Properties

Label 5225.2.a.l.1.6
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.497517\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51246 q^{2} -0.895533 q^{3} +4.31247 q^{4} -2.24999 q^{6} +0.393051 q^{7} +5.80998 q^{8} -2.19802 q^{9} +O(q^{10})\) \(q+2.51246 q^{2} -0.895533 q^{3} +4.31247 q^{4} -2.24999 q^{6} +0.393051 q^{7} +5.80998 q^{8} -2.19802 q^{9} -1.00000 q^{11} -3.86196 q^{12} -2.40800 q^{13} +0.987526 q^{14} +5.97243 q^{16} -6.11195 q^{17} -5.52244 q^{18} -1.00000 q^{19} -0.351990 q^{21} -2.51246 q^{22} +5.08108 q^{23} -5.20303 q^{24} -6.05000 q^{26} +4.65500 q^{27} +1.69502 q^{28} -2.85297 q^{29} -5.10948 q^{31} +3.38554 q^{32} +0.895533 q^{33} -15.3560 q^{34} -9.47889 q^{36} -10.9804 q^{37} -2.51246 q^{38} +2.15644 q^{39} -8.92443 q^{41} -0.884362 q^{42} +0.585538 q^{43} -4.31247 q^{44} +12.7660 q^{46} +10.7199 q^{47} -5.34851 q^{48} -6.84551 q^{49} +5.47346 q^{51} -10.3844 q^{52} +3.62189 q^{53} +11.6955 q^{54} +2.28362 q^{56} +0.895533 q^{57} -7.16798 q^{58} -4.71198 q^{59} +15.3869 q^{61} -12.8374 q^{62} -0.863934 q^{63} -3.43882 q^{64} +2.24999 q^{66} -8.26896 q^{67} -26.3576 q^{68} -4.55028 q^{69} -1.66748 q^{71} -12.7705 q^{72} -1.82246 q^{73} -27.5879 q^{74} -4.31247 q^{76} -0.393051 q^{77} +5.41798 q^{78} -8.29828 q^{79} +2.42535 q^{81} -22.4223 q^{82} +7.26577 q^{83} -1.51795 q^{84} +1.47114 q^{86} +2.55493 q^{87} -5.80998 q^{88} -15.1675 q^{89} -0.946465 q^{91} +21.9120 q^{92} +4.57571 q^{93} +26.9335 q^{94} -3.03187 q^{96} +15.0484 q^{97} -17.1991 q^{98} +2.19802 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - 5 q^{7} + 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - 5 q^{7} + 12 q^{8} + q^{9} - 6 q^{11} - q^{12} + 5 q^{13} - 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{18} - 6 q^{19} - 21 q^{21} - 2 q^{22} - 4 q^{23} - q^{24} - 14 q^{26} + 16 q^{27} - 10 q^{28} - 9 q^{29} - 21 q^{31} + q^{32} - q^{33} - 28 q^{36} + 3 q^{37} - 2 q^{38} + 20 q^{39} - 23 q^{41} - q^{42} - 7 q^{43} - 4 q^{44} - 12 q^{46} + 18 q^{47} - 3 q^{49} - 16 q^{51} - 13 q^{52} + 17 q^{53} + q^{54} - 2 q^{56} - q^{57} - 23 q^{58} - 29 q^{59} + 17 q^{61} - 2 q^{62} - 6 q^{63} - 18 q^{64} - 8 q^{67} + q^{68} - 38 q^{69} - 12 q^{71} - 13 q^{72} - 2 q^{73} - 37 q^{74} - 4 q^{76} + 5 q^{77} - q^{78} + 3 q^{79} - 2 q^{81} - 24 q^{82} + 11 q^{83} - 3 q^{84} - 12 q^{86} + 12 q^{87} - 12 q^{88} - 22 q^{89} - 18 q^{91} + 15 q^{92} - 18 q^{93} + 22 q^{94} - 17 q^{96} + 2 q^{97} + q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51246 1.77658 0.888290 0.459284i \(-0.151894\pi\)
0.888290 + 0.459284i \(0.151894\pi\)
\(3\) −0.895533 −0.517036 −0.258518 0.966006i \(-0.583234\pi\)
−0.258518 + 0.966006i \(0.583234\pi\)
\(4\) 4.31247 2.15623
\(5\) 0 0
\(6\) −2.24999 −0.918556
\(7\) 0.393051 0.148559 0.0742796 0.997237i \(-0.476334\pi\)
0.0742796 + 0.997237i \(0.476334\pi\)
\(8\) 5.80998 2.05414
\(9\) −2.19802 −0.732673
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) −3.86196 −1.11485
\(13\) −2.40800 −0.667858 −0.333929 0.942598i \(-0.608375\pi\)
−0.333929 + 0.942598i \(0.608375\pi\)
\(14\) 0.987526 0.263927
\(15\) 0 0
\(16\) 5.97243 1.49311
\(17\) −6.11195 −1.48237 −0.741183 0.671303i \(-0.765735\pi\)
−0.741183 + 0.671303i \(0.765735\pi\)
\(18\) −5.52244 −1.30165
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −0.351990 −0.0768106
\(22\) −2.51246 −0.535659
\(23\) 5.08108 1.05948 0.529739 0.848161i \(-0.322290\pi\)
0.529739 + 0.848161i \(0.322290\pi\)
\(24\) −5.20303 −1.06206
\(25\) 0 0
\(26\) −6.05000 −1.18650
\(27\) 4.65500 0.895855
\(28\) 1.69502 0.320328
\(29\) −2.85297 −0.529783 −0.264892 0.964278i \(-0.585336\pi\)
−0.264892 + 0.964278i \(0.585336\pi\)
\(30\) 0 0
\(31\) −5.10948 −0.917690 −0.458845 0.888516i \(-0.651737\pi\)
−0.458845 + 0.888516i \(0.651737\pi\)
\(32\) 3.38554 0.598485
\(33\) 0.895533 0.155892
\(34\) −15.3560 −2.63354
\(35\) 0 0
\(36\) −9.47889 −1.57981
\(37\) −10.9804 −1.80517 −0.902586 0.430509i \(-0.858334\pi\)
−0.902586 + 0.430509i \(0.858334\pi\)
\(38\) −2.51246 −0.407575
\(39\) 2.15644 0.345307
\(40\) 0 0
\(41\) −8.92443 −1.39376 −0.696881 0.717187i \(-0.745429\pi\)
−0.696881 + 0.717187i \(0.745429\pi\)
\(42\) −0.884362 −0.136460
\(43\) 0.585538 0.0892936 0.0446468 0.999003i \(-0.485784\pi\)
0.0446468 + 0.999003i \(0.485784\pi\)
\(44\) −4.31247 −0.650129
\(45\) 0 0
\(46\) 12.7660 1.88225
\(47\) 10.7199 1.56366 0.781832 0.623489i \(-0.214285\pi\)
0.781832 + 0.623489i \(0.214285\pi\)
\(48\) −5.34851 −0.771991
\(49\) −6.84551 −0.977930
\(50\) 0 0
\(51\) 5.47346 0.766437
\(52\) −10.3844 −1.44006
\(53\) 3.62189 0.497505 0.248753 0.968567i \(-0.419979\pi\)
0.248753 + 0.968567i \(0.419979\pi\)
\(54\) 11.6955 1.59156
\(55\) 0 0
\(56\) 2.28362 0.305161
\(57\) 0.895533 0.118616
\(58\) −7.16798 −0.941202
