Properties

Label 5225.2.a.l.1.5
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.79049\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23198 q^{2} +1.34246 q^{3} +2.98176 q^{4} +2.99635 q^{6} -4.13295 q^{7} +2.19127 q^{8} -1.19780 q^{9} +O(q^{10})\) \(q+2.23198 q^{2} +1.34246 q^{3} +2.98176 q^{4} +2.99635 q^{6} -4.13295 q^{7} +2.19127 q^{8} -1.19780 q^{9} -1.00000 q^{11} +4.00289 q^{12} +0.110474 q^{13} -9.22468 q^{14} -1.07264 q^{16} +6.99924 q^{17} -2.67348 q^{18} -1.00000 q^{19} -5.54832 q^{21} -2.23198 q^{22} -8.36934 q^{23} +2.94168 q^{24} +0.246577 q^{26} -5.63538 q^{27} -12.3235 q^{28} -3.28289 q^{29} -0.202971 q^{31} -6.77665 q^{32} -1.34246 q^{33} +15.6222 q^{34} -3.57156 q^{36} +0.683573 q^{37} -2.23198 q^{38} +0.148307 q^{39} -4.97522 q^{41} -12.3838 q^{42} -8.52642 q^{43} -2.98176 q^{44} -18.6802 q^{46} -3.85948 q^{47} -1.43998 q^{48} +10.0813 q^{49} +9.39619 q^{51} +0.329408 q^{52} +10.1554 q^{53} -12.5781 q^{54} -9.05639 q^{56} -1.34246 q^{57} -7.32737 q^{58} -10.4857 q^{59} -3.53161 q^{61} -0.453029 q^{62} +4.95046 q^{63} -12.9801 q^{64} -2.99635 q^{66} +7.84063 q^{67} +20.8700 q^{68} -11.2355 q^{69} -1.58930 q^{71} -2.62471 q^{72} -8.41595 q^{73} +1.52572 q^{74} -2.98176 q^{76} +4.13295 q^{77} +0.331020 q^{78} +2.80598 q^{79} -3.97186 q^{81} -11.1046 q^{82} +5.52580 q^{83} -16.5437 q^{84} -19.0308 q^{86} -4.40715 q^{87} -2.19127 q^{88} +0.654537 q^{89} -0.456585 q^{91} -24.9553 q^{92} -0.272481 q^{93} -8.61430 q^{94} -9.09738 q^{96} +10.8858 q^{97} +22.5013 q^{98} +1.19780 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - 5 q^{7} + 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - 5 q^{7} + 12 q^{8} + q^{9} - 6 q^{11} - q^{12} + 5 q^{13} - 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{18} - 6 q^{19} - 21 q^{21} - 2 q^{22} - 4 q^{23} - q^{24} - 14 q^{26} + 16 q^{27} - 10 q^{28} - 9 q^{29} - 21 q^{31} + q^{32} - q^{33} - 28 q^{36} + 3 q^{37} - 2 q^{38} + 20 q^{39} - 23 q^{41} - q^{42} - 7 q^{43} - 4 q^{44} - 12 q^{46} + 18 q^{47} - 3 q^{49} - 16 q^{51} - 13 q^{52} + 17 q^{53} + q^{54} - 2 q^{56} - q^{57} - 23 q^{58} - 29 q^{59} + 17 q^{61} - 2 q^{62} - 6 q^{63} - 18 q^{64} - 8 q^{67} + q^{68} - 38 q^{69} - 12 q^{71} - 13 q^{72} - 2 q^{73} - 37 q^{74} - 4 q^{76} + 5 q^{77} - q^{78} + 3 q^{79} - 2 q^{81} - 24 q^{82} + 11 q^{83} - 3 q^{84} - 12 q^{86} + 12 q^{87} - 12 q^{88} - 22 q^{89} - 18 q^{91} + 15 q^{92} - 18 q^{93} + 22 q^{94} - 17 q^{96} + 2 q^{97} + q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23198 1.57825 0.789126 0.614232i \(-0.210534\pi\)
0.789126 + 0.614232i \(0.210534\pi\)
\(3\) 1.34246 0.775069 0.387535 0.921855i \(-0.373327\pi\)
0.387535 + 0.921855i \(0.373327\pi\)
\(4\) 2.98176 1.49088
\(5\) 0 0
\(6\) 2.99635 1.22325
\(7\) −4.13295 −1.56211 −0.781054 0.624463i \(-0.785318\pi\)
−0.781054 + 0.624463i \(0.785318\pi\)
\(8\) 2.19127 0.774729
\(9\) −1.19780 −0.399268
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 4.00289 1.15553
\(13\) 0.110474 0.0306401 0.0153200 0.999883i \(-0.495123\pi\)
0.0153200 + 0.999883i \(0.495123\pi\)
\(14\) −9.22468 −2.46540
\(15\) 0 0
\(16\) −1.07264 −0.268160
\(17\) 6.99924 1.69756 0.848782 0.528743i \(-0.177336\pi\)
0.848782 + 0.528743i \(0.177336\pi\)
\(18\) −2.67348 −0.630145
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −5.54832 −1.21074
\(22\) −2.23198 −0.475861
\(23\) −8.36934 −1.74513 −0.872564 0.488500i \(-0.837544\pi\)
−0.872564 + 0.488500i \(0.837544\pi\)
\(24\) 2.94168 0.600469
\(25\) 0 0
\(26\) 0.246577 0.0483577
\(27\) −5.63538 −1.08453
\(28\) −12.3235 −2.32891
\(29\) −3.28289 −0.609618 −0.304809 0.952414i \(-0.598593\pi\)
−0.304809 + 0.952414i \(0.598593\pi\)
\(30\) 0 0
\(31\) −0.202971 −0.0364547 −0.0182274 0.999834i \(-0.505802\pi\)
−0.0182274 + 0.999834i \(0.505802\pi\)
\(32\) −6.77665 −1.19795
\(33\) −1.34246 −0.233692
\(34\) 15.6222 2.67918
\(35\) 0 0
\(36\) −3.57156 −0.595260
\(37\) 0.683573 0.112379 0.0561893 0.998420i \(-0.482105\pi\)
0.0561893 + 0.998420i \(0.482105\pi\)
\(38\) −2.23198 −0.362076
\(39\) 0.148307 0.0237482
\(40\) 0 0
\(41\) −4.97522 −0.776999 −0.388499 0.921449i \(-0.627006\pi\)
−0.388499 + 0.921449i \(0.627006\pi\)
\(42\) −12.3838 −1.91086
\(43\) −8.52642 −1.30027 −0.650134 0.759820i \(-0.725287\pi\)
−0.650134 + 0.759820i \(0.725287\pi\)
\(44\) −2.98176 −0.449517
\(45\) 0 0
\(46\) −18.6802 −2.75425
\(47\) −3.85948 −0.562963 −0.281482 0.959567i \(-0.590826\pi\)
−0.281482 + 0.959567i \(0.590826\pi\)
\(48\) −1.43998 −0.207843
\(49\) 10.0813 1.44018
\(50\) 0 0
\(51\) 9.39619 1.31573
\(52\) 0.329408 0.0456806
\(53\) 10.1554 1.39496 0.697478 0.716607i \(-0.254306\pi\)
0.697478 + 0.716607i \(0.254306\pi\)
\(54\) −12.5781 −1.71166
\(55\) 0 0
\(56\) −9.05639 −1.21021
\(57\) −1.34246 −0.177813
\(58\) −7.32737 −0.962131
