.0205 −0.628971 −0.314485 0.949262i \(-0.601832\pi\)
−0.314485 + 0.949262i \(0.601832\pi\)
\(308\) −1.43055 −0.0815133
\(309\) 5.76292 0.327841
\(310\) 0 0
\(311\) 14.0537 0.796913 0.398456 0.917187i \(-0.369546\pi\)
0.398456 + 0.917187i \(0.369546\pi\)
\(312\) 10.3906 0.588251
\(313\) 15.0295 0.849519 0.424759 0.905306i \(-0.360359\pi\)
0.424759 + 0.905306i \(0.360359\pi\)
\(314\) 19.3820 1.09379
\(315\) 0 0
\(316\) −1.95870 −0.110185
\(317\) 26.7125 1.50033 0.750163 0.661253i \(-0.229975\pi\)
0.750163 + 0.661253i \(0.229975\pi\)
\(318\) 1.64483 0.0922373
\(319\) −4.66419 −0.261144
\(320\) 0 0
\(321\) −12.4566 −0.695257
\(322\) −4.94683 −0.275676
\(323\) −0.396094 −0.0220392
\(324\) 0.634441 0.0352467
\(325\) 0 0
\(326\) 15.1511 0.839143
\(327\) 1.99856 0.110521
\(328\) −29.9129 −1.65166
\(329\) 5.58753 0.308051
\(330\) 0 0
\(331\) 18.3065 1.00622 0.503109 0.864223i \(-0.332190\pi\)
0.503109 + 0.864223i \(0.332190\pi\)
\(332\) −6.61780 −0.363199
\(333\) 5.51144 0.302025
\(334\) −4.87575 −0.266789
\(335\) 0 0
\(336\) −3.69495 −0.201576
\(337\) −3.55269 −0.193527 −0.0967636 0.995307i \(-0.530849\pi\)
−0.0967636 + 0.995307i \(0.530849\pi\)
\(338\) 4.36592 0.237475
\(339\) −19.1835 −1.04191
\(340\) 0 0
\(341\) −10.5803 −0.572953
\(342\) −1.90705 −0.103122
\(343\) −19.4395 −1.04964
\(344\) −10.8240 −0.583589
\(345\) 0 0
\(346\) 9.50116 0.510785
\(347\) 13.9284 0.747713 0.373857 0.927486i \(-0.378035\pi\)
0.373857 + 0.927486i \(0.378035\pi\)
\(348\) 4.13532 0.221677
\(349\) −2.94165 −0.157463 −0.0787313 0.996896i \(-0.525087\pi\)
−0.0787313 + 0.996896i \(0.525087\pi\)
\(350\) 0 0
\(351\) −16.0177 −0.854960
\(352\) −4.15048 −0.221221
\(353\) 3.34914 0.178257 0.0891283 0.996020i \(-0.471592\pi\)
0.0891283 + 0.996020i \(0.471592\pi\)
\(354\) 7.54260 0.400885
\(355\) 0 0
\(356\) 3.29084 0.174414
\(357\) 0.810545 0.0428986
\(358\) −5.09085 −0.269060
\(359\) −17.3050 −0.913321 −0.456660 0.889641i \(-0.650955\pi\)
−0.456660 + 0.889641i \(0.650955\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 3.78485 0.198927
\(363\) 1.12617 0.0591087
\(364\) −4.30010 −0.225386
\(365\) 0 0
\(366\) −16.4610 −0.860430
\(367\) −2.84237 −0.148370 −0.0741851 0.997244i \(-0.523636\pi\)
−0.0741851 + 0.997244i \(0.523636\pi\)
\(368\) −4.46376 −0.232689
\(369\) 16.8764 0.878549
\(370\) 0 0
\(371\) −2.40996 −0.125119
\(372\) 9.38057 0.486360
\(373\) −31.3251 −1.62195 −0.810976 0.585079i \(-0.801064\pi\)
−0.810976 + 0.585079i \(0.801064\pi\)
\(374\) −0.436192 −0.0225550
\(375\) 0 0
\(376\) 9.43856 0.486757
\(377\) −14.0201 −0.722071
\(378\) 10.6630 0.548447
\(379\) 15.3932 0.790697 0.395349 0.918531i \(-0.370624\pi\)
0.395349 + 0.918531i \(0.370624\pi\)
\(380\) 0 0
\(381\) −9.17383 −0.469990
\(382\) −6.55083 −0.335170
\(383\) −18.8395 −0.962654 −0.481327 0.876541i \(-0.659845\pi\)
−0.481327 + 0.876541i \(0.659845\pi\)
\(384\) −0.798761 −0.0407616
\(385\) 0 0
\(386\) −6.97173 −0.354852
\(387\) 6.10672 0.310422
\(388\) 4.45977 0.226410
\(389\) −30.9839 −1.57095 −0.785473 0.618896i \(-0.787580\pi\)