\(59\) −4.71198 −0.613448 −0.306724 0.951798i \(-0.599233\pi\)
−0.306724 + 0.951798i \(0.599233\pi\)
\(60\) 0 0
\(61\) 15.3869 1.97009 0.985043 0.172307i \(-0.0551220\pi\)
0.985043 + 0.172307i \(0.0551220\pi\)
\(62\) −12.8374 −1.63035
\(63\) −0.863934 −0.108845
\(64\) −3.43882 −0.429852
\(65\) 0 0
\(66\) 2.24999 0.276955
\(67\) −8.26896 −1.01021 −0.505107 0.863057i \(-0.668547\pi\)
−0.505107 + 0.863057i \(0.668547\pi\)
\(68\) −26.3576 −3.19633
\(69\) −4.55028 −0.547789
\(70\) 0 0
\(71\) −1.66748 −0.197893 −0.0989464 0.995093i \(-0.531547\pi\)
−0.0989464 + 0.995093i \(0.531547\pi\)
\(72\) −12.7705 −1.50501
\(73\) −1.82246 −0.213303 −0.106651 0.994296i \(-0.534013\pi\)
−0.106651 + 0.994296i \(0.534013\pi\)
\(74\) −27.5879 −3.20703
\(75\) 0 0
\(76\) −4.31247 −0.494674
\(77\) −0.393051 −0.0447923
\(78\) 5.41798 0.613465
\(79\) −8.29828 −0.933630 −0.466815 0.884355i \(-0.654599\pi\)
−0.466815 + 0.884355i \(0.654599\pi\)
\(80\) 0 0
\(81\) 2.42535 0.269483
\(82\) −22.4223 −2.47613
\(83\) 7.26577 0.797522 0.398761 0.917055i \(-0.369440\pi\)
0.398761 + 0.917055i \(0.369440\pi\)
\(84\) −1.51795 −0.165621
\(85\) 0 0
\(86\) 1.47114 0.158637
\(87\) 2.55493 0.273917
\(88\) −5.80998 −0.619346
\(89\) −15.1675 −1.60775 −0.803875 0.594798i \(-0.797232\pi\)
−0.803875 + 0.594798i \(0.797232\pi\)
\(90\) 0 0
\(91\) −0.946465 −0.0992165
\(92\) 21.9120 2.28448
\(93\) 4.57571 0.474479
\(94\) 26.9335 2.77797
\(95\) 0 0
\(96\) −3.03187 −0.309438
\(97\) 15.0484 1.52794 0.763969 0.645253i \(-0.223248\pi\)
0.763969 + 0.645253i \(0.223248\pi\)
\(98\) −17.1991 −1.73737
\(99\) 2.19802 0.220909
\(100\) 0 0
\(101\) 1.51854 0.151101 0.0755504 0.997142i \(-0.475929\pi\)
0.0755504 + 0.997142i \(0.475929\pi\)
\(102\) 13.7519 1.36164
\(103\) 12.8186 1.26305 0.631525 0.775356i \(-0.282429\pi\)
0.631525 + 0.775356i \(0.282429\pi\)
\(104\) −13.9904 −1.37187
\(105\) 0 0
\(106\) 9.09987 0.883858
\(107\) −0.382403 −0.0369683 −0.0184842 0.999829i \(-0.505884\pi\)
−0.0184842 + 0.999829i \(0.505884\pi\)
\(108\) 20.0745 1.93167
\(109\) −13.3758 −1.28117 −0.640586 0.767886i \(-0.721309\pi\)
−0.640586 + 0.767886i \(0.721309\pi\)
\(110\) 0 0
\(111\) 9.83335 0.933340
\(112\) 2.34747 0.221815
\(113\) 2.15943 0.203142 0.101571 0.994828i \(-0.467613\pi\)
0.101571 + 0.994828i \(0.467613\pi\)
\(114\) 2.24999 0.210731
\(115\) 0 0
\(116\) −12.3033 −1.14234
\(117\) 5.29282 0.489322
\(118\) −11.8387 −1.08984
\(119\) −2.40231 −0.220219
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 38.6589 3.50001
\(123\) 7.99213 0.720626
\(124\) −22.0345 −1.97875
\(125\) 0 0
\(126\) −2.17060 −0.193372
\(127\) −6.10615 −0.541833 −0.270917 0.962603i \(-0.587327\pi\)
−0.270917 + 0.962603i \(0.587327\pi\)
\(128\) −15.4110 −1.36215
\(129\) −0.524368 −0.0461681
\(130\) 0 0
\(131\) −5.85495 −0.511549 −0.255775 0.966736i \(-0.582330\pi\)
−0.255775 + 0.966736i \(0.582330\pi\)
\(132\) 3.86196 0.336140
\(133\) −0.393051 −0.0340818
\(134\) −20.7754 −1.79473
\(135\) 0 0
\(136\) −35.5103 −3.04499
\(137\) −19.7338 −1.68598 −0.842988 0.537933i \(-0.819205\pi\)
−0.842988 + 0.537933i \(0.819205\pi\)
\(138\) −11.4324 −0.973190
\(139\) 7.59903 0.644541 0.322271 0.946648i \(-0.395554\pi\)
0.322271 + 0.946648i \(0.395554\pi\)
\(140\) 0 0
\(141\) −9.60007 −0.808472
\(142\) −4.18947 −0.351572
\(143\) 2.40800 0.201367
\(144\) −13.1275 −1.09396
\(145\) 0 0
\(146\) −4.57886 −0.378949
\(147\) 6.13038 0.505626
\(148\) −47.3528 −3.89237
\(149\) −13.7580 −1.12710 −0.563551 0.826081i \(-0.690565\pi\)
−0.563551 + 0.826081i \(0.690565\pi\)
\(150\) 0 0
\(151\) −5.95309 −0.484456 −0.242228 0.970219i \(-0.577878\pi\)
−0.242228 + 0.970219i \(0.577878\pi\)
\(152\) −5.80998 −0.471252
\(153\) 13.4342 1.08609
\(154\) −0.987526 −0.0795771
\(155\) 0 0
\(156\) 9.29958 0.744562
\(157\) 16.5678 1.32226 0.661129 0.750272i \(-0.270078\pi\)
0.661129 + 0.750272i \(0.270078\pi\)
\(158\) −20.8491 −1.65867
\(159\) −3.24353 −0.257228
\(160\) 0 0
\(161\) 1.99712 0.157395
\(162\) 6.09360 0.478759
\(163\) 18.0594 1.41452 0.707261 0.706952i \(-0.249931\pi\)
0.707261 + 0.706952i \(0.249931\pi\)
\(164\) −38.4863 −3.00528
\(165\) 0 0
\(166\) 18.2550 1.41686
\(167\) 18.1669 1.40580 0.702900 0.711289i \(-0.251888\pi\)
0.702900 + 0.711289i \(0.251888\pi\)
\(168\) −2.04506 −0.157780
\(169\) −7.20156 −0.553966
\(170\) 0 0
\(171\) 2.19802 0.168087
\(172\) 2.52511 0.192538
\(173\) −15.3509 −1.16711 −0.583553 0.812075i \(-0.698338\pi\)
−0.583553 + 0.812075i \(0.698338\pi\)
\(174\) 6.41917 0.486636
\(175\) 0 0
\(176\) −5.97243 −0.450189
\(177\) 4.21974 0.317175
\(178\) −38.1077 −2.85629
\(179\) 2.98617 0.223197 0.111598 0.993753i \(-0.464403\pi\)
0.111598 + 0.993753i \(0.464403\pi\)
\(180\) 0 0
\(181\) −9.39129 −0.698049 −0.349025 0.937114i \(-0.613487\pi\)
−0.349025 + 0.937114i \(0.613487\pi\)