\(59\) −10.4857 −1.36512 −0.682561 0.730829i \(-0.739134\pi\)
−0.682561 + 0.730829i \(0.739134\pi\)
\(60\) 0 0
\(61\) −3.53161 −0.452177 −0.226088 0.974107i \(-0.572594\pi\)
−0.226088 + 0.974107i \(0.572594\pi\)
\(62\) −0.453029 −0.0575347
\(63\) 4.95046 0.623699
\(64\) −12.9801 −1.62251
\(65\) 0 0
\(66\) −2.99635 −0.368825
\(67\) 7.84063 0.957886 0.478943 0.877846i \(-0.341020\pi\)
0.478943 + 0.877846i \(0.341020\pi\)
\(68\) 20.8700 2.53086
\(69\) −11.2355 −1.35259
\(70\) 0 0
\(71\) −1.58930 −0.188616 −0.0943078 0.995543i \(-0.530064\pi\)
−0.0943078 + 0.995543i \(0.530064\pi\)
\(72\) −2.62471 −0.309324
\(73\) −8.41595 −0.985012 −0.492506 0.870309i \(-0.663919\pi\)
−0.492506 + 0.870309i \(0.663919\pi\)
\(74\) 1.52572 0.177362
\(75\) 0 0
\(76\) −2.98176 −0.342031
\(77\) 4.13295 0.470993
\(78\) 0.331020 0.0374806
\(79\) 2.80598 0.315697 0.157848 0.987463i \(-0.449544\pi\)
0.157848 + 0.987463i \(0.449544\pi\)
\(80\) 0 0
\(81\) −3.97186 −0.441317
\(82\) −11.1046 −1.22630
\(83\) 5.52580 0.606535 0.303267 0.952905i \(-0.401922\pi\)
0.303267 + 0.952905i \(0.401922\pi\)
\(84\) −16.5437 −1.80507
\(85\) 0 0
\(86\) −19.0308 −2.05215
\(87\) −4.40715 −0.472496
\(88\) −2.19127 −0.233590
\(89\) 0.654537 0.0693808 0.0346904 0.999398i \(-0.488955\pi\)
0.0346904 + 0.999398i \(0.488955\pi\)
\(90\) 0 0
\(91\) −0.456585 −0.0478631
\(92\) −24.9553 −2.60177
\(93\) −0.272481 −0.0282549
\(94\) −8.61430 −0.888498
\(95\) 0 0
\(96\) −9.09738 −0.928497
\(97\) 10.8858 1.10529 0.552643 0.833418i \(-0.313619\pi\)
0.552643 + 0.833418i \(0.313619\pi\)
\(98\) 22.5013 2.27297
\(99\) 1.19780 0.120384
\(100\) 0 0
\(101\) 9.08470 0.903961 0.451980 0.892028i \(-0.350718\pi\)
0.451980 + 0.892028i \(0.350718\pi\)
\(102\) 20.9721 2.07655
\(103\) 3.59063 0.353795 0.176898 0.984229i \(-0.443394\pi\)
0.176898 + 0.984229i \(0.443394\pi\)
\(104\) 0.242079 0.0237378
\(105\) 0 0
\(106\) 22.6668 2.20159
\(107\) 7.13069 0.689350 0.344675 0.938722i \(-0.387989\pi\)
0.344675 + 0.938722i \(0.387989\pi\)
\(108\) −16.8033 −1.61690
\(109\) −15.1412 −1.45026 −0.725131 0.688611i \(-0.758221\pi\)
−0.725131 + 0.688611i \(0.758221\pi\)
\(110\) 0 0
\(111\) 0.917668 0.0871012
\(112\) 4.43317 0.418896
\(113\) 2.67686 0.251818 0.125909 0.992042i \(-0.459815\pi\)
0.125909 + 0.992042i \(0.459815\pi\)
\(114\) −2.99635 −0.280634
\(115\) 0 0
\(116\) −9.78879 −0.908866
\(117\) −0.132327 −0.0122336
\(118\) −23.4039 −2.15451
\(119\) −28.9275 −2.65178
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −7.88251 −0.713649
\(123\) −6.67903 −0.602228
\(124\) −0.605211 −0.0543496
\(125\) 0 0
\(126\) 11.0494 0.984355
\(127\) 13.0799 1.16065 0.580326 0.814384i \(-0.302925\pi\)
0.580326 + 0.814384i \(0.302925\pi\)
\(128\) −15.4181 −1.36278
\(129\) −11.4464 −1.00780
\(130\) 0 0
\(131\) −8.33532 −0.728260 −0.364130 0.931348i \(-0.618634\pi\)
−0.364130 + 0.931348i \(0.618634\pi\)
\(132\) −4.00289 −0.348407
\(133\) 4.13295 0.358372
\(134\) 17.5002 1.51179
\(135\) 0 0
\(136\) 15.3372 1.31515
\(137\) 13.0803 1.11753 0.558765 0.829326i \(-0.311276\pi\)
0.558765 + 0.829326i \(0.311276\pi\)
\(138\) −25.0775 −2.13473
\(139\) −18.2803 −1.55052 −0.775259 0.631644i \(-0.782381\pi\)
−0.775259 + 0.631644i \(0.782381\pi\)
\(140\) 0 0
\(141\) −5.18120 −0.436335
\(142\) −3.54730 −0.297683
\(143\) −0.110474 −0.00923833
\(144\) 1.28481 0.107068
\(145\) 0 0
\(146\) −18.7843 −1.55460
\(147\) 13.5337 1.11624
\(148\) 2.03825 0.167543
\(149\) 18.3204 1.50087 0.750435 0.660945i \(-0.229844\pi\)
0.750435 + 0.660945i \(0.229844\pi\)
\(150\) 0 0
\(151\) 8.66581 0.705213 0.352607 0.935772i \(-0.385295\pi\)
0.352607 + 0.935772i \(0.385295\pi\)
\(152\) −2.19127 −0.177735
\(153\) −8.38371 −0.677783
\(154\) 9.22468 0.743346
\(155\) 0 0
\(156\) 0.442216 0.0354056
\(157\) 18.7512 1.49651 0.748254 0.663412i \(-0.230892\pi\)
0.748254 + 0.663412i \(0.230892\pi\)
\(158\) 6.26290 0.498249
\(159\) 13.6332 1.08119
\(160\) 0 0
\(161\) 34.5901 2.72608
\(162\) −8.86513 −0.696510
\(163\) −19.8023 −1.55103 −0.775517 0.631327i \(-0.782511\pi\)
−0.775517 + 0.631327i \(0.782511\pi\)
\(164\) −14.8349 −1.15841
\(165\) 0 0
\(166\) 12.3335 0.957265
\(167\) −1.91597 −0.148262 −0.0741312 0.997248i \(-0.523618\pi\)
−0.0741312 + 0.997248i \(0.523618\pi\)
\(168\) −12.1578 −0.937997
\(169\) −12.9878 −0.999061
\(170\) 0 0
\(171\) 1.19780 0.0915983
\(172\) −25.4237 −1.93854
\(173\) 3.30818 0.251516 0.125758 0.992061i \(-0.459864\pi\)
0.125758 + 0.992061i \(0.459864\pi\)
\(174\) −9.83669 −0.745718
\(175\) 0 0
\(176\) 1.07264 0.0808534
\(177\) −14.0766 −1.05806
\(178\) 1.46092 0.109500
\(179\) −21.9873 −1.64341 −0.821703 0.569915i \(-0.806976\pi\)
−0.821703 + 0.569915i \(0.806976\pi\)
\(180\) 0 0
\(181\) −17.0245 −1.26542 −0.632709 0.774389i \(-0.718057\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(182\) −1.01909 −0.0755400