−0.785473 + 0.618896i \(0.787580\pi\)
\(390\) 0 0
\(391\) 0.979194 0.0495200
\(392\) −11.3515 −0.573335
\(393\) −11.6595 −0.588146
\(394\) −12.0277 −0.605949
\(395\) 0 0
\(396\) 1.36336 0.0685115
\(397\) −9.73881 −0.488777 −0.244388 0.969677i \(-0.578587\pi\)
−0.244388 + 0.969677i \(0.578587\pi\)
\(398\) 18.7332 0.939010
\(399\) −2.04635 −0.102446
\(400\) 0 0
\(401\) −16.8539 −0.841642 −0.420821 0.907144i \(-0.638258\pi\)
−0.420821 + 0.907144i \(0.638258\pi\)
\(402\) 12.2374 0.610347
\(403\) −31.8032 −1.58423
\(404\) −6.43356 −0.320082
\(405\) 0 0
\(406\) 9.33322 0.463200
\(407\) −3.18261 −0.157756
\(408\) 1.36919 0.0677849
\(409\) 14.4968 0.716822 0.358411 0.933564i \(-0.383319\pi\)
0.358411 + 0.933564i \(0.383319\pi\)
\(410\) 0 0
\(411\) 0.250122 0.0123376
\(412\) −4.02872 −0.198481
\(413\) −11.0513 −0.543797
\(414\) 4.71448 0.231704
\(415\) 0 0
\(416\) −12.4759 −0.611682
\(417\) 1.71222 0.0838479
\(418\) 1.10124 0.0538632
\(419\) 23.5582 1.15089 0.575447 0.817839i \(-0.304828\pi\)
0.575447 + 0.817839i \(0.304828\pi\)
\(420\) 0 0
\(421\) 3.16377 0.154193 0.0770964 0.997024i \(-0.475435\pi\)
0.0770964 + 0.997024i \(0.475435\pi\)
\(422\) −5.09625 −0.248081
\(423\) −5.32510 −0.258915
\(424\) −4.07095 −0.197703
\(425\) 0 0
\(426\) −3.90149 −0.189028
\(427\) 24.1183 1.16717
\(428\) 8.70808 0.420921
\(429\) 3.38516 0.163437
\(430\) 0 0
\(431\) −22.3848 −1.07824 −0.539120 0.842229i \(-0.681243\pi\)
−0.539120 + 0.842229i \(0.681243\pi\)
\(432\) 9.62176 0.462927
\(433\) 33.0415 1.58787 0.793937 0.608000i \(-0.208028\pi\)
0.793937 + 0.608000i \(0.208028\pi\)
\(434\) 21.1715 1.01626
\(435\) 0 0
\(436\) −1.39715 −0.0669111
\(437\) −2.47213 −0.118258
\(438\) −13.3452 −0.637656
\(439\) −13.5183 −0.645193 −0.322597 0.946537i \(-0.604556\pi\)
−0.322597 + 0.946537i \(0.604556\pi\)
\(440\) 0 0
\(441\) 6.40432 0.304968
\(442\) −1.31115 −0.0623651
\(443\) −26.2368 −1.24655 −0.623273 0.782004i \(-0.714197\pi\)
−0.623273 + 0.782004i \(0.714197\pi\)
\(444\) 2.82173 0.133914
\(445\) 0 0
\(446\) −7.62167 −0.360896
\(447\) 15.1141 0.714873
\(448\) 14.8672 0.702411
\(449\) −37.8759 −1.78747 −0.893737 0.448591i \(-0.851926\pi\)
−0.893737 + 0.448591i \(0.851926\pi\)
\(450\) 0 0
\(451\) −9.74534 −0.458890
\(452\) 13.4107 0.630788
\(453\) −1.99603 −0.0937815
\(454\) 23.1022 1.08424
\(455\) 0 0
\(456\) −3.45673 −0.161876
\(457\) 8.11897 0.379789 0.189895 0.981804i \(-0.439185\pi\)
0.189895 + 0.981804i \(0.439185\pi\)
\(458\) 4.42602 0.206814
\(459\) −2.11068 −0.0985182
\(460\) 0 0
\(461\) 2.99911 0.139683 0.0698413 0.997558i \(-0.477751\pi\)
0.0698413 + 0.997558i \(0.477751\pi\)
\(462\) −2.25351 −0.104843
\(463\) −20.0068 −0.929795 −0.464897 0.885365i \(-0.653909\pi\)
−0.464897 + 0.885365i \(0.653909\pi\)
\(464\) 8.42181 0.390973
\(465\) 0 0
\(466\) 7.62397 0.353174
\(467\) −2.07746 −0.0961333 −0.0480667 0.998844i \(-0.515306\pi\)
−0.0480667 + 0.998844i \(0.515306\pi\)
\(468\) 4.09813 0.189436
\(469\) −17.9300 −0.827930
\(470\) 0 0
\(471\) −19.8209 −0.913298
\(472\) −18.6680 −0.859264
\(473\) −3.52635 −0.162142