\(182\) −2.37796 −0.176266
\(183\) −13.7795 −1.01861
\(184\) 29.5210 2.17632
\(185\) 0 0
\(186\) 11.4963 0.842950
\(187\) 6.11195 0.446950
\(188\) 46.2294 3.37162
\(189\) 1.82965 0.133088
\(190\) 0 0
\(191\) 3.95452 0.286139 0.143069 0.989713i \(-0.454303\pi\)
0.143069 + 0.989713i \(0.454303\pi\)
\(192\) 3.07958 0.222249
\(193\) 21.3183 1.53453 0.767263 0.641332i \(-0.221618\pi\)
0.767263 + 0.641332i \(0.221618\pi\)
\(194\) 37.8086 2.71450
\(195\) 0 0
\(196\) −29.5210 −2.10865
\(197\) −9.09357 −0.647890 −0.323945 0.946076i \(-0.605009\pi\)
−0.323945 + 0.946076i \(0.605009\pi\)
\(198\) 5.52244 0.392463
\(199\) 15.4196 1.09306 0.546532 0.837438i \(-0.315948\pi\)
0.546532 + 0.837438i \(0.315948\pi\)
\(200\) 0 0
\(201\) 7.40513 0.522318
\(202\) 3.81528 0.268442
\(203\) −1.12136 −0.0787042
\(204\) 23.6041 1.65262
\(205\) 0 0
\(206\) 32.2061 2.24391
\(207\) −11.1683 −0.776251
\(208\) −14.3816 −0.997184
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −5.04618 −0.347394 −0.173697 0.984799i \(-0.555571\pi\)
−0.173697 + 0.984799i \(0.555571\pi\)
\(212\) 15.6193 1.07274
\(213\) 1.49328 0.102318
\(214\) −0.960774 −0.0656772
\(215\) 0 0
\(216\) 27.0455 1.84021
\(217\) −2.00829 −0.136331
\(218\) −33.6063 −2.27610
\(219\) 1.63207 0.110285
\(220\) 0 0
\(221\) 14.7176 0.990010
\(222\) 24.7059 1.65815
\(223\) −17.8194 −1.19327 −0.596637 0.802511i \(-0.703497\pi\)
−0.596637 + 0.802511i \(0.703497\pi\)
\(224\) 1.33069 0.0889105
\(225\) 0 0
\(226\) 5.42548 0.360898
\(227\) −4.39589 −0.291766 −0.145883 0.989302i \(-0.546602\pi\)
−0.145883 + 0.989302i \(0.546602\pi\)
\(228\) 3.86196 0.255764
\(229\) −9.42520 −0.622835 −0.311417 0.950273i \(-0.600804\pi\)
−0.311417 + 0.950273i \(0.600804\pi\)
\(230\) 0 0
\(231\) 0.351990 0.0231593
\(232\) −16.5757 −1.08825
\(233\) −29.1795 −1.91161 −0.955805 0.294001i \(-0.905013\pi\)
−0.955805 + 0.294001i \(0.905013\pi\)
\(234\) 13.2980 0.869318
\(235\) 0 0
\(236\) −20.3203 −1.32274
\(237\) 7.43139 0.482721
\(238\) −6.03571 −0.391237
\(239\) 29.3674 1.89962 0.949810 0.312827i \(-0.101276\pi\)
0.949810 + 0.312827i \(0.101276\pi\)
\(240\) 0 0
\(241\) 5.76217 0.371174 0.185587 0.982628i \(-0.440581\pi\)
0.185587 + 0.982628i \(0.440581\pi\)
\(242\) 2.51246 0.161507
\(243\) −16.1370 −1.03519
\(244\) 66.3554 4.24797
\(245\) 0 0
\(246\) 20.0799 1.28025
\(247\) 2.40800 0.153217
\(248\) −29.6860 −1.88506
\(249\) −6.50674 −0.412348
\(250\) 0 0
\(251\) 2.11320 0.133384 0.0666922 0.997774i \(-0.478755\pi\)
0.0666922 + 0.997774i \(0.478755\pi\)
\(252\) −3.72568 −0.234696
\(253\) −5.08108 −0.319445
\(254\) −15.3415 −0.962610
\(255\) 0 0
\(256\) −31.8419 −1.99012
\(257\) 2.36217 0.147348 0.0736740 0.997282i \(-0.476528\pi\)
0.0736740 + 0.997282i \(0.476528\pi\)
\(258\) −1.31746 −0.0820212
\(259\) −4.31587 −0.268175
\(260\) 0 0
\(261\) 6.27089 0.388158
\(262\) −14.7103 −0.908807
\(263\) 26.7079 1.64688 0.823440 0.567403i \(-0.192052\pi\)
0.823440 + 0.567403i \(0.192052\pi\)
\(264\) 5.20303 0.320225
\(265\) 0 0
\(266\) −0.987526 −0.0605491
\(267\) 13.5830 0.831265
\(268\) −35.6596 −2.17826
\(269\) 6.15301 0.375156 0.187578 0.982250i \(-0.439936\pi\)
0.187578 + 0.982250i \(0.439936\pi\)
\(270\) 0 0
\(271\) 27.0433 1.64276 0.821380 0.570381i \(-0.193204\pi\)
0.821380 + 0.570381i \(0.193204\pi\)
\(272\) −36.5032 −2.21333
\(273\) 0.847591 0.0512985
\(274\) −49.5805 −2.99527
\(275\) 0 0
\(276\) −19.6229 −1.18116
\(277\) 4.16147 0.250038 0.125019 0.992154i \(-0.460101\pi\)
0.125019 + 0.992154i \(0.460101\pi\)
\(278\) 19.0923 1.14508
\(279\) 11.2307 0.672367
\(280\) 0 0
\(281\) −5.46692 −0.326129 −0.163065 0.986615i \(-0.552138\pi\)
−0.163065 + 0.986615i \(0.552138\pi\)
\(282\) −24.1198 −1.43631
\(283\) 10.7672 0.640046 0.320023 0.947410i \(-0.396309\pi\)
0.320023 + 0.947410i \(0.396309\pi\)
\(284\) −7.19093 −0.426703
\(285\) 0 0
\(286\) 6.05000 0.357744
\(287\) −3.50776 −0.207056
\(288\) −7.44149 −0.438494
\(289\) 20.3559 1.19741
\(290\) 0 0
\(291\) −13.4764 −0.789999
\(292\) −7.85929 −0.459930
\(293\) 20.9240 1.22240 0.611198 0.791478i \(-0.290688\pi\)
0.611198 + 0.791478i \(0.290688\pi\)
\(294\) 15.4024 0.898284
\(295\) 0 0
\(296\) −63.7961 −3.70808
\(297\) −4.65500 −0.270111
\(298\) −34.5665 −2.00239
\(299\) −12.2352 −0.707581
\(300\) 0 0
\(301\) 0.230146 0.0132654
\(302\) −14.9569 −0.860674
\(303\) −1.35991 −0.0781246
\(304\) −5.97243 −0.342542
\(305\) 0 0
\(306\) 33.7529 1.92952
\(307\) 6.74306 0.384847 0.192423 0.981312i \(-0.438365\pi\)
0.192423 + 0.981312i \(0.438365\pi\)
\(308\) −1.69502 −0.0965827
\(309\) −11.4794 −0.653043
\(310\) 0 0
\(311\) 20.6800 1.17266 0.586328 0.810074i \(-0.300573\pi\)
0.586328 + 0.810074i \(0.300573\pi\)
\(312\) 12.5289 0.709308
\(313\) −27.6570 −1.56326 −0.781632 0.623740i \(-0.785613\pi\)
−0.781632 + 0.623740i \(0.785613\pi\)