\(183\) −4.74105 −0.350468
\(184\) −18.3394 −1.35200
\(185\) 0 0
\(186\) −0.608173 −0.0445934
\(187\) −6.99924 −0.511835
\(188\) −11.5080 −0.839310
\(189\) 23.2907 1.69415
\(190\) 0 0
\(191\) −12.8748 −0.931589 −0.465794 0.884893i \(-0.654231\pi\)
−0.465794 + 0.884893i \(0.654231\pi\)
\(192\) −17.4253 −1.25756
\(193\) −2.49248 −0.179412 −0.0897062 0.995968i \(-0.528593\pi\)
−0.0897062 + 0.995968i \(0.528593\pi\)
\(194\) 24.2970 1.74442
\(195\) 0 0
\(196\) 30.0599 2.14714
\(197\) −0.604202 −0.0430476 −0.0215238 0.999768i \(-0.506852\pi\)
−0.0215238 + 0.999768i \(0.506852\pi\)
\(198\) 2.67348 0.189996
\(199\) −17.6373 −1.25027 −0.625137 0.780515i \(-0.714957\pi\)
−0.625137 + 0.780515i \(0.714957\pi\)
\(200\) 0 0
\(201\) 10.5257 0.742428
\(202\) 20.2769 1.42668
\(203\) 13.5680 0.952289
\(204\) 28.0171 1.96159
\(205\) 0 0
\(206\) 8.01423 0.558378
\(207\) 10.0248 0.696773
\(208\) −0.118499 −0.00821645
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 19.9281 1.37190 0.685952 0.727646i \(-0.259386\pi\)
0.685952 + 0.727646i \(0.259386\pi\)
\(212\) 30.2810 2.07971
\(213\) −2.13357 −0.146190
\(214\) 15.9156 1.08797
\(215\) 0 0
\(216\) −12.3486 −0.840217
\(217\) 0.838870 0.0569462
\(218\) −33.7949 −2.28888
\(219\) −11.2981 −0.763453
\(220\) 0 0
\(221\) 0.773236 0.0520135
\(222\) 2.04822 0.137468
\(223\) −12.6225 −0.845263 −0.422631 0.906302i \(-0.638894\pi\)
−0.422631 + 0.906302i \(0.638894\pi\)
\(224\) 28.0076 1.87133
\(225\) 0 0
\(226\) 5.97472 0.397432
\(227\) −7.57012 −0.502447 −0.251223 0.967929i \(-0.580833\pi\)
−0.251223 + 0.967929i \(0.580833\pi\)
\(228\) −4.00289 −0.265098
\(229\) −8.20266 −0.542047 −0.271023 0.962573i \(-0.587362\pi\)
−0.271023 + 0.962573i \(0.587362\pi\)
\(230\) 0 0
\(231\) 5.54832 0.365052
\(232\) −7.19369 −0.472289
\(233\) −16.9904 −1.11308 −0.556538 0.830822i \(-0.687871\pi\)
−0.556538 + 0.830822i \(0.687871\pi\)
\(234\) −0.295351 −0.0193077
\(235\) 0 0
\(236\) −31.2658 −2.03523
\(237\) 3.76691 0.244687
\(238\) −64.5657 −4.18517
\(239\) −15.2540 −0.986699 −0.493350 0.869831i \(-0.664228\pi\)
−0.493350 + 0.869831i \(0.664228\pi\)
\(240\) 0 0
\(241\) −1.53642 −0.0989698 −0.0494849 0.998775i \(-0.515758\pi\)
−0.0494849 + 0.998775i \(0.515758\pi\)
\(242\) 2.23198 0.143477
\(243\) 11.5741 0.742478
\(244\) −10.5304 −0.674141
\(245\) 0 0
\(246\) −14.9075 −0.950467
\(247\) −0.110474 −0.00702931
\(248\) −0.444764 −0.0282425
\(249\) 7.41815 0.470106
\(250\) 0 0
\(251\) 24.6721 1.55729 0.778646 0.627464i \(-0.215907\pi\)
0.778646 + 0.627464i \(0.215907\pi\)
\(252\) 14.7611 0.929860
\(253\) 8.36934 0.526176
\(254\) 29.1941 1.83180
\(255\) 0 0
\(256\) −8.45273 −0.528296
\(257\) −11.9052 −0.742624 −0.371312 0.928508i \(-0.621092\pi\)
−0.371312 + 0.928508i \(0.621092\pi\)
\(258\) −25.5481 −1.59056
\(259\) −2.82517 −0.175548
\(260\) 0 0
\(261\) 3.93226 0.243401
\(262\) −18.6043 −1.14938
\(263\) 0.849505 0.0523827 0.0261914 0.999657i \(-0.491662\pi\)
0.0261914 + 0.999657i \(0.491662\pi\)
\(264\) −2.94168 −0.181048
\(265\) 0 0
\(266\) 9.22468 0.565602
\(267\) 0.878689 0.0537749
\(268\) 23.3789 1.42809
\(269\) −16.6805 −1.01703 −0.508514 0.861054i \(-0.669805\pi\)
−0.508514 + 0.861054i \(0.669805\pi\)
\(270\) 0 0
\(271\) −13.2403 −0.804291 −0.402146 0.915576i \(-0.631735\pi\)
−0.402146 + 0.915576i \(0.631735\pi\)
\(272\) −7.50767 −0.455219
\(273\) −0.612947 −0.0370972
\(274\) 29.1951 1.76374
\(275\) 0 0
\(276\) −33.5015 −2.01655
\(277\) 17.2124 1.03419 0.517096 0.855927i \(-0.327013\pi\)
0.517096 + 0.855927i \(0.327013\pi\)
\(278\) −40.8014 −2.44711
\(279\) 0.243120 0.0145552
\(280\) 0 0
\(281\) 9.32448 0.556252 0.278126 0.960545i \(-0.410287\pi\)
0.278126 + 0.960545i \(0.410287\pi\)
\(282\) −11.5644 −0.688647
\(283\) −12.8642 −0.764698 −0.382349 0.924018i \(-0.624885\pi\)
−0.382349 + 0.924018i \(0.624885\pi\)
\(284\) −4.73891 −0.281203
\(285\) 0 0
\(286\) −0.246577 −0.0145804
\(287\) 20.5623 1.21376
\(288\) 8.11709 0.478304
\(289\) 31.9893 1.88172
\(290\) 0 0
\(291\) 14.6138 0.856673
\(292\) −25.0943 −1.46853
\(293\) 14.4092 0.841796 0.420898 0.907108i \(-0.361715\pi\)
0.420898 + 0.907108i \(0.361715\pi\)
\(294\) 30.2070 1.76171
\(295\) 0 0
\(296\) 1.49789 0.0870630
\(297\) 5.63538 0.326998
\(298\) 40.8910 2.36875
\(299\) −0.924597 −0.0534708
\(300\) 0 0
\(301\) 35.2393 2.03116
\(302\) 19.3419 1.11300
\(303\) 12.1958 0.700632
\(304\) 1.07264 0.0615202
\(305\) 0 0
\(306\) −18.7123 −1.06971
\(307\) 28.2838 1.61424 0.807122 0.590385i \(-0.201024\pi\)
0.807122 + 0.590385i \(0.201024\pi\)
\(308\) 12.3235 0.702194
\(309\) 4.82027 0.274216
\(310\) 0 0
\(311\) −12.3942 −0.702809 −0.351404 0.936224i \(-0.614296\pi\)
−0.351404 + 0.936224i \(0.614296\pi\)
\(312\) 0.324981 0.0183984
\(313\) 33.0560 1.86844 0.934219 0.356701i \(-0.116099\pi\)