\(474\) −3.08548 −0.141721
\(475\) 0 0
\(476\) −0.566633 −0.0259716
\(477\) 2.29677 0.105162
\(478\) −21.6874 −0.991960
\(479\) 39.1671 1.78959 0.894795 0.446478i \(-0.147322\pi\)
0.894795 + 0.446478i \(0.147322\pi\)
\(480\) 0 0
\(481\) −9.56659 −0.436199
\(482\) −0.154784 −0.00705024
\(483\) 5.05884 0.230185
\(484\) −0.787279 −0.0357854
\(485\) 0 0
\(486\) −16.6052 −0.753228
\(487\) 40.8687 1.85194 0.925968 0.377603i \(-0.123251\pi\)
0.925968 + 0.377603i \(0.123251\pi\)
\(488\) 40.7410 1.84426
\(489\) −15.4942 −0.700671
\(490\) 0 0
\(491\) −6.86419 −0.309777 −0.154888 0.987932i \(-0.549502\pi\)
−0.154888 + 0.987932i \(0.549502\pi\)
\(492\) 8.64033 0.389536
\(493\) −1.84746 −0.0832052
\(494\) 3.31020 0.148933
\(495\) 0 0
\(496\) 19.1041 0.857798
\(497\) 5.71638 0.256415
\(498\) −10.4248 −0.467148
\(499\) −28.2774 −1.26587 −0.632936 0.774204i \(-0.718150\pi\)
−0.632936 + 0.774204i \(0.718150\pi\)
\(500\) 0 0
\(501\) 4.98615 0.222765
\(502\) −2.97967 −0.132989
\(503\) 0.0217862 0.000971397 0 0.000485698 1.00000i \(-0.499845\pi\)
0.000485698 1.00000i \(0.499845\pi\)
\(504\) −9.65869 −0.430232
\(505\) 0 0
\(506\) −2.72240 −0.121025
\(507\) −4.46478 −0.198288
\(508\) 6.41321 0.284540
\(509\) 12.8569 0.569873 0.284936 0.958546i \(-0.408028\pi\)
0.284936 + 0.958546i \(0.408028\pi\)
\(510\) 0 0
\(511\) 19.5530 0.864975
\(512\) 18.5788 0.821077
\(513\) 5.32875 0.235270
\(514\) 11.4509 0.505077
\(515\) 0 0
\(516\) 3.12650 0.137637
\(517\) 3.07500 0.135238
\(518\) 6.36852 0.279817
\(519\) −9.71629 −0.426498
\(520\) 0 0
\(521\) 35.4800 1.55441 0.777203 0.629250i \(-0.216638\pi\)
0.777203 + 0.629250i \(0.216638\pi\)
\(522\) −8.89486 −0.389317
\(523\) 31.9759 1.39821 0.699104 0.715020i \(-0.253583\pi\)
0.699104 + 0.715020i \(0.253583\pi\)
\(524\) 8.15091 0.356074
\(525\) 0 0
\(526\) −25.3524 −1.10542
\(527\) −4.19077 −0.182553
\(528\) −2.03345 −0.0884946
\(529\) −16.8886 −0.734286
\(530\) 0 0
\(531\) 10.5322 0.457058
\(532\) 1.43055 0.0620223
\(533\) −29.2935 −1.26884
\(534\) 5.18397 0.224333
\(535\) 0 0
\(536\) −30.2877 −1.30823
\(537\) 5.20612 0.224661
\(538\) 6.58111 0.283732
\(539\) −3.69820 −0.159293
\(540\) 0 0
\(541\) 19.1990 0.825432 0.412716 0.910860i \(-0.364580\pi\)
0.412716 + 0.910860i \(0.364580\pi\)
\(542\) 33.9146 1.45676
\(543\) −3.87055 −0.166101
\(544\) −1.64398 −0.0704849
\(545\) 0 0
\(546\) −6.77383 −0.289893
\(547\) −19.1493 −0.818764 −0.409382 0.912363i \(-0.634256\pi\)
−0.409382 + 0.912363i \(0.634256\pi\)
\(548\) −0.174854 −0.00746940
\(549\) −22.9855 −0.980996
\(550\) 0 0
\(551\) 4.66419 0.198701
\(552\) 8.54548 0.363720
\(553\) 4.52078 0.192243
\(554\) −15.4564 −0.656679
\(555\) 0 0
\(556\) −1.19697 −0.0507630
\(557\) 20.7708 0.880085 0.440043 0.897977i \(-0.354963\pi\)
0.440043 + 0.897977i \(0.354963\pi\)
\(558\) −20.1771 −0.854165
\(559\) −10.5999 −0.448326
\(560\) 0 0
\(561\) 0.446069 0.0188331
\(562\) 14.2737 0.602100
\(563\) −2.56588 −0.108139 −0.0540694 0.998537i \(-0.517219\pi\)
−0.0540694 + 0.998537i \(0.517219\pi\)
\(564\) −2.72633 −0.114799