\(314\) 41.6261 2.34910
\(315\) 0 0
\(316\) −35.7861 −2.01312
\(317\) −25.0739 −1.40829 −0.704146 0.710055i \(-0.748670\pi\)
−0.704146 + 0.710055i \(0.748670\pi\)
\(318\) −8.14924 −0.456987
\(319\) 2.85297 0.159736
\(320\) 0 0
\(321\) 0.342455 0.0191140
\(322\) 5.01769 0.279625
\(323\) 6.11195 0.340078
\(324\) 10.4592 0.581069
\(325\) 0 0
\(326\) 45.3736 2.51301
\(327\) 11.9785 0.662413
\(328\) −51.8508 −2.86298
\(329\) 4.21348 0.232297
\(330\) 0 0
\(331\) −25.8106 −1.41868 −0.709338 0.704868i \(-0.751006\pi\)
−0.709338 + 0.704868i \(0.751006\pi\)
\(332\) 31.3334 1.71964
\(333\) 24.1352 1.32260
\(334\) 45.6437 2.49751
\(335\) 0 0
\(336\) −2.10224 −0.114686
\(337\) 6.22788 0.339254 0.169627 0.985508i \(-0.445744\pi\)
0.169627 + 0.985508i \(0.445744\pi\)
\(338\) −18.0936 −0.984164
\(339\) −1.93384 −0.105032
\(340\) 0 0
\(341\) 5.10948 0.276694
\(342\) 5.52244 0.298619
\(343\) −5.44199 −0.293840
\(344\) 3.40196 0.183422
\(345\) 0 0
\(346\) −38.5685 −2.07346
\(347\) 18.8989 1.01455 0.507273 0.861785i \(-0.330653\pi\)
0.507273 + 0.861785i \(0.330653\pi\)
\(348\) 11.0181 0.590630
\(349\) 15.3598 0.822192 0.411096 0.911592i \(-0.365146\pi\)
0.411096 + 0.911592i \(0.365146\pi\)
\(350\) 0 0
\(351\) −11.2092 −0.598304
\(352\) −3.38554 −0.180450
\(353\) −14.6667 −0.780632 −0.390316 0.920681i \(-0.627634\pi\)
−0.390316 + 0.920681i \(0.627634\pi\)
\(354\) 10.6019 0.563486
\(355\) 0 0
\(356\) −65.4093 −3.46668
\(357\) 2.15135 0.113861
\(358\) 7.50263 0.396526
\(359\) −14.3322 −0.756424 −0.378212 0.925719i \(-0.623461\pi\)
−0.378212 + 0.925719i \(0.623461\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −23.5953 −1.24014
\(363\) −0.895533 −0.0470033
\(364\) −4.08160 −0.213934
\(365\) 0 0
\(366\) −34.6204 −1.80964
\(367\) −22.0345 −1.15019 −0.575096 0.818086i \(-0.695035\pi\)
−0.575096 + 0.818086i \(0.695035\pi\)
\(368\) 30.3464 1.58192
\(369\) 19.6161 1.02117
\(370\) 0 0
\(371\) 1.42359 0.0739090
\(372\) 19.7326 1.02309
\(373\) −3.73971 −0.193635 −0.0968174 0.995302i \(-0.530866\pi\)
−0.0968174 + 0.995302i \(0.530866\pi\)
\(374\) 15.3560 0.794042
\(375\) 0 0
\(376\) 62.2827 3.21198
\(377\) 6.86994 0.353820
\(378\) 4.59693 0.236441
\(379\) −24.0832 −1.23707 −0.618536 0.785757i \(-0.712274\pi\)
−0.618536 + 0.785757i \(0.712274\pi\)
\(380\) 0 0
\(381\) 5.46826 0.280148
\(382\) 9.93558 0.508348
\(383\) −12.7578 −0.651895 −0.325948 0.945388i \(-0.605683\pi\)
−0.325948 + 0.945388i \(0.605683\pi\)
\(384\) 13.8011 0.704282
\(385\) 0 0
\(386\) 53.5615 2.72621
\(387\) −1.28702 −0.0654231
\(388\) 64.8959 3.29459
\(389\) 24.2926 1.23169 0.615843 0.787869i \(-0.288816\pi\)
0.615843 + 0.787869i \(0.288816\pi\)
\(390\) 0 0
\(391\) −31.0553 −1.57053
\(392\) −39.7723 −2.00880
\(393\) 5.24330 0.264490
\(394\) −22.8473 −1.15103
\(395\) 0 0
\(396\) 9.47889 0.476332
\(397\) −18.3098 −0.918945 −0.459472 0.888192i \(-0.651962\pi\)
−0.459472 + 0.888192i \(0.651962\pi\)
\(398\) 38.7411 1.94191
\(399\) 0.351990 0.0176216
\(400\) 0 0
\(401\) −35.5628 −1.77592 −0.887960 0.459921i \(-0.847878\pi\)
−0.887960 + 0.459921i \(0.847878\pi\)
\(402\) 18.6051 0.927939
\(403\) 12.3036 0.612886
\(404\) 6.54867 0.325808
\(405\) 0 0
\(406\) −2.81738 −0.139824
\(407\) 10.9804 0.544280
\(408\) 31.8007 1.57437
\(409\) −8.90544 −0.440345 −0.220173 0.975461i \(-0.570662\pi\)
−0.220173 + 0.975461i \(0.570662\pi\)
\(410\) 0 0
\(411\) 17.6723 0.871711
\(412\) 55.2796 2.72343
\(413\) −1.85205 −0.0911334
\(414\) −28.0600 −1.37907
\(415\) 0 0
\(416\) −8.15237 −0.399703
\(417\) −6.80519 −0.333251
\(418\) 2.51246 0.122889
\(419\) −17.3759 −0.848870 −0.424435 0.905458i \(-0.639527\pi\)
−0.424435 + 0.905458i \(0.639527\pi\)
\(420\) 0 0
\(421\) −1.93051 −0.0940871 −0.0470436 0.998893i \(-0.514980\pi\)
−0.0470436 + 0.998893i \(0.514980\pi\)
\(422\) −12.6783 −0.617172
\(423\) −23.5626 −1.14566
\(424\) 21.0431 1.02195
\(425\) 0 0
\(426\) 3.75181 0.181776
\(427\) 6.04782 0.292675
\(428\) −1.64910 −0.0797123
\(429\) −2.15644 −0.104114
\(430\) 0 0
\(431\) 6.59444 0.317643 0.158821 0.987307i \(-0.449231\pi\)
0.158821 + 0.987307i \(0.449231\pi\)
\(432\) 27.8017 1.33761
\(433\) 9.80105 0.471009 0.235504 0.971873i \(-0.424326\pi\)
0.235504 + 0.971873i \(0.424326\pi\)
\(434\) −5.04574 −0.242203
\(435\) 0 0
\(436\) −57.6828 −2.76251
\(437\) −5.08108 −0.243061
\(438\) 4.10052 0.195930
\(439\) −9.33721 −0.445641 −0.222820 0.974860i \(-0.571526\pi\)
−0.222820 + 0.974860i \(0.571526\pi\)
\(440\) 0 0
\(441\) 15.0466 0.716503
\(442\) 36.9773 1.75883
\(443\) −14.4161 −0.684932 −0.342466 0.939530i \(-0.611262\pi\)
−0.342466 + 0.939530i \(0.611262\pi\)
\(444\) 42.4060 2.01250
\(445\) 0 0
\(446\) −44.7706 −2.11995
\(447\) 12.3208 0.582753
\(448\) −1.35163 −0.0638585
\(449\) −7.81495 −0.368810 −0.184405 0.982850i \(-0.559036\pi\)