0.934219 + 0.356701i \(0.116099\pi\)
\(314\) 41.8524 2.36187
\(315\) 0 0
\(316\) 8.36674 0.470666
\(317\) −9.95795 −0.559294 −0.279647 0.960103i \(-0.590217\pi\)
−0.279647 + 0.960103i \(0.590217\pi\)
\(318\) 30.4292 1.70638
\(319\) 3.28289 0.183807
\(320\) 0 0
\(321\) 9.57266 0.534294
\(322\) 77.2045 4.30244
\(323\) −6.99924 −0.389448
\(324\) −11.8431 −0.657951
\(325\) 0 0
\(326\) −44.1984 −2.44792
\(327\) −20.3264 −1.12405
\(328\) −10.9020 −0.601964
\(329\) 15.9510 0.879409
\(330\) 0 0
\(331\) 29.9575 1.64661 0.823307 0.567596i \(-0.192126\pi\)
0.823307 + 0.567596i \(0.192126\pi\)
\(332\) 16.4766 0.904270
\(333\) −0.818785 −0.0448692
\(334\) −4.27642 −0.233995
\(335\) 0 0
\(336\) 5.95135 0.324673
\(337\) −11.7426 −0.639662 −0.319831 0.947475i \(-0.603626\pi\)
−0.319831 + 0.947475i \(0.603626\pi\)
\(338\) −28.9886 −1.57677
\(339\) 3.59358 0.195177
\(340\) 0 0
\(341\) 0.202971 0.0109915
\(342\) 2.67348 0.144565
\(343\) −12.7348 −0.687613
\(344\) −18.6837 −1.00736
\(345\) 0 0
\(346\) 7.38381 0.396956
\(347\) −7.01661 −0.376671 −0.188336 0.982105i \(-0.560309\pi\)
−0.188336 + 0.982105i \(0.560309\pi\)
\(348\) −13.1410 −0.704434
\(349\) 4.66034 0.249462 0.124731 0.992191i \(-0.460193\pi\)
0.124731 + 0.992191i \(0.460193\pi\)
\(350\) 0 0
\(351\) −0.622565 −0.0332301
\(352\) 6.77665 0.361197
\(353\) 36.5878 1.94737 0.973687 0.227889i \(-0.0731823\pi\)
0.973687 + 0.227889i \(0.0731823\pi\)
\(354\) −31.4188 −1.66989
\(355\) 0 0
\(356\) 1.95167 0.103438
\(357\) −38.8340 −2.05531
\(358\) −49.0753 −2.59371
\(359\) 1.09396 0.0577369 0.0288684 0.999583i \(-0.490810\pi\)
0.0288684 + 0.999583i \(0.490810\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −37.9984 −1.99715
\(363\) 1.34246 0.0704608
\(364\) −1.36143 −0.0713581
\(365\) 0 0
\(366\) −10.5819 −0.553127
\(367\) 12.3334 0.643801 0.321900 0.946774i \(-0.395678\pi\)
0.321900 + 0.946774i \(0.395678\pi\)
\(368\) 8.97730 0.467974
\(369\) 5.95933 0.310231
\(370\) 0 0
\(371\) −41.9719 −2.17907
\(372\) −0.812471 −0.0421247
\(373\) 9.20094 0.476407 0.238203 0.971215i \(-0.423442\pi\)
0.238203 + 0.971215i \(0.423442\pi\)
\(374\) −15.6222 −0.807804
\(375\) 0 0
\(376\) −8.45715 −0.436144
\(377\) −0.362675 −0.0186787
\(378\) 51.9846 2.67380
\(379\) 36.7806 1.88929 0.944645 0.328093i \(-0.106406\pi\)
0.944645 + 0.328093i \(0.106406\pi\)
\(380\) 0 0
\(381\) 17.5592 0.899586
\(382\) −28.7364 −1.47028
\(383\) −23.8111 −1.21669 −0.608345 0.793673i \(-0.708166\pi\)
−0.608345 + 0.793673i \(0.708166\pi\)
\(384\) −20.6981 −1.05625
\(385\) 0 0
\(386\) −5.56317 −0.283158
\(387\) 10.2130 0.519155
\(388\) 32.4588 1.64785
\(389\) 3.05680 0.154986 0.0774928 0.996993i \(-0.475309\pi\)
0.0774928 + 0.996993i \(0.475309\pi\)
\(390\) 0 0
\(391\) −58.5790 −2.96247
\(392\) 22.0908 1.11575
\(393\) −11.1898 −0.564452
\(394\) −1.34857 −0.0679400
\(395\) 0 0
\(396\) 3.57156 0.179478
\(397\) −6.65411 −0.333960 −0.166980 0.985960i \(-0.553402\pi\)
−0.166980 + 0.985960i \(0.553402\pi\)
\(398\) −39.3661 −1.97325
\(399\) 5.54832 0.277763
\(400\) 0 0
\(401\) 18.0655 0.902148 0.451074 0.892487i \(-0.351041\pi\)
0.451074 + 0.892487i \(0.351041\pi\)
\(402\) 23.4933 1.17174
\(403\) −0.0224231 −0.00111698
\(404\) 27.0883 1.34770
\(405\) 0 0
\(406\) 30.2836 1.50295
\(407\) −0.683573 −0.0338834
\(408\) 20.5895 1.01933
\(409\) 30.6190 1.51401 0.757005 0.653409i \(-0.226662\pi\)
0.757005 + 0.653409i \(0.226662\pi\)
\(410\) 0 0
\(411\) 17.5598 0.866163
\(412\) 10.7064 0.527465
\(413\) 43.3369 2.13247
\(414\) 22.3752 1.09968
\(415\) 0 0
\(416\) −0.748646 −0.0367054
\(417\) −24.5406 −1.20176
\(418\) 2.23198 0.109170
\(419\) −38.4886 −1.88029 −0.940145 0.340774i \(-0.889311\pi\)
−0.940145 + 0.340774i \(0.889311\pi\)
\(420\) 0 0
\(421\) −33.2827 −1.62210 −0.811049 0.584979i \(-0.801103\pi\)
−0.811049 + 0.584979i \(0.801103\pi\)
\(422\) 44.4791 2.16521
\(423\) 4.62290 0.224773
\(424\) 22.2532 1.08071
\(425\) 0 0
\(426\) −4.76210 −0.230725
\(427\) 14.5960 0.706349
\(428\) 21.2620 1.02774
\(429\) −0.148307 −0.00716034
\(430\) 0 0
\(431\) 4.84543 0.233396 0.116698 0.993167i \(-0.462769\pi\)
0.116698 + 0.993167i \(0.462769\pi\)
\(432\) 6.04474 0.290828
\(433\) −29.2320 −1.40480 −0.702400 0.711783i \(-0.747888\pi\)
−0.702400 + 0.711783i \(0.747888\pi\)
\(434\) 1.87235 0.0898755
\(435\) 0 0
\(436\) −45.1473 −2.16216
\(437\) 8.36934 0.400360
\(438\) −25.2171 −1.20492
\(439\) −12.2196 −0.583211 −0.291605 0.956539i \(-0.594189\pi\)
−0.291605 + 0.956539i \(0.594189\pi\)
\(440\) 0 0
\(441\) −12.0754 −0.575018
\(442\) 1.72585 0.0820903
\(443\) 24.1325 1.14657 0.573284 0.819357i \(-0.305669\pi\)
0.573284 + 0.819357i \(0.305669\pi\)
\(444\) 2.73626 0.129857
\(445\) 0 0
\(446\) −28.1732 −1.33404
\(447\) 24.5945 1.16328
\(448\) 53.6461 2.53454
\(449\) −8.77225 −0.413988 −0.206994 0.978342i \(-0.566368\pi\)