\(565\) 0 0
\(566\) 27.8668 1.17133
\(567\) −1.46432 −0.0614958
\(568\) 9.65621 0.405166
\(569\) 32.6425 1.36844 0.684221 0.729274i \(-0.260142\pi\)
0.684221 + 0.729274i \(0.260142\pi\)
\(570\) 0 0
\(571\) 26.8048 1.12175 0.560873 0.827902i \(-0.310465\pi\)
0.560873 + 0.827902i \(0.310465\pi\)
\(572\) −2.36648 −0.0989476
\(573\) 6.69916 0.279861
\(574\) 19.5008 0.813948
\(575\) 0 0
\(576\) −14.1689 −0.590373
\(577\) 35.1268 1.46235 0.731174 0.682191i \(-0.238973\pi\)
0.731174 + 0.682191i \(0.238973\pi\)
\(578\) 18.5482 0.771505
\(579\) 7.12959 0.296295
\(580\) 0 0
\(581\) 15.2742 0.633682
\(582\) 7.02535 0.291210
\(583\) −1.32628 −0.0549289
\(584\) 33.0293 1.36676
\(585\) 0 0
\(586\) 25.2638 1.04364
\(587\) 23.9743 0.989523 0.494762 0.869029i \(-0.335255\pi\)
0.494762 + 0.869029i \(0.335255\pi\)
\(588\) 3.27887 0.135218
\(589\) 10.5803 0.435952
\(590\) 0 0
\(591\) 12.3001 0.505958
\(592\) 5.74662 0.236185
\(593\) −2.13888 −0.0878333 −0.0439166 0.999035i \(-0.513984\pi\)
−0.0439166 + 0.999035i \(0.513984\pi\)
\(594\) 5.86821 0.240776
\(595\) 0 0
\(596\) −10.5659 −0.432796
\(597\) −19.1574 −0.784059
\(598\) −8.18325 −0.334638
\(599\) 34.6600 1.41617 0.708084 0.706128i \(-0.249560\pi\)
0.708084 + 0.706128i \(0.249560\pi\)
\(600\) 0 0
\(601\) −40.8041 −1.66443 −0.832216 0.554451i \(-0.812928\pi\)
−0.832216 + 0.554451i \(0.812928\pi\)
\(602\) 7.05637 0.287596
\(603\) 17.0879 0.695871
\(604\) 1.39537 0.0567770
\(605\) 0 0
\(606\) −10.1346 −0.411691
\(607\) −35.9560 −1.45941 −0.729704 0.683763i \(-0.760342\pi\)
−0.729704 + 0.683763i \(0.760342\pi\)
\(608\) 4.15048 0.168324
\(609\) −9.54455 −0.386765
\(610\) 0 0
\(611\) 9.24314 0.373937
\(612\) 0.540019 0.0218290
\(613\) −37.5253 −1.51563 −0.757816 0.652468i \(-0.773734\pi\)
−0.757816 + 0.652468i \(0.773734\pi\)
\(614\) 12.1361 0.489774
\(615\) 0 0
\(616\) 5.57745 0.224722
\(617\) −10.0204 −0.403404 −0.201702 0.979447i \(-0.564647\pi\)
−0.201702 + 0.979447i \(0.564647\pi\)
\(618\) −6.34633 −0.255287
\(619\) −29.6702 −1.19255 −0.596274 0.802781i \(-0.703353\pi\)
−0.596274 + 0.802781i \(0.703353\pi\)
\(620\) 0 0
\(621\) −13.1734 −0.528628
\(622\) −15.4764 −0.620549
\(623\) −7.59544 −0.304305
\(624\) −6.11235 −0.244690
\(625\) 0 0
\(626\) −16.5511 −0.661513
\(627\) −1.12617 −0.0449749
\(628\) 13.8563 0.552927
\(629\) −1.26061 −0.0502638
\(630\) 0 0
\(631\) 18.7254 0.745447 0.372723 0.927943i \(-0.378424\pi\)
0.372723 + 0.927943i \(0.378424\pi\)
\(632\) 7.63658 0.303767
\(633\) 5.21164 0.207144
\(634\) −29.4168 −1.16829
\(635\) 0 0
\(636\) 1.17590 0.0466273
\(637\) −11.1164 −0.440449
\(638\) 5.13637 0.203351
\(639\) −5.44789 −0.215515
\(640\) 0 0
\(641\) −25.4242 −1.00420 −0.502098 0.864811i \(-0.667438\pi\)
−0.502098 + 0.864811i \(0.667438\pi\)
\(642\) 13.7176 0.541391
\(643\) −17.8870 −0.705395 −0.352697 0.935737i \(-0.614735\pi\)
−0.352697 + 0.935737i \(0.614735\pi\)
\(644\) −3.53651 −0.139358
\(645\) 0 0
\(646\) 0.436192 0.0171618
\(647\) 7.30694 0.287265 0.143633 0.989631i \(-0.454122\pi\)
0.143633 + 0.989631i \(0.454122\pi\)