−0.184405 + 0.982850i \(0.559036\pi\)
\(450\) 0 0
\(451\) 8.92443 0.420235
\(452\) 9.31247 0.438022
\(453\) 5.33119 0.250481
\(454\) −11.0445 −0.518344
\(455\) 0 0
\(456\) 5.20303 0.243654
\(457\) −4.96675 −0.232335 −0.116167 0.993230i \(-0.537061\pi\)
−0.116167 + 0.993230i \(0.537061\pi\)
\(458\) −23.6805 −1.10652
\(459\) −28.4511 −1.32799
\(460\) 0 0
\(461\) 6.08665 0.283484 0.141742 0.989904i \(-0.454730\pi\)
0.141742 + 0.989904i \(0.454730\pi\)
\(462\) 0.884362 0.0411442
\(463\) 9.56761 0.444644 0.222322 0.974973i \(-0.428636\pi\)
0.222322 + 0.974973i \(0.428636\pi\)
\(464\) −17.0392 −0.791024
\(465\) 0 0
\(466\) −73.3123 −3.39613
\(467\) −26.0909 −1.20734 −0.603671 0.797234i \(-0.706296\pi\)
−0.603671 + 0.797234i \(0.706296\pi\)
\(468\) 22.8251 1.05509
\(469\) −3.25012 −0.150077
\(470\) 0 0
\(471\) −14.8371 −0.683656
\(472\) −27.3765 −1.26011
\(473\) −0.585538 −0.0269230
\(474\) 18.6711 0.857591
\(475\) 0 0
\(476\) −10.3599 −0.474844
\(477\) −7.96099 −0.364509
\(478\) 73.7845 3.37483
\(479\) −2.29386 −0.104809 −0.0524046 0.998626i \(-0.516689\pi\)
−0.0524046 + 0.998626i \(0.516689\pi\)
\(480\) 0 0
\(481\) 26.4408 1.20560
\(482\) 14.4772 0.659420
\(483\) −1.78849 −0.0813791
\(484\) 4.31247 0.196021
\(485\) 0 0
\(486\) −40.5436 −1.83909
\(487\) 9.76343 0.442423 0.221212 0.975226i \(-0.428999\pi\)
0.221212 + 0.975226i \(0.428999\pi\)
\(488\) 89.3975 4.04683
\(489\) −16.1728 −0.731359
\(490\) 0 0
\(491\) 19.7257 0.890210 0.445105 0.895478i \(-0.353166\pi\)
0.445105 + 0.895478i \(0.353166\pi\)
\(492\) 34.4658 1.55384
\(493\) 17.4372 0.785333
\(494\) 6.05000 0.272202
\(495\) 0 0
\(496\) −30.5160 −1.37021
\(497\) −0.655403 −0.0293988
\(498\) −16.3479 −0.732569
\(499\) −11.8920 −0.532358 −0.266179 0.963924i \(-0.585761\pi\)
−0.266179 + 0.963924i \(0.585761\pi\)
\(500\) 0 0
\(501\) −16.2691 −0.726850
\(502\) 5.30935 0.236968
\(503\) 27.1187 1.20916 0.604582 0.796543i \(-0.293340\pi\)
0.604582 + 0.796543i \(0.293340\pi\)
\(504\) −5.01944 −0.223584
\(505\) 0 0
\(506\) −12.7660 −0.567519
\(507\) 6.44924 0.286421
\(508\) −26.3326 −1.16832
\(509\) 23.2095 1.02874 0.514371 0.857568i \(-0.328026\pi\)
0.514371 + 0.857568i \(0.328026\pi\)
\(510\) 0 0
\(511\) −0.716319 −0.0316881
\(512\) −49.1795 −2.17345
\(513\) −4.65500 −0.205523
\(514\) 5.93486 0.261775
\(515\) 0 0
\(516\) −2.26132 −0.0995491
\(517\) −10.7199 −0.471463
\(518\) −10.8435 −0.476434
\(519\) 13.7472 0.603436
\(520\) 0 0
\(521\) 21.4122 0.938084 0.469042 0.883176i \(-0.344599\pi\)
0.469042 + 0.883176i \(0.344599\pi\)
\(522\) 15.7554 0.689594
\(523\) −37.7739 −1.65174 −0.825868 0.563863i \(-0.809314\pi\)
−0.825868 + 0.563863i \(0.809314\pi\)
\(524\) −25.2493 −1.10302
\(525\) 0 0
\(526\) 67.1026 2.92581
\(527\) 31.2289 1.36035
\(528\) 5.34851 0.232764
\(529\) 2.81736 0.122494
\(530\) 0 0
\(531\) 10.3570 0.449457
\(532\) −1.69502 −0.0734884
\(533\) 21.4900 0.930835
\(534\) 34.1267 1.47681
\(535\) 0 0
\(536\) −48.0425 −2.07512
\(537\) −2.67421 −0.115401
\(538\) 15.4592 0.666494
\(539\) 6.84551 0.294857
\(540\) 0 0
\(541\) 41.1230 1.76802 0.884008 0.467471i \(-0.154835\pi\)
0.884008 + 0.467471i \(0.154835\pi\)
\(542\) 67.9452 2.91849
\(543\) 8.41021 0.360917
\(544\) −20.6923 −0.887174
\(545\) 0 0
\(546\) 2.12954 0.0911359
\(547\) −2.62583 −0.112272 −0.0561362 0.998423i \(-0.517878\pi\)
−0.0561362 + 0.998423i \(0.517878\pi\)
\(548\) −85.1015 −3.63536
\(549\) −33.8206 −1.44343
\(550\) 0 0
\(551\) 2.85297 0.121541
\(552\) −26.4370 −1.12523
\(553\) −3.26165 −0.138699
\(554\) 10.4555 0.444213
\(555\) 0 0
\(556\) 32.7706 1.38978
\(557\) −8.24917 −0.349529 −0.174764 0.984610i \(-0.555916\pi\)
−0.174764 + 0.984610i \(0.555916\pi\)
\(558\) 28.2168 1.19451
\(559\) −1.40997 −0.0596355
\(560\) 0 0
\(561\) −5.47346 −0.231090
\(562\) −13.7354 −0.579394
\(563\) −36.6270 −1.54364 −0.771822 0.635839i \(-0.780654\pi\)
−0.771822 + 0.635839i \(0.780654\pi\)
\(564\) −41.4000 −1.74325
\(565\) 0 0
\(566\) 27.0523 1.13709
\(567\) 0.953286 0.0400343
\(568\) −9.68800 −0.406500
\(569\) 12.9209 0.541672 0.270836 0.962625i \(-0.412700\pi\)
0.270836 + 0.962625i \(0.412700\pi\)
\(570\) 0 0
\(571\) 4.98632 0.208671 0.104335 0.994542i \(-0.466728\pi\)
0.104335 + 0.994542i \(0.466728\pi\)
\(572\) 10.3844 0.434194
\(573\) −3.54140 −0.147944
\(574\) −8.81310 −0.367852
\(575\) 0 0
\(576\) 7.55859 0.314941
\(577\) −5.45951 −0.227283 −0.113641 0.993522i \(-0.536251\pi\)
−0.113641 + 0.993522i \(0.536251\pi\)
\(578\) 51.1436 2.12729
\(579\) −19.0913 −0.793406
\(580\) 0 0
\(581\) 2.85582 0.118479
\(582\) −33.8589 −1.40350
\(583\) −3.62189 −0.150004
\(584\) −10.5885 −0.438153
\(585\) 0 0
\(586\) 52.5708 2.17168
\(587\) −11.7076 −0.483223 −0.241611 0.970373i \(-0.577676\pi\)
−0.241611 + 0.970373i \(0.577676\pi\)
\(588\) 26.4371 1.09025
\(589\) 5.10948 0.210533