−0.206994 + 0.978342i \(0.566368\pi\)
\(450\) 0 0
\(451\) 4.97522 0.234274
\(452\) 7.98176 0.375430
\(453\) 11.6335 0.546589
\(454\) −16.8964 −0.792987
\(455\) 0 0
\(456\) −2.94168 −0.137757
\(457\) 6.85848 0.320826 0.160413 0.987050i \(-0.448717\pi\)
0.160413 + 0.987050i \(0.448717\pi\)
\(458\) −18.3082 −0.855487
\(459\) −39.4433 −1.84106
\(460\) 0 0
\(461\) −24.9007 −1.15974 −0.579870 0.814709i \(-0.696896\pi\)
−0.579870 + 0.814709i \(0.696896\pi\)
\(462\) 12.3838 0.576145
\(463\) 2.79250 0.129778 0.0648892 0.997892i \(-0.479331\pi\)
0.0648892 + 0.997892i \(0.479331\pi\)
\(464\) 3.52137 0.163475
\(465\) 0 0
\(466\) −37.9222 −1.75671
\(467\) 7.55358 0.349538 0.174769 0.984609i \(-0.444082\pi\)
0.174769 + 0.984609i \(0.444082\pi\)
\(468\) −0.394565 −0.0182388
\(469\) −32.4050 −1.49632
\(470\) 0 0
\(471\) 25.1727 1.15990
\(472\) −22.9770 −1.05760
\(473\) 8.52642 0.392045
\(474\) 8.40768 0.386178
\(475\) 0 0
\(476\) −86.2547 −3.95348
\(477\) −12.1642 −0.556961
\(478\) −34.0467 −1.55726
\(479\) 28.2961 1.29288 0.646440 0.762965i \(-0.276257\pi\)
0.646440 + 0.762965i \(0.276257\pi\)
\(480\) 0 0
\(481\) 0.0755172 0.00344329
\(482\) −3.42928 −0.156199
\(483\) 46.4357 2.11290
\(484\) 2.98176 0.135534
\(485\) 0 0
\(486\) 25.8332 1.17182
\(487\) 22.0840 1.00072 0.500361 0.865817i \(-0.333201\pi\)
0.500361 + 0.865817i \(0.333201\pi\)
\(488\) −7.73870 −0.350315
\(489\) −26.5837 −1.20216
\(490\) 0 0
\(491\) 34.1421 1.54081 0.770405 0.637555i \(-0.220054\pi\)
0.770405 + 0.637555i \(0.220054\pi\)
\(492\) −19.9152 −0.897848
\(493\) −22.9777 −1.03487
\(494\) −0.246577 −0.0110940
\(495\) 0 0
\(496\) 0.217715 0.00977571
\(497\) 6.56851 0.294638
\(498\) 16.5572 0.741946
\(499\) −9.33688 −0.417976 −0.208988 0.977918i \(-0.567017\pi\)
−0.208988 + 0.977918i \(0.567017\pi\)
\(500\) 0 0
\(501\) −2.57211 −0.114914
\(502\) 55.0678 2.45780
\(503\) −16.8794 −0.752616 −0.376308 0.926495i \(-0.622807\pi\)
−0.376308 + 0.926495i \(0.622807\pi\)
\(504\) 10.8478 0.483198
\(505\) 0 0
\(506\) 18.6802 0.830438
\(507\) −17.4356 −0.774342
\(508\) 39.0010 1.73039
\(509\) 13.2971 0.589383 0.294691 0.955592i \(-0.404783\pi\)
0.294691 + 0.955592i \(0.404783\pi\)
\(510\) 0 0
\(511\) 34.7827 1.53870
\(512\) 11.9698 0.528995
\(513\) 5.63538 0.248808
\(514\) −26.5722 −1.17205
\(515\) 0 0
\(516\) −34.1303 −1.50250
\(517\) 3.85948 0.169740
\(518\) −6.30574 −0.277058
\(519\) 4.44110 0.194943
\(520\) 0 0
\(521\) −20.5200 −0.898997 −0.449499 0.893281i \(-0.648397\pi\)
−0.449499 + 0.893281i \(0.648397\pi\)
\(522\) 8.77675 0.384148
\(523\) −19.6848 −0.860757 −0.430378 0.902649i \(-0.641620\pi\)
−0.430378 + 0.902649i \(0.641620\pi\)
\(524\) −24.8539 −1.08575
\(525\) 0 0
\(526\) 1.89608 0.0826731
\(527\) −1.42064 −0.0618842
\(528\) 1.43998 0.0626670
\(529\) 47.0458 2.04547
\(530\) 0 0
\(531\) 12.5598 0.545049
\(532\) 12.3235 0.534289
\(533\) −0.549634 −0.0238073
\(534\) 1.96122 0.0848703
\(535\) 0 0
\(536\) 17.1809 0.742102
\(537\) −29.5170 −1.27375
\(538\) −37.2306 −1.60513
\(539\) −10.0813 −0.434231
\(540\) 0 0
\(541\) −15.9758 −0.686852 −0.343426 0.939180i \(-0.611587\pi\)
−0.343426 + 0.939180i \(0.611587\pi\)
\(542\) −29.5522 −1.26937
\(543\) −22.8547 −0.980787
\(544\) −47.4314 −2.03360
\(545\) 0 0
\(546\) −1.36809 −0.0585487
\(547\) 41.5489 1.77650 0.888252 0.459357i \(-0.151920\pi\)
0.888252 + 0.459357i \(0.151920\pi\)
\(548\) 39.0024 1.66610
\(549\) 4.23018 0.180540
\(550\) 0 0
\(551\) 3.28289 0.139856
\(552\) −24.6200 −1.04789
\(553\) −11.5970 −0.493153
\(554\) 38.4178 1.63222
\(555\) 0 0
\(556\) −54.5075 −2.31163
\(557\) −30.0766 −1.27439 −0.637194 0.770703i \(-0.719905\pi\)
−0.637194 + 0.770703i \(0.719905\pi\)
\(558\) 0.542640 0.0229718
\(559\) −0.941951 −0.0398403
\(560\) 0 0
\(561\) −9.39619 −0.396707
\(562\) 20.8121 0.877906
\(563\) −21.3804 −0.901079 −0.450539 0.892757i \(-0.648768\pi\)
−0.450539 + 0.892757i \(0.648768\pi\)
\(564\) −15.4491 −0.650523
\(565\) 0 0
\(566\) −28.7127 −1.20689
\(567\) 16.4155 0.689386
\(568\) −3.48258 −0.146126
\(569\) 11.5873 0.485767 0.242883 0.970055i \(-0.421907\pi\)
0.242883 + 0.970055i \(0.421907\pi\)
\(570\) 0 0
\(571\) −25.1618 −1.05299 −0.526494 0.850179i \(-0.676494\pi\)
−0.526494 + 0.850179i \(0.676494\pi\)
\(572\) −0.329408 −0.0137732
\(573\) −17.2839 −0.722046
\(574\) 45.8948 1.91561
\(575\) 0 0
\(576\) 15.5476 0.647817
\(577\) 1.55228 0.0646222 0.0323111 0.999478i \(-0.489713\pi\)
0.0323111 + 0.999478i \(0.489713\pi\)
\(578\) 71.3996 2.96983
\(579\) −3.34605 −0.139057
\(580\) 0 0
\(581\) −22.8378 −0.947473
\(582\) 32.6177 1.35205
\(583\) −10.1554 −0.420595
\(584\) −18.4416 −0.763118
\(585\) 0 0
\(586\) 32.1612 1.32857
\(587\) 5.32002 0.219581 0.109790 0.993955i \(-0.464982\pi\)
0.109790 + 0.993955i \(0.464982\pi\)
\(588\) 40.3542 1.66418
\(589\) 0.202971 0.00836329