\(648\) −2.47356 −0.0971708
\(649\) −6.08186 −0.238734
\(650\) 0 0
\(651\) −21.6509 −0.848565
\(652\) 10.8316 0.424199
\(653\) −4.36571 −0.170843 −0.0854217 0.996345i \(-0.527224\pi\)
−0.0854217 + 0.996345i \(0.527224\pi\)
\(654\) −2.20089 −0.0860615
\(655\) 0 0
\(656\) 17.5965 0.687028
\(657\) −18.6346 −0.727007
\(658\) −6.15319 −0.239876
\(659\) −41.6526 −1.62255 −0.811277 0.584662i \(-0.801227\pi\)
−0.811277 + 0.584662i \(0.801227\pi\)
\(660\) 0 0
\(661\) 5.30624 0.206389 0.103194 0.994661i \(-0.467094\pi\)
0.103194 + 0.994661i \(0.467094\pi\)
\(662\) −20.1598 −0.783533
\(663\) 1.34084 0.0520739
\(664\) 25.8015 1.00129
\(665\) 0 0
\(666\) −6.06940 −0.235184
\(667\) −11.5305 −0.446462
\(668\) −3.48570 −0.134866
\(669\) 7.79424 0.301343
\(670\) 0 0
\(671\) 13.2731 0.512401
\(672\) −8.49332 −0.327637
\(673\) −30.5025 −1.17578 −0.587892 0.808940i \(-0.700042\pi\)
−0.587892 + 0.808940i \(0.700042\pi\)
\(674\) 3.91235 0.150698
\(675\) 0 0
\(676\) 3.12122 0.120047
\(677\) −30.1893 −1.16027 −0.580134 0.814521i \(-0.697000\pi\)
−0.580134 + 0.814521i \(0.697000\pi\)
\(678\) 21.1256 0.811323
\(679\) −10.2934 −0.395024
\(680\) 0 0
\(681\) −23.6253 −0.905322
\(682\) 11.6514 0.446154
\(683\) −20.2522 −0.774929 −0.387464 0.921885i \(-0.626649\pi\)
−0.387464 + 0.921885i \(0.626649\pi\)
\(684\) −1.36336 −0.0521294
\(685\) 0 0
\(686\) 21.4075 0.817343
\(687\) −4.52624 −0.172687
\(688\) 6.36730 0.242751
\(689\) −3.98667 −0.151880
\(690\) 0 0
\(691\) −5.43936 −0.206923 −0.103462 0.994633i \(-0.532992\pi\)
−0.103462 + 0.994633i \(0.532992\pi\)
\(692\) 6.79243 0.258209
\(693\) −3.14672 −0.119534
\(694\) −15.3384 −0.582238
\(695\) 0 0
\(696\) −16.1228 −0.611135
\(697\) −3.86007 −0.146210
\(698\) 3.23945 0.122615
\(699\) −7.79660 −0.294895
\(700\) 0 0
\(701\) −19.7193 −0.744789 −0.372394 0.928075i \(-0.621463\pi\)
−0.372394 + 0.928075i \(0.621463\pi\)
\(702\) 17.6392 0.665750
\(703\) 3.18261 0.120034
\(704\) 8.18192 0.308368
\(705\) 0 0
\(706\) −3.68819 −0.138807
\(707\) 14.8490 0.558455
\(708\) 5.39225 0.202653
\(709\) 18.2446 0.685191 0.342595 0.939483i \(-0.388694\pi\)
0.342595 + 0.939483i \(0.388694\pi\)
\(710\) 0 0
\(711\) −4.30845 −0.161579
\(712\) −12.8304 −0.480838
\(713\) −26.1558 −0.979541
\(714\) −0.892601 −0.0334048
\(715\) 0 0
\(716\) −3.63947 −0.136013
\(717\) 22.1785 0.828271
\(718\) 19.0568 0.711195
\(719\) 36.8064 1.37265 0.686323 0.727296i \(-0.259223\pi\)
0.686323 + 0.727296i \(0.259223\pi\)
\(720\) 0 0
\(721\) 9.29851 0.346295
\(722\) −1.10124 −0.0409838
\(723\) 0.158289 0.00588684
\(724\) 2.70581 0.100561
\(725\) 0 0
\(726\) −1.24018 −0.0460274
\(727\) −41.1500 −1.52617 −0.763085 0.646299i \(-0.776316\pi\)
−0.763085 + 0.646299i \(0.776316\pi\)
\(728\) 16.7653 0.621362
\(729\) 19.3988 0.718474
\(730\) 0 0
\(731\) −1.39677 −0.0516612
\(732\) −11.7680 −0.434960
\(733\) 41.1579 1.52020 0.760100 0.649806i \(-0.225150\pi\)
0.760100 + 0.649806i \(0.225150\pi\)
\(734\) 3.13012 0.115535
\(735\) 0 0
\(736\) −10.2605 −0.378208
\(737\) −9.86746 −0.363472
\(738\) −18.5849 −0.684119