\(590\) 0 0
\(591\) 8.14360 0.334983
\(592\) −65.5799 −2.69532
\(593\) 46.4536 1.90762 0.953810 0.300409i \(-0.0971232\pi\)
0.953810 + 0.300409i \(0.0971232\pi\)
\(594\) −11.6955 −0.479873
\(595\) 0 0
\(596\) −59.3311 −2.43029
\(597\) −13.8087 −0.565154
\(598\) −30.7405 −1.25707
\(599\) −34.8106 −1.42232 −0.711161 0.703029i \(-0.751830\pi\)
−0.711161 + 0.703029i \(0.751830\pi\)
\(600\) 0 0
\(601\) 20.7514 0.846467 0.423234 0.906021i \(-0.360895\pi\)
0.423234 + 0.906021i \(0.360895\pi\)
\(602\) 0.578233 0.0235670
\(603\) 18.1753 0.740157
\(604\) −25.6725 −1.04460
\(605\) 0 0
\(606\) −3.41671 −0.138795
\(607\) −48.3127 −1.96095 −0.980476 0.196639i \(-0.936997\pi\)
−0.980476 + 0.196639i \(0.936997\pi\)
\(608\) −3.38554 −0.137302
\(609\) 1.00422 0.0406930
\(610\) 0 0
\(611\) −25.8136 −1.04431
\(612\) 57.9345 2.34186
\(613\) 7.19281 0.290515 0.145257 0.989394i \(-0.453599\pi\)
0.145257 + 0.989394i \(0.453599\pi\)
\(614\) 16.9417 0.683711
\(615\) 0 0
\(616\) −2.28362 −0.0920096
\(617\) −28.1591 −1.13364 −0.566822 0.823840i \(-0.691827\pi\)
−0.566822 + 0.823840i \(0.691827\pi\)
\(618\) −28.8417 −1.16018
\(619\) −41.9363 −1.68556 −0.842781 0.538257i \(-0.819083\pi\)
−0.842781 + 0.538257i \(0.819083\pi\)
\(620\) 0 0
\(621\) 23.6524 0.949139
\(622\) 51.9578 2.08332
\(623\) −5.96159 −0.238846
\(624\) 12.8792 0.515580
\(625\) 0 0
\(626\) −69.4871 −2.77726
\(627\) −0.895533 −0.0357642
\(628\) 71.4483 2.85110
\(629\) 67.1119 2.67593
\(630\) 0 0
\(631\) 13.9367 0.554811 0.277405 0.960753i \(-0.410526\pi\)
0.277405 + 0.960753i \(0.410526\pi\)
\(632\) −48.2129 −1.91781
\(633\) 4.51903 0.179615
\(634\) −62.9973 −2.50194
\(635\) 0 0
\(636\) −13.9876 −0.554644
\(637\) 16.4840 0.653118
\(638\) 7.16798 0.283783
\(639\) 3.66514 0.144991
\(640\) 0 0
\(641\) 30.0930 1.18860 0.594302 0.804242i \(-0.297428\pi\)
0.594302 + 0.804242i \(0.297428\pi\)
\(642\) 0.860405 0.0339575
\(643\) 27.1236 1.06965 0.534825 0.844963i \(-0.320377\pi\)
0.534825 + 0.844963i \(0.320377\pi\)
\(644\) 8.61252 0.339381
\(645\) 0 0
\(646\) 15.3560 0.604176
\(647\) −22.4779 −0.883697 −0.441848 0.897090i \(-0.645677\pi\)
−0.441848 + 0.897090i \(0.645677\pi\)
\(648\) 14.0913 0.553557
\(649\) 4.71198 0.184962
\(650\) 0 0
\(651\) 1.79849 0.0704883
\(652\) 77.8806 3.05004
\(653\) 20.3218 0.795252 0.397626 0.917548i \(-0.369834\pi\)
0.397626 + 0.917548i \(0.369834\pi\)
\(654\) 30.0955 1.17683
\(655\) 0 0
\(656\) −53.3005 −2.08104
\(657\) 4.00580 0.156281
\(658\) 10.5862 0.412694
\(659\) 31.2540 1.21748 0.608742 0.793368i \(-0.291675\pi\)
0.608742 + 0.793368i \(0.291675\pi\)
\(660\) 0 0
\(661\) 39.9155 1.55253 0.776266 0.630405i \(-0.217111\pi\)
0.776266 + 0.630405i \(0.217111\pi\)
\(662\) −64.8480 −2.52039
\(663\) −13.1801 −0.511871
\(664\) 42.2140 1.63822
\(665\) 0 0
\(666\) 60.6388 2.34971
\(667\) −14.4962 −0.561294
\(668\) 78.3443 3.03123
\(669\) 15.9579 0.616967
\(670\) 0 0
\(671\) −15.3869 −0.594004
\(672\) −1.19168 −0.0459700
\(673\) −4.79686 −0.184905 −0.0924526 0.995717i \(-0.529471\pi\)
−0.0924526 + 0.995717i \(0.529471\pi\)
\(674\) 15.6473 0.602712
\(675\) 0 0
\(676\) −31.0565 −1.19448
\(677\) −1.99692 −0.0767479 −0.0383739 0.999263i \(-0.512218\pi\)
−0.0383739 + 0.999263i \(0.512218\pi\)
\(678\) −4.85870 −0.186597
\(679\) 5.91480 0.226989
\(680\) 0 0
\(681\) 3.93667 0.150853
\(682\) 12.8374 0.491569
\(683\) 19.7294 0.754923 0.377462 0.926025i \(-0.376797\pi\)
0.377462 + 0.926025i \(0.376797\pi\)
\(684\) 9.47889 0.362434
\(685\) 0 0
\(686\) −13.6728 −0.522030
\(687\) 8.44058 0.322028
\(688\) 3.49708 0.133325
\(689\) −8.72150 −0.332263
\(690\) 0 0
\(691\) −17.8975 −0.680853 −0.340427 0.940271i \(-0.610572\pi\)
−0.340427 + 0.940271i \(0.610572\pi\)
\(692\) −66.2002 −2.51655
\(693\) 0.863934 0.0328181
\(694\) 47.4828 1.80242
\(695\) 0 0
\(696\) 14.8441 0.562664
\(697\) 54.5457 2.06606
\(698\) 38.5910 1.46069
\(699\) 26.1312 0.988372
\(700\) 0 0
\(701\) 32.4459 1.22546 0.612732 0.790291i \(-0.290071\pi\)
0.612732 + 0.790291i \(0.290071\pi\)
\(702\) −28.1627 −1.06293
\(703\) 10.9804 0.414135
\(704\) 3.43882 0.129605
\(705\) 0 0
\(706\) −36.8496 −1.38685
\(707\) 0.596865 0.0224474
\(708\) 18.1975 0.683903
\(709\) 21.3057 0.800151 0.400076 0.916482i \(-0.368984\pi\)
0.400076 + 0.916482i \(0.368984\pi\)
\(710\) 0 0
\(711\) 18.2398 0.684045
\(712\) −88.1228 −3.30254
\(713\) −25.9617 −0.972272
\(714\) 5.40518 0.202284
\(715\) 0 0
\(716\) 12.8777 0.481264
\(717\) −26.2995 −0.982173
\(718\) −36.0091 −1.34385
\(719\) −4.98470 −0.185898 −0.0929489 0.995671i \(-0.529629\pi\)
−0.0929489 + 0.995671i \(0.529629\pi\)
\(720\) 0 0
\(721\) 5.03834 0.187638
\(722\) 2.51246 0.0935042
\(723\) −5.16022 −0.191911
\(724\) −40.4996 −1.50516
\(725\) 0 0
\(726\) −2.24999 −0.0835051
\(727\) 36.3622 1.34860 0.674300 0.738458i \(-0.264446\pi\)