\(590\) 0 0
\(591\) −0.811117 −0.0333649
\(592\) −0.733228 −0.0301355
\(593\) −36.2723 −1.48952 −0.744762 0.667331i \(-0.767437\pi\)
−0.744762 + 0.667331i \(0.767437\pi\)
\(594\) 12.5781 0.516085
\(595\) 0 0
\(596\) 54.6271 2.23761
\(597\) −23.6773 −0.969048
\(598\) −2.06369 −0.0843904
\(599\) −40.0043 −1.63453 −0.817266 0.576261i \(-0.804511\pi\)
−0.817266 + 0.576261i \(0.804511\pi\)
\(600\) 0 0
\(601\) 36.6257 1.49400 0.746998 0.664827i \(-0.231495\pi\)
0.746998 + 0.664827i \(0.231495\pi\)
\(602\) 78.6535 3.20568
\(603\) −9.39154 −0.382453
\(604\) 25.8393 1.05139
\(605\) 0 0
\(606\) 27.2209 1.10577
\(607\) −23.7724 −0.964893 −0.482446 0.875926i \(-0.660252\pi\)
−0.482446 + 0.875926i \(0.660252\pi\)
\(608\) 6.77665 0.274829
\(609\) 18.2145 0.738090
\(610\) 0 0
\(611\) −0.426374 −0.0172492
\(612\) −24.9982 −1.01049
\(613\) 2.77756 0.112184 0.0560922 0.998426i \(-0.482136\pi\)
0.0560922 + 0.998426i \(0.482136\pi\)
\(614\) 63.1291 2.54768
\(615\) 0 0
\(616\) 9.05639 0.364892
\(617\) −39.0259 −1.57112 −0.785562 0.618783i \(-0.787626\pi\)
−0.785562 + 0.618783i \(0.787626\pi\)
\(618\) 10.7588 0.432781
\(619\) 45.6890 1.83639 0.918197 0.396123i \(-0.129645\pi\)
0.918197 + 0.396123i \(0.129645\pi\)
\(620\) 0 0
\(621\) 47.1644 1.89264
\(622\) −27.6636 −1.10921
\(623\) −2.70517 −0.108380
\(624\) −0.159081 −0.00636832
\(625\) 0 0
\(626\) 73.7806 2.94886
\(627\) 1.34246 0.0536127
\(628\) 55.9115 2.23111
\(629\) 4.78448 0.190770
\(630\) 0 0
\(631\) −20.2465 −0.806000 −0.403000 0.915200i \(-0.632032\pi\)
−0.403000 + 0.915200i \(0.632032\pi\)
\(632\) 6.14864 0.244580
\(633\) 26.7526 1.06332
\(634\) −22.2260 −0.882707
\(635\) 0 0
\(636\) 40.6510 1.61192
\(637\) 1.11372 0.0441273
\(638\) 7.32737 0.290093
\(639\) 1.90367 0.0753081
\(640\) 0 0
\(641\) 22.9945 0.908229 0.454115 0.890943i \(-0.349956\pi\)
0.454115 + 0.890943i \(0.349956\pi\)
\(642\) 21.3660 0.843250
\(643\) 36.6452 1.44514 0.722572 0.691295i \(-0.242960\pi\)
0.722572 + 0.691295i \(0.242960\pi\)
\(644\) 103.139 4.06425
\(645\) 0 0
\(646\) −15.6222 −0.614647
\(647\) −36.1179 −1.41994 −0.709970 0.704232i \(-0.751291\pi\)
−0.709970 + 0.704232i \(0.751291\pi\)
\(648\) −8.70339 −0.341902
\(649\) 10.4857 0.411600
\(650\) 0 0
\(651\) 1.12615 0.0441373
\(652\) −59.0455 −2.31240
\(653\) −28.1710 −1.10242 −0.551208 0.834368i \(-0.685833\pi\)
−0.551208 + 0.834368i \(0.685833\pi\)
\(654\) −45.3683 −1.77404
\(655\) 0 0
\(656\) 5.33663 0.208360
\(657\) 10.0806 0.393284
\(658\) 35.6025 1.38793
\(659\) −46.4859 −1.81083 −0.905416 0.424525i \(-0.860441\pi\)
−0.905416 + 0.424525i \(0.860441\pi\)
\(660\) 0 0
\(661\) −37.2017 −1.44698 −0.723489 0.690336i \(-0.757463\pi\)
−0.723489 + 0.690336i \(0.757463\pi\)
\(662\) 66.8648 2.59877
\(663\) 1.03804 0.0403140
\(664\) 12.1085 0.469900
\(665\) 0 0
\(666\) −1.82752 −0.0708148
\(667\) 27.4756 1.06386
\(668\) −5.71296 −0.221041
\(669\) −16.9451 −0.655137
\(670\) 0 0
\(671\) 3.53161 0.136336
\(672\) 37.5990 1.45041
\(673\) −31.3183 −1.20723 −0.603616 0.797276i \(-0.706274\pi\)
−0.603616 + 0.797276i \(0.706274\pi\)
\(674\) −26.2094 −1.00955
\(675\) 0 0
\(676\) −38.7264 −1.48948
\(677\) −44.6151 −1.71470 −0.857349 0.514736i \(-0.827890\pi\)
−0.857349 + 0.514736i \(0.827890\pi\)
\(678\) 8.02082 0.308038
\(679\) −44.9905 −1.72658
\(680\) 0 0
\(681\) −10.1626 −0.389431
\(682\) 0.453029 0.0173474
\(683\) −11.0815 −0.424024 −0.212012 0.977267i \(-0.568002\pi\)
−0.212012 + 0.977267i \(0.568002\pi\)
\(684\) 3.57156 0.136562
\(685\) 0 0
\(686\) −28.4238 −1.08523
\(687\) −11.0117 −0.420124
\(688\) 9.14579 0.348680
\(689\) 1.12191 0.0427415
\(690\) 0 0
\(691\) −28.3303 −1.07773 −0.538867 0.842391i \(-0.681148\pi\)
−0.538867 + 0.842391i \(0.681148\pi\)
\(692\) 9.86419 0.374980
\(693\) −4.95046 −0.188052
\(694\) −15.6610 −0.594482
\(695\) 0 0
\(696\) −9.65724 −0.366057
\(697\) −34.8227 −1.31900
\(698\) 10.4018 0.393714
\(699\) −22.8089 −0.862711
\(700\) 0 0
\(701\) 41.4446 1.56534 0.782671 0.622435i \(-0.213857\pi\)
0.782671 + 0.622435i \(0.213857\pi\)
\(702\) −1.38956 −0.0524454
\(703\) −0.683573 −0.0257814
\(704\) 12.9801 0.489206
\(705\) 0 0
\(706\) 81.6635 3.07345
\(707\) −37.5466 −1.41208
\(708\) −41.9731 −1.57744
\(709\) −39.1483 −1.47025 −0.735123 0.677933i \(-0.762876\pi\)
−0.735123 + 0.677933i \(0.762876\pi\)
\(710\) 0 0
\(711\) −3.36101 −0.126048
\(712\) 1.43426 0.0537513
\(713\) 1.69874 0.0636182
\(714\) −86.6768 −3.24380
\(715\) 0 0
\(716\) −65.5607 −2.45012
\(717\) −20.4779 −0.764760
\(718\) 2.44170 0.0911233
\(719\) 27.5810 1.02860 0.514299 0.857611i \(-0.328052\pi\)
0.514299 + 0.857611i \(0.328052\pi\)
\(720\) 0 0
\(721\) −14.8399 −0.552666
\(722\) 2.23198 0.0830659
\(723\) −2.06259 −0.0767084
\(724\) −50.7628 −1.88659
\(725\) 0 0
\(726\) 2.99635 0.111205