\(739\) −29.5872 −1.08838 −0.544192 0.838961i \(-0.683164\pi\)
−0.544192 + 0.838961i \(0.683164\pi\)
\(740\) 0 0
\(741\) −3.38516 −0.124357
\(742\) 2.65394 0.0974291
\(743\) −15.0223 −0.551113 −0.275557 0.961285i \(-0.588862\pi\)
−0.275557 + 0.961285i \(0.588862\pi\)
\(744\) −36.5731 −1.34083
\(745\) 0 0
\(746\) 34.4963 1.26300
\(747\) −14.5568 −0.532607
\(748\) −0.311836 −0.0114019
\(749\) −20.0987 −0.734392
\(750\) 0 0
\(751\) 38.6495 1.41034 0.705171 0.709038i \(-0.250870\pi\)
0.705171 + 0.709038i \(0.250870\pi\)
\(752\) −5.55232 −0.202472
\(753\) 3.04714 0.111044
\(754\) 15.4394 0.562271
\(755\) 0 0
\(756\) 7.62305 0.277248
\(757\) −17.8737 −0.649631 −0.324815 0.945777i \(-0.605302\pi\)
−0.324815 + 0.945777i \(0.605302\pi\)
\(758\) −16.9516 −0.615709
\(759\) 2.78404 0.101054
\(760\) 0 0
\(761\) −39.7350 −1.44039 −0.720195 0.693771i \(-0.755948\pi\)
−0.720195 + 0.693771i \(0.755948\pi\)
\(762\) 10.1026 0.365977
\(763\) 3.22469 0.116742
\(764\) −4.68322 −0.169433
\(765\) 0 0
\(766\) 20.7467 0.749610
\(767\) −18.2815 −0.660105
\(768\) −17.5489 −0.633240
\(769\) −27.3872 −0.987609 −0.493804 0.869573i \(-0.664394\pi\)
−0.493804 + 0.869573i \(0.664394\pi\)
\(770\) 0 0
\(771\) −11.7102 −0.421731
\(772\) −4.98412 −0.179382
\(773\) 35.8608 1.28982 0.644911 0.764258i \(-0.276894\pi\)
0.644911 + 0.764258i \(0.276894\pi\)
\(774\) −6.72494 −0.241723
\(775\) 0 0
\(776\) −17.3878 −0.624185
\(777\) −6.51272 −0.233642
\(778\) 34.1206 1.22328
\(779\) 9.74534 0.349163
\(780\) 0 0
\(781\) 3.14591 0.112569
\(782\) −1.07832 −0.0385608
\(783\) 24.8543 0.888220
\(784\) 6.67760 0.238486
\(785\) 0 0
\(786\) 12.8399 0.457984
\(787\) 10.1175 0.360649 0.180324 0.983607i \(-0.442285\pi\)
0.180324 + 0.983607i \(0.442285\pi\)
\(788\) −8.59870 −0.306316
\(789\) 25.9265 0.923008
\(790\) 0 0
\(791\) −30.9527 −1.10055
\(792\) −5.31549 −0.188878
\(793\) 39.8975 1.41680
\(794\) 10.7247 0.380606
\(795\) 0 0
\(796\) 13.3925 0.474683
\(797\) 41.7207 1.47782 0.738911 0.673803i \(-0.235340\pi\)
0.738911 + 0.673803i \(0.235340\pi\)
\(798\) 2.25351 0.0797735
\(799\) 1.21799 0.0430893
\(800\) 0 0
\(801\) 7.23870 0.255767
\(802\) 18.5601 0.655379
\(803\) 10.7607 0.379735
\(804\) 8.74860 0.308539
\(805\) 0 0
\(806\) 35.0228 1.23363
\(807\) −6.73013 −0.236912
\(808\) 25.0832 0.882425
\(809\) 48.0804 1.69042 0.845209 0.534436i \(-0.179476\pi\)
0.845209 + 0.534436i \(0.179476\pi\)
\(810\) 0 0
\(811\) −33.1054 −1.16249 −0.581243 0.813730i \(-0.697434\pi\)
−0.581243 + 0.813730i \(0.697434\pi\)
\(812\) 6.67237 0.234154
\(813\) −34.6825 −1.21637
\(814\) 3.50480 0.122843
\(815\) 0 0
\(816\) −0.805437 −0.0281959
\(817\) 3.52635 0.123371
\(818\) −15.9644 −0.558183
\(819\) −9.45871 −0.330514
\(820\) 0 0
\(821\) 36.5920 1.27707 0.638535 0.769593i \(-0.279541\pi\)
0.638535 + 0.769593i \(0.279541\pi\)
\(822\) −0.275443 −0.00960718
\(823\) 12.9128 0.450110 0.225055 0.974346i \(-0.427744\pi\)
0.225055 + 0.974346i \(0.427744\pi\)
\(824\) 15.7072 0.547187
\(825\) 0 0
\(826\) 12.1700 0.423450
\(827\) 14.2210 0.494512 0.247256 0.968950i \(-0.420471\pi\)