0.674300 + 0.738458i \(0.264446\pi\)
\(728\) −5.49895 −0.203804
\(729\) 7.17516 0.265747
\(730\) 0 0
\(731\) −3.57878 −0.132366
\(732\) −59.4234 −2.19635
\(733\) −13.6271 −0.503329 −0.251665 0.967814i \(-0.580978\pi\)
−0.251665 + 0.967814i \(0.580978\pi\)
\(734\) −55.3609 −2.04341
\(735\) 0 0
\(736\) 17.2022 0.634082
\(737\) 8.26896 0.304591
\(738\) 49.2846 1.81419
\(739\) 7.55834 0.278038 0.139019 0.990290i \(-0.455605\pi\)
0.139019 + 0.990290i \(0.455605\pi\)
\(740\) 0 0
\(741\) −2.15644 −0.0792188
\(742\) 3.57671 0.131305
\(743\) −5.79027 −0.212425 −0.106212 0.994343i \(-0.533872\pi\)
−0.106212 + 0.994343i \(0.533872\pi\)
\(744\) 26.5848 0.974646
\(745\) 0 0
\(746\) −9.39588 −0.344008
\(747\) −15.9703 −0.584323
\(748\) 26.3576 0.963729
\(749\) −0.150304 −0.00549199
\(750\) 0 0
\(751\) −15.7138 −0.573406 −0.286703 0.958019i \(-0.592559\pi\)
−0.286703 + 0.958019i \(0.592559\pi\)
\(752\) 64.0241 2.33472
\(753\) −1.89245 −0.0689646
\(754\) 17.2605 0.628589
\(755\) 0 0
\(756\) 7.89031 0.286968
\(757\) 22.9951 0.835773 0.417886 0.908499i \(-0.362771\pi\)
0.417886 + 0.908499i \(0.362771\pi\)
\(758\) −60.5082 −2.19776
\(759\) 4.55028 0.165165
\(760\) 0 0
\(761\) 4.29367 0.155645 0.0778227 0.996967i \(-0.475203\pi\)
0.0778227 + 0.996967i \(0.475203\pi\)
\(762\) 13.7388 0.497704
\(763\) −5.25738 −0.190330
\(764\) 17.0537 0.616982
\(765\) 0 0
\(766\) −32.0536 −1.15814
\(767\) 11.3464 0.409696
\(768\) 28.5155 1.02896
\(769\) −29.8296 −1.07568 −0.537842 0.843046i \(-0.680760\pi\)
−0.537842 + 0.843046i \(0.680760\pi\)
\(770\) 0 0
\(771\) −2.11540 −0.0761843
\(772\) 91.9345 3.30880
\(773\) 41.3201 1.48618 0.743090 0.669192i \(-0.233360\pi\)
0.743090 + 0.669192i \(0.233360\pi\)
\(774\) −3.23360 −0.116229
\(775\) 0 0
\(776\) 87.4312 3.13860
\(777\) 3.86501 0.138656
\(778\) 61.0344 2.18819
\(779\) 8.92443 0.319751
\(780\) 0 0
\(781\) 1.66748 0.0596669
\(782\) −78.0253 −2.79018
\(783\) −13.2806 −0.474609
\(784\) −40.8843 −1.46016
\(785\) 0 0
\(786\) 13.1736 0.469887
\(787\) 45.9086 1.63646 0.818232 0.574889i \(-0.194955\pi\)
0.818232 + 0.574889i \(0.194955\pi\)
\(788\) −39.2157 −1.39700
\(789\) −23.9178 −0.851497
\(790\) 0 0
\(791\) 0.848766 0.0301786
\(792\) 12.7705 0.453779
\(793\) −37.0515 −1.31574
\(794\) −46.0028 −1.63258
\(795\) 0 0
\(796\) 66.4963 2.35690
\(797\) 29.6572 1.05051 0.525256 0.850944i \(-0.323969\pi\)
0.525256 + 0.850944i \(0.323969\pi\)
\(798\) 0.884362 0.0313061
\(799\) −65.5198 −2.31792
\(800\) 0 0
\(801\) 33.3384 1.17796
\(802\) −89.3501 −3.15506
\(803\) 1.82246 0.0643131
\(804\) 31.9344 1.12624
\(805\) 0 0
\(806\) 30.9123 1.08884
\(807\) −5.51023 −0.193969
\(808\) 8.82272 0.310382
\(809\) −36.7733 −1.29288 −0.646440 0.762965i \(-0.723743\pi\)
−0.646440 + 0.762965i \(0.723743\pi\)
\(810\) 0 0
\(811\) −31.4798 −1.10541 −0.552703 0.833378i \(-0.686404\pi\)
−0.552703 + 0.833378i \(0.686404\pi\)
\(812\) −4.83584 −0.169705
\(813\) −24.2181 −0.849367
\(814\) 27.5879 0.966956
\(815\) 0 0
\(816\) 32.6898 1.14437
\(817\) −0.585538 −0.0204854
\(818\) −22.3746 −0.782308
\(819\) 2.08035 0.0726933
\(820\) 0 0
\(821\) −40.8925 −1.42716 −0.713580 0.700574i \(-0.752927\pi\)
−0.713580 + 0.700574i \(0.752927\pi\)
\(822\) 44.4010 1.54866
\(823\) −1.58148 −0.0551268 −0.0275634 0.999620i \(-0.508775\pi\)
−0.0275634 + 0.999620i \(0.508775\pi\)
\(824\) 74.4756 2.59448
\(825\) 0 0
\(826\) −4.65320 −0.161906
\(827\) 34.9721 1.21610 0.608050 0.793899i \(-0.291952\pi\)
0.608050 + 0.793899i \(0.291952\pi\)
\(828\) −48.1630 −1.67378
\(829\) −5.53605 −0.192275 −0.0961375 0.995368i \(-0.530649\pi\)
−0.0961375 + 0.995368i \(0.530649\pi\)
\(830\) 0 0
\(831\) −3.72674 −0.129279
\(832\) 8.28066 0.287080
\(833\) 41.8394 1.44965
\(834\) −17.0978 −0.592047
\(835\) 0 0
\(836\) 4.31247 0.149150
\(837\) −23.7846 −0.822117
\(838\) −43.6564 −1.50808
\(839\) 54.4122 1.87852 0.939259 0.343208i \(-0.111514\pi\)
0.939259 + 0.343208i \(0.111514\pi\)
\(840\) 0 0
\(841\) −20.8606 −0.719330
\(842\) −4.85032 −0.167153
\(843\) 4.89581 0.168621
\(844\) −21.7615 −0.749062
\(845\) 0 0
\(846\) −59.2003 −2.03535
\(847\) 0.393051 0.0135054
\(848\) 21.6315 0.742829
\(849\) −9.64243 −0.330927
\(850\) 0 0
\(851\) −55.7925 −1.91254
\(852\) 6.43972 0.220621
\(853\) −13.1887 −0.451574 −0.225787 0.974177i \(-0.572495\pi\)
−0.225787 + 0.974177i \(0.572495\pi\)
\(854\) 15.1949 0.519960
\(855\) 0 0
\(856\) −2.22176 −0.0759381
\(857\) −15.1757 −0.518390 −0.259195 0.965825i \(-0.583457\pi\)
−0.259195 + 0.965825i \(0.583457\pi\)
\(858\) −5.41798 −0.184967
\(859\) 14.1708 0.483500 0.241750 0.970339i \(-0.422279\pi\)
0.241750 + 0.970339i \(0.422279\pi\)
\(860\) 0 0
\(861\) 3.14131 0.107056
\(862\) 16.5683 0.564318
\(863\) 41.8781 1.42555 0.712773 0.701394i \(-0.247439\pi\)
0.712773 + 0.701394i \(0.247439\pi\)