\(727\) −44.7807 −1.66083 −0.830413 0.557149i \(-0.811895\pi\)
−0.830413 + 0.557149i \(0.811895\pi\)
\(728\) −1.00050 −0.0370810
\(729\) 27.4533 1.01679
\(730\) 0 0
\(731\) −59.6784 −2.20729
\(732\) −14.1366 −0.522506
\(733\) 15.0617 0.556316 0.278158 0.960535i \(-0.410276\pi\)
0.278158 + 0.960535i \(0.410276\pi\)
\(734\) 27.5281 1.01608
\(735\) 0 0
\(736\) 56.7161 2.09058
\(737\) −7.84063 −0.288813
\(738\) 13.3011 0.489622
\(739\) −16.7492 −0.616128 −0.308064 0.951366i \(-0.599681\pi\)
−0.308064 + 0.951366i \(0.599681\pi\)
\(740\) 0 0
\(741\) −0.148307 −0.00544820
\(742\) −93.6806 −3.43912
\(743\) −38.4706 −1.41135 −0.705674 0.708537i \(-0.749356\pi\)
−0.705674 + 0.708537i \(0.749356\pi\)
\(744\) −0.597078 −0.0218899
\(745\) 0 0
\(746\) 20.5364 0.751890
\(747\) −6.61882 −0.242170
\(748\) −20.8700 −0.763083
\(749\) −29.4708 −1.07684
\(750\) 0 0
\(751\) −38.7951 −1.41565 −0.707827 0.706386i \(-0.750324\pi\)
−0.707827 + 0.706386i \(0.750324\pi\)
\(752\) 4.13984 0.150964
\(753\) 33.1213 1.20701
\(754\) −0.809486 −0.0294797
\(755\) 0 0
\(756\) 69.4473 2.52577
\(757\) −49.3111 −1.79224 −0.896120 0.443811i \(-0.853626\pi\)
−0.896120 + 0.443811i \(0.853626\pi\)
\(758\) 82.0937 2.98178
\(759\) 11.2355 0.407823
\(760\) 0 0
\(761\) −7.21992 −0.261722 −0.130861 0.991401i \(-0.541774\pi\)
−0.130861 + 0.991401i \(0.541774\pi\)
\(762\) 39.1919 1.41977
\(763\) 62.5777 2.26547
\(764\) −38.3896 −1.38889
\(765\) 0 0
\(766\) −53.1460 −1.92024
\(767\) −1.15840 −0.0418274
\(768\) −11.3474 −0.409466
\(769\) 15.7986 0.569714 0.284857 0.958570i \(-0.408054\pi\)
0.284857 + 0.958570i \(0.408054\pi\)
\(770\) 0 0
\(771\) −15.9822 −0.575585
\(772\) −7.43196 −0.267482
\(773\) −13.1031 −0.471287 −0.235643 0.971840i \(-0.575720\pi\)
−0.235643 + 0.971840i \(0.575720\pi\)
\(774\) 22.7952 0.819357
\(775\) 0 0
\(776\) 23.8537 0.856298
\(777\) −3.79268 −0.136062
\(778\) 6.82272 0.244606
\(779\) 4.97522 0.178256
\(780\) 0 0
\(781\) 1.58930 0.0568697
\(782\) −130.747 −4.67552
\(783\) 18.5004 0.661149
\(784\) −10.8136 −0.386200
\(785\) 0 0
\(786\) −24.9755 −0.890847
\(787\) 4.60737 0.164235 0.0821176 0.996623i \(-0.473832\pi\)
0.0821176 + 0.996623i \(0.473832\pi\)
\(788\) −1.80158 −0.0641787
\(789\) 1.14043 0.0406002
\(790\) 0 0
\(791\) −11.0633 −0.393367
\(792\) 2.62471 0.0932648
\(793\) −0.390153 −0.0138547
\(794\) −14.8519 −0.527073
\(795\) 0 0
\(796\) −52.5901 −1.86401
\(797\) −12.6952 −0.449687 −0.224844 0.974395i \(-0.572187\pi\)
−0.224844 + 0.974395i \(0.572187\pi\)
\(798\) 12.3838 0.438380
\(799\) −27.0134 −0.955666
\(800\) 0 0
\(801\) −0.784006 −0.0277015
\(802\) 40.3219 1.42382
\(803\) 8.41595 0.296992
\(804\) 31.3852 1.10687
\(805\) 0 0
\(806\) −0.0500481 −0.00176287
\(807\) −22.3929 −0.788267
\(808\) 19.9070 0.700325
\(809\) −3.22295 −0.113313 −0.0566564 0.998394i \(-0.518044\pi\)
−0.0566564 + 0.998394i \(0.518044\pi\)
\(810\) 0 0
\(811\) 18.0724 0.634609 0.317304 0.948324i \(-0.397222\pi\)
0.317304 + 0.948324i \(0.397222\pi\)
\(812\) 40.4566 1.41975
\(813\) −17.7746 −0.623381
\(814\) −1.52572 −0.0534766
\(815\) 0 0
\(816\) −10.0787 −0.352826
\(817\) 8.52642 0.298302
\(818\) 68.3410 2.38949
\(819\) 0.546899 0.0191102
\(820\) 0 0
\(821\) 0.572887 0.0199939 0.00999694 0.999950i \(-0.496818\pi\)
0.00999694 + 0.999950i \(0.496818\pi\)
\(822\) 39.1933 1.36702
\(823\) 37.8486 1.31932 0.659660 0.751564i \(-0.270700\pi\)
0.659660 + 0.751564i \(0.270700\pi\)
\(824\) 7.86802 0.274095
\(825\) 0 0
\(826\) 96.7273 3.36557
\(827\) 10.9219 0.379792 0.189896 0.981804i \(-0.439185\pi\)
0.189896 + 0.981804i \(0.439185\pi\)
\(828\) 29.8916 1.03880
\(829\) 49.6425 1.72415 0.862077 0.506777i \(-0.169163\pi\)
0.862077 + 0.506777i \(0.169163\pi\)
\(830\) 0 0
\(831\) 23.1069 0.801571
\(832\) −1.43397 −0.0497139
\(833\) 70.5612 2.44480
\(834\) −54.7742 −1.89668
\(835\) 0 0
\(836\) 2.98176 0.103126
\(837\) 1.14382 0.0395362
\(838\) −85.9060 −2.96757
\(839\) −43.5296 −1.50281 −0.751404 0.659842i \(-0.770623\pi\)
−0.751404 + 0.659842i \(0.770623\pi\)
\(840\) 0 0
\(841\) −18.2226 −0.628366
\(842\) −74.2864 −2.56008
\(843\) 12.5177 0.431134
\(844\) 59.4206 2.04534
\(845\) 0 0
\(846\) 10.3182 0.354748
\(847\) −4.13295 −0.142010
\(848\) −10.8931 −0.374072
\(849\) −17.2697 −0.592694
\(850\) 0 0
\(851\) −5.72105 −0.196115
\(852\) −6.36180 −0.217952
\(853\) −24.4635 −0.837616 −0.418808 0.908075i \(-0.637552\pi\)
−0.418808 + 0.908075i \(0.637552\pi\)
\(854\) 32.5780 1.11480
\(855\) 0 0
\(856\) 15.6252 0.534060
\(857\) 22.5611 0.770672 0.385336 0.922776i \(-0.374086\pi\)
0.385336 + 0.922776i \(0.374086\pi\)
\(858\) −0.331020 −0.0113008
\(859\) −14.6892 −0.501189 −0.250595 0.968092i \(-0.580626\pi\)
−0.250595 + 0.968092i \(0.580626\pi\)
\(860\) 0 0
\(861\) 27.6041 0.940745
\(862\) 10.8149 0.368357
\(863\) 41.8413 1.42429 0.712147 0.702031i \(-0.247723\pi\)