0.247256 + 0.968950i \(0.420471\pi\)
\(828\) 3.37041 0.117130
\(829\) −49.9790 −1.73584 −0.867922 0.496701i \(-0.834545\pi\)
−0.867922 + 0.496701i \(0.834545\pi\)
\(830\) 0 0
\(831\) 15.8064 0.548317
\(832\) 24.5940 0.852645
\(833\) −1.46484 −0.0507535
\(834\) −1.88556 −0.0652916
\(835\) 0 0
\(836\) 0.787279 0.0272286
\(837\) 56.3795 1.94876
\(838\) −25.9431 −0.896191
\(839\) −35.3809 −1.22149 −0.610743 0.791829i \(-0.709129\pi\)
−0.610743 + 0.791829i \(0.709129\pi\)
\(840\) 0 0
\(841\) −7.24533 −0.249839
\(842\) −3.48406 −0.120069
\(843\) −14.5969 −0.502744
\(844\) −3.64333 −0.125409
\(845\) 0 0
\(846\) 5.86419 0.201615
\(847\) 1.81708 0.0624358
\(848\) 2.39478 0.0822369
\(849\) −28.4978 −0.978042
\(850\) 0 0
\(851\) −7.86781 −0.269705
\(852\) −2.78920 −0.0955563
\(853\) −20.9094 −0.715924 −0.357962 0.933736i \(-0.616528\pi\)
−0.357962 + 0.933736i \(0.616528\pi\)
\(854\) −26.5599 −0.908862
\(855\) 0 0
\(856\) −33.9512 −1.16043
\(857\) 21.5067 0.734654 0.367327 0.930092i \(-0.380273\pi\)
0.367327 + 0.930092i \(0.380273\pi\)
\(858\) −3.72786 −0.127267
\(859\) 47.9041 1.63447 0.817233 0.576307i \(-0.195507\pi\)
0.817233 + 0.576307i \(0.195507\pi\)
\(860\) 0 0
\(861\) −19.9424 −0.679633
\(862\) 24.6510 0.839616
\(863\) 46.5232 1.58367 0.791834 0.610737i \(-0.209127\pi\)
0.791834 + 0.610737i \(0.209127\pi\)
\(864\) 22.1168 0.752430
\(865\) 0 0
\(866\) −36.3865 −1.23646
\(867\) −18.9682 −0.644195
\(868\) 15.1356 0.513736
\(869\) 2.48793 0.0843973
\(870\) 0 0
\(871\) −29.6606 −1.00501
\(872\) 5.44721 0.184466
\(873\) 9.80993 0.332016
\(874\) 2.72240 0.0920865
\(875\) 0 0
\(876\) −9.54052 −0.322344
\(877\) −9.27067 −0.313048 −0.156524 0.987674i \(-0.550029\pi\)
−0.156524 + 0.987674i \(0.550029\pi\)
\(878\) 14.8868 0.502406
\(879\) −25.8358 −0.871421
\(880\) 0 0
\(881\) −16.1306 −0.543454 −0.271727 0.962374i \(-0.587595\pi\)
−0.271727 + 0.962374i \(0.587595\pi\)
\(882\) −7.05267 −0.237476
\(883\) 0.0216069 0.000727130 0 0.000363565 1.00000i \(-0.499884\pi\)
0.000363565 1.00000i \(0.499884\pi\)
\(884\) −0.937348 −0.0315264
\(885\) 0 0
\(886\) 28.8929 0.970674
\(887\) 42.0739 1.41270 0.706352 0.707860i \(-0.250339\pi\)
0.706352 + 0.707860i \(0.250339\pi\)
\(888\) −11.0014 −0.369183
\(889\) −14.8020 −0.496444
\(890\) 0 0
\(891\) −0.805865 −0.0269975
\(892\) −5.44877 −0.182438
\(893\) −3.07500 −0.102901
\(894\) −16.6442 −0.556665
\(895\) 0 0
\(896\) −1.28881 −0.0430560
\(897\) 8.36855 0.279418
\(898\) 41.7103 1.39189
\(899\) 49.3483 1.64586
\(900\) 0 0
\(901\) −0.525331 −0.0175013
\(902\) 10.7319 0.357334
\(903\) −7.21614 −0.240138
\(904\) −52.2859 −1.73900
\(905\) 0 0
\(906\) 2.19810 0.0730269
\(907\) 4.10956 0.136456 0.0682279 0.997670i \(-0.478265\pi\)
0.0682279 + 0.997670i \(0.478265\pi\)
\(908\) 16.5159 0.548098
\(909\) −14.1516 −0.469378
\(910\) 0 0
\(911\) 10.7860 0.357356 0.178678 0.983908i \(-0.442818\pi\)
0.178678 + 0.983908i \(0.442818\pi\)
\(912\) 2.03345 0.0673343
\(913\) 8.40591 0.278195
\(914\) −8.94090 −0.295739
\(915\) 0 0
\(916\) 3.16418 0.104548