\(864\) 15.7597 0.536156
\(865\) 0 0
\(866\) 24.6248 0.836784
\(867\) −18.2294 −0.619104
\(868\) −8.66067 −0.293962
\(869\) 8.29828 0.281500
\(870\) 0 0
\(871\) 19.9116 0.674679
\(872\) −77.7134 −2.63171
\(873\) −33.0768 −1.11948
\(874\) −12.7660 −0.431817
\(875\) 0 0
\(876\) 7.03826 0.237801
\(877\) 25.2042 0.851084 0.425542 0.904939i \(-0.360083\pi\)
0.425542 + 0.904939i \(0.360083\pi\)
\(878\) −23.4594 −0.791716
\(879\) −18.7382 −0.632023
\(880\) 0 0
\(881\) −13.4877 −0.454412 −0.227206 0.973847i \(-0.572959\pi\)
−0.227206 + 0.973847i \(0.572959\pi\)
\(882\) 37.8039 1.27292
\(883\) −14.5766 −0.490543 −0.245271 0.969454i \(-0.578877\pi\)
−0.245271 + 0.969454i \(0.578877\pi\)
\(884\) 63.4689 2.13469
\(885\) 0 0
\(886\) −36.2200 −1.21684
\(887\) 32.5010 1.09128 0.545638 0.838021i \(-0.316287\pi\)
0.545638 + 0.838021i \(0.316287\pi\)
\(888\) 57.1316 1.91721
\(889\) −2.40003 −0.0804944
\(890\) 0 0
\(891\) −2.42535 −0.0812523
\(892\) −76.8455 −2.57298
\(893\) −10.7199 −0.358729
\(894\) 30.9555 1.03531
\(895\) 0 0
\(896\) −6.05730 −0.202360
\(897\) 10.9570 0.365845
\(898\) −19.6348 −0.655221
\(899\) 14.5772 0.486177
\(900\) 0 0
\(901\) −22.1368 −0.737485
\(902\) 22.4223 0.746581
\(903\) −0.206103 −0.00685869
\(904\) 12.5462 0.417282
\(905\) 0 0
\(906\) 13.3944 0.445000
\(907\) 7.14326 0.237188 0.118594 0.992943i \(-0.462161\pi\)
0.118594 + 0.992943i \(0.462161\pi\)
\(908\) −18.9571 −0.629114
\(909\) −3.33779 −0.110707
\(910\) 0 0
\(911\) −26.7545 −0.886418 −0.443209 0.896418i \(-0.646160\pi\)
−0.443209 + 0.896418i \(0.646160\pi\)
\(912\) 5.34851 0.177107
\(913\) −7.26577 −0.240462
\(914\) −12.4788 −0.412761
\(915\) 0 0
\(916\) −40.6459 −1.34298
\(917\) −2.30129 −0.0759954
\(918\) −71.4824 −2.35927
\(919\) −41.4968 −1.36885 −0.684426 0.729082i \(-0.739947\pi\)
−0.684426 + 0.729082i \(0.739947\pi\)
\(920\) 0 0
\(921\) −6.03864 −0.198980
\(922\) 15.2925 0.503631
\(923\) 4.01527 0.132164
\(924\) 1.51795 0.0499368
\(925\) 0 0
\(926\) 24.0383 0.789946
\(927\) −28.1754 −0.925403
\(928\) −9.65885 −0.317067
\(929\) 1.12610 0.0369461 0.0184731 0.999829i \(-0.494120\pi\)
0.0184731 + 0.999829i \(0.494120\pi\)
\(930\) 0 0
\(931\) 6.84551 0.224353
\(932\) −125.835 −4.12188
\(933\) −18.5196 −0.606306
\(934\) −65.5523 −2.14494
\(935\) 0 0
\(936\) 30.7512 1.00513
\(937\) 40.0060 1.30694 0.653470 0.756952i \(-0.273313\pi\)
0.653470 + 0.756952i \(0.273313\pi\)
\(938\) −8.16581 −0.266623
\(939\) 24.7677 0.808265
\(940\) 0 0
\(941\) 19.0713 0.621706 0.310853 0.950458i \(-0.399385\pi\)
0.310853 + 0.950458i \(0.399385\pi\)
\(942\) −37.2775 −1.21457
\(943\) −45.3457 −1.47666
\(944\) −28.1420 −0.915944
\(945\) 0 0
\(946\) −1.47114 −0.0478309
\(947\) −17.6474 −0.573464 −0.286732 0.958011i \(-0.592569\pi\)
−0.286732 + 0.958011i \(0.592569\pi\)
\(948\) 32.0476 1.04086
\(949\) 4.38847 0.142456
\(950\) 0 0
\(951\) 22.4545 0.728138
\(952\) −13.9574 −0.452361
\(953\) −25.3932 −0.822566 −0.411283 0.911508i \(-0.634919\pi\)
−0.411283 + 0.911508i \(0.634919\pi\)
\(954\) −20.0017 −0.647579
\(955\) 0 0
\(956\) 126.646 4.09602
\(957\) −2.55493 −0.0825892
\(958\) −5.76324 −0.186202
\(959\) −7.75640 −0.250467
\(960\) 0 0
\(961\) −4.89320 −0.157845
\(962\) 66.4316 2.14184
\(963\) 0.840530 0.0270857
\(964\) 24.8492 0.800338
\(965\) 0 0
\(966\) −4.49351 −0.144576
\(967\) −28.2497 −0.908450 −0.454225 0.890887i \(-0.650084\pi\)
−0.454225 + 0.890887i \(0.650084\pi\)
\(968\) 5.80998 0.186740
\(969\) −5.47346 −0.175833
\(970\) 0 0
\(971\) −4.11498 −0.132056 −0.0660279 0.997818i \(-0.521033\pi\)
−0.0660279 + 0.997818i \(0.521033\pi\)
\(972\) −69.5902 −2.23211
\(973\) 2.98681 0.0957526
\(974\) 24.5303 0.786000
\(975\) 0 0
\(976\) 91.8970 2.94155
\(977\) −28.5510 −0.913428 −0.456714 0.889613i \(-0.650974\pi\)
−0.456714 + 0.889613i \(0.650974\pi\)
\(978\) −40.6336 −1.29932
\(979\) 15.1675 0.484755
\(980\) 0 0
\(981\) 29.4003 0.938681
\(982\) 49.5602 1.58153
\(983\) 11.0911 0.353753 0.176876 0.984233i \(-0.443401\pi\)
0.176876 + 0.984233i \(0.443401\pi\)
\(984\) 46.4341 1.48027
\(985\) 0 0
\(986\) 43.8104 1.39521
\(987\) −3.77332 −0.120106
\(988\) 10.3844 0.330372
\(989\) 2.97516 0.0946047
\(990\) 0 0
\(991\) 10.2116 0.324381 0.162191 0.986759i \(-0.448144\pi\)
0.162191 + 0.986759i \(0.448144\pi\)
\(992\) −17.2984 −0.549223
\(993\) 23.1142 0.733508
\(994\) −1.64667 −0.0522293
\(995\) 0 0
\(996\) −28.0601 −0.889118
\(997\) −14.3457 −0.454334 −0.227167 0.973856i \(-0.572946\pi\)
−0.227167 + 0.973856i \(0.572946\pi\)
\(998\) −29.8781 −0.945775
\(999\) −51.1139 −1.61717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.l.1.6 6
5.4 even 2 1045.2.a.f.1.1 6
15.14 odd 2 9405.2.a.z.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.1 6 5.4 even 2
5225.2.a.l.1.6 6 1.1 even 1 trivial
9405.2.a.z.1.6 6 15.14 odd 2