0.712147 + 0.702031i \(0.247723\pi\)
\(864\) 38.1890 1.29922
\(865\) 0 0
\(866\) −65.2453 −2.21713
\(867\) 42.9443 1.45847
\(868\) 2.50131 0.0848999
\(869\) −2.80598 −0.0951862
\(870\) 0 0
\(871\) 0.866189 0.0293497
\(872\) −33.1784 −1.12356
\(873\) −13.0391 −0.441305
\(874\) 18.6802 0.631868
\(875\) 0 0
\(876\) −33.6881 −1.13821
\(877\) 54.9892 1.85685 0.928426 0.371516i \(-0.121162\pi\)
0.928426 + 0.371516i \(0.121162\pi\)
\(878\) −27.2740 −0.920453
\(879\) 19.3438 0.652450
\(880\) 0 0
\(881\) −30.1002 −1.01410 −0.507050 0.861917i \(-0.669264\pi\)
−0.507050 + 0.861917i \(0.669264\pi\)
\(882\) −26.9521 −0.907524
\(883\) −54.9963 −1.85077 −0.925386 0.379026i \(-0.876259\pi\)
−0.925386 + 0.379026i \(0.876259\pi\)
\(884\) 2.30560 0.0775458
\(885\) 0 0
\(886\) 53.8633 1.80957
\(887\) −32.8266 −1.10221 −0.551105 0.834436i \(-0.685794\pi\)
−0.551105 + 0.834436i \(0.685794\pi\)
\(888\) 2.01085 0.0674799
\(889\) −54.0585 −1.81306
\(890\) 0 0
\(891\) 3.97186 0.133062
\(892\) −37.6371 −1.26018
\(893\) 3.85948 0.129153
\(894\) 54.8944 1.83594
\(895\) 0 0
\(896\) 63.7222 2.12881
\(897\) −1.24123 −0.0414436
\(898\) −19.5795 −0.653377
\(899\) 0.666333 0.0222235
\(900\) 0 0
\(901\) 71.0802 2.36803
\(902\) 11.1046 0.369743
\(903\) 47.3073 1.57429
\(904\) 5.86572 0.195091
\(905\) 0 0
\(906\) 25.9658 0.862655
\(907\) −14.9631 −0.496841 −0.248421 0.968652i \(-0.579912\pi\)
−0.248421 + 0.968652i \(0.579912\pi\)
\(908\) −22.5723 −0.749087
\(909\) −10.8817 −0.360922
\(910\) 0 0
\(911\) 26.0121 0.861818 0.430909 0.902395i \(-0.358193\pi\)
0.430909 + 0.902395i \(0.358193\pi\)
\(912\) 1.43998 0.0476824
\(913\) −5.52580 −0.182877
\(914\) 15.3080 0.506344
\(915\) 0 0
\(916\) −24.4583 −0.808126
\(917\) 34.4495 1.13762
\(918\) −88.0370 −2.90565
\(919\) 40.8366 1.34707 0.673537 0.739153i \(-0.264774\pi\)
0.673537 + 0.739153i \(0.264774\pi\)
\(920\) 0 0
\(921\) 37.9699 1.25115
\(922\) −55.5779 −1.83036
\(923\) −0.175577 −0.00577919
\(924\) 16.5437 0.544249
\(925\) 0 0
\(926\) 6.23281 0.204823
\(927\) −4.30087 −0.141259
\(928\) 22.2470 0.730294
\(929\) 20.3088 0.666309 0.333155 0.942872i \(-0.391887\pi\)
0.333155 + 0.942872i \(0.391887\pi\)
\(930\) 0 0
\(931\) −10.0813 −0.330400
\(932\) −50.6611 −1.65946
\(933\) −16.6387 −0.544725
\(934\) 16.8595 0.551659
\(935\) 0 0
\(936\) −0.289963 −0.00947772
\(937\) −30.8199 −1.00684 −0.503422 0.864041i \(-0.667926\pi\)
−0.503422 + 0.864041i \(0.667926\pi\)
\(938\) −72.3274 −2.36157
\(939\) 44.3764 1.44817
\(940\) 0 0
\(941\) −18.2874 −0.596153 −0.298077 0.954542i \(-0.596345\pi\)
−0.298077 + 0.954542i \(0.596345\pi\)
\(942\) 56.1851 1.83061
\(943\) 41.6393 1.35596
\(944\) 11.2474 0.366072
\(945\) 0 0
\(946\) 19.0308 0.618746
\(947\) 53.3021 1.73209 0.866043 0.499970i \(-0.166656\pi\)
0.866043 + 0.499970i \(0.166656\pi\)
\(948\) 11.2320 0.364799
\(949\) −0.929746 −0.0301808
\(950\) 0 0
\(951\) −13.3681 −0.433492
\(952\) −63.3878 −2.05441
\(953\) −24.4980 −0.793568 −0.396784 0.917912i \(-0.629874\pi\)
−0.396784 + 0.917912i \(0.629874\pi\)
\(954\) −27.1503 −0.879024
\(955\) 0 0
\(956\) −45.4837 −1.47105
\(957\) 4.40715 0.142463
\(958\) 63.1564 2.04049
\(959\) −54.0604 −1.74570
\(960\) 0 0
\(961\) −30.9588 −0.998671
\(962\) 0.168553 0.00543438
\(963\) −8.54116 −0.275235
\(964\) −4.58124 −0.147552
\(965\) 0 0
\(966\) 103.644 3.33469
\(967\) −29.9164 −0.962047 −0.481023 0.876708i \(-0.659735\pi\)
−0.481023 + 0.876708i \(0.659735\pi\)
\(968\) 2.19127 0.0704299
\(969\) −9.39619 −0.301849
\(970\) 0 0
\(971\) 42.2300 1.35522 0.677612 0.735419i \(-0.263015\pi\)
0.677612 + 0.735419i \(0.263015\pi\)
\(972\) 34.5111 1.10694
\(973\) 75.5517 2.42208
\(974\) 49.2912 1.57939
\(975\) 0 0
\(976\) 3.78816 0.121256
\(977\) −25.2891 −0.809070 −0.404535 0.914523i \(-0.632567\pi\)
−0.404535 + 0.914523i \(0.632567\pi\)
\(978\) −59.3345 −1.89731
\(979\) −0.654537 −0.0209191
\(980\) 0 0
\(981\) 18.1362 0.579043
\(982\) 76.2046 2.43179
\(983\) 9.20537 0.293606 0.146803 0.989166i \(-0.453102\pi\)
0.146803 + 0.989166i \(0.453102\pi\)
\(984\) −14.6355 −0.466563
\(985\) 0 0
\(986\) −51.2860 −1.63328
\(987\) 21.4136 0.681603
\(988\) −0.329408 −0.0104799
\(989\) 71.3605 2.26913
\(990\) 0 0
\(991\) 32.9139 1.04554 0.522772 0.852472i \(-0.324898\pi\)
0.522772 + 0.852472i \(0.324898\pi\)
\(992\) 1.37547 0.0436711
\(993\) 40.2168 1.27624
\(994\) 14.6608 0.465013
\(995\) 0 0
\(996\) 22.1191 0.700871
\(997\) 6.45140 0.204318 0.102159 0.994768i \(-0.467425\pi\)
0.102159 + 0.994768i \(0.467425\pi\)
\(998\) −20.8398 −0.659671
\(999\) −3.85219 −0.121878
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.l.1.5 6
5.4 even 2 1045.2.a.f.1.2 6
15.14 odd 2 9405.2.a.z.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.2 6 5.4 even 2
5225.2.a.l.1.5 6 1.1 even 1 trivial
9405.2.a.z.1.5 6 15.14 odd 2