\(917\) −18.8127 −0.621252
\(918\) 2.32436 0.0767153
\(919\) −32.3453 −1.06697 −0.533486 0.845809i \(-0.679118\pi\)
−0.533486 + 0.845809i \(0.679118\pi\)
\(920\) 0 0
\(921\) −12.4109 −0.408954
\(922\) −3.30273 −0.108770
\(923\) 9.45628 0.311257
\(924\) −1.61105 −0.0529996
\(925\) 0 0
\(926\) 22.0322 0.724023
\(927\) −8.86177 −0.291059
\(928\) 19.3586 0.635478
\(929\) −41.8124 −1.37182 −0.685910 0.727686i \(-0.740596\pi\)
−0.685910 + 0.727686i \(0.740596\pi\)
\(930\) 0 0
\(931\) 3.69820 0.121204
\(932\) 5.45042 0.178534
\(933\) 15.8269 0.518149
\(934\) 2.28777 0.0748582
\(935\) 0 0
\(936\) −15.9778 −0.522252
\(937\) 18.0548 0.589825 0.294913 0.955524i \(-0.404709\pi\)
0.294913 + 0.955524i \(0.404709\pi\)
\(938\) 19.7452 0.644702
\(939\) 16.9258 0.552353
\(940\) 0 0
\(941\) 19.9391 0.649997 0.324999 0.945714i \(-0.394636\pi\)
0.324999 + 0.945714i \(0.394636\pi\)
\(942\) 21.8275 0.711177
\(943\) −24.0917 −0.784535
\(944\) 10.9816 0.357421
\(945\) 0 0
\(946\) 3.88335 0.126259
\(947\) −7.78827 −0.253085 −0.126542 0.991961i \(-0.540388\pi\)
−0.126542 + 0.991961i \(0.540388\pi\)
\(948\) −2.20583 −0.0716419
\(949\) 32.3455 1.04998
\(950\) 0 0
\(951\) 30.0829 0.975504
\(952\) 2.20919 0.0716004
\(953\) −47.5841 −1.54140 −0.770700 0.637199i \(-0.780093\pi\)
−0.770700 + 0.637199i \(0.780093\pi\)
\(954\) −2.52929 −0.0818887
\(955\) 0 0
\(956\) −15.5045 −0.501450
\(957\) −5.25268 −0.169795
\(958\) −43.1322 −1.39354
\(959\) 0.403573 0.0130321
\(960\) 0 0
\(961\) 80.9419 2.61103
\(962\) 10.5351 0.339664
\(963\) 19.1547 0.617253
\(964\) −0.110656 −0.00356400
\(965\) 0 0
\(966\) −5.57097 −0.179243
\(967\) −52.8234 −1.69869 −0.849343 0.527841i \(-0.823002\pi\)
−0.849343 + 0.527841i \(0.823002\pi\)
\(968\) 3.06945 0.0986559
\(969\) −0.446069 −0.0143298
\(970\) 0 0
\(971\) 13.9120 0.446456 0.223228 0.974766i \(-0.428341\pi\)
0.223228 + 0.974766i \(0.428341\pi\)
\(972\) −11.8711 −0.380767
\(973\) 2.76268 0.0885675
\(974\) −45.0060 −1.44209
\(975\) 0 0
\(976\) −23.9663 −0.767142
\(977\) 6.97874 0.223270 0.111635 0.993749i \(-0.464391\pi\)
0.111635 + 0.993749i \(0.464391\pi\)
\(978\) 17.0628 0.545607
\(979\) −4.18002 −0.133594
\(980\) 0 0
\(981\) −3.07323 −0.0981207
\(982\) 7.55910 0.241220
\(983\) 28.5372 0.910197 0.455098 0.890441i \(-0.349604\pi\)
0.455098 + 0.890441i \(0.349604\pi\)
\(984\) −33.6870 −1.07390
\(985\) 0 0
\(986\) 2.03448 0.0647912
\(987\) 6.29252 0.200293
\(988\) 2.36648 0.0752878
\(989\) −8.71760 −0.277204
\(990\) 0 0
\(991\) 20.5503 0.652802 0.326401 0.945231i \(-0.394164\pi\)
0.326401 + 0.945231i \(0.394164\pi\)
\(992\) 43.9131 1.39424
\(993\) 20.6163 0.654238
\(994\) −6.29508 −0.199668
\(995\) 0 0
\(996\) −7.45277 −0.236150
\(997\) 17.1671 0.543688 0.271844 0.962341i \(-0.412366\pi\)
0.271844 + 0.962341i \(0.412366\pi\)
\(998\) 31.1401 0.985724
\(999\) 16.9593 0.536569
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.s.1.7 15
5.4 even 2 5225.2.a.x.1.9 yes 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5225.2.a.s.1.7 15 1.1 even 1 trivial
5225.2.a.x.1.9 yes 15 5.4 even 2