Properties

Label 5225.2.a.l.1.1
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.326248\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73890 q^{2} +0.901323 q^{3} +1.02379 q^{4} -1.56731 q^{6} -2.22757 q^{7} +1.69754 q^{8} -2.18762 q^{9} +O(q^{10})\) \(q-1.73890 q^{2} +0.901323 q^{3} +1.02379 q^{4} -1.56731 q^{6} -2.22757 q^{7} +1.69754 q^{8} -2.18762 q^{9} -1.00000 q^{11} +0.922763 q^{12} +3.64023 q^{13} +3.87353 q^{14} -4.99943 q^{16} -0.644551 q^{17} +3.80406 q^{18} -1.00000 q^{19} -2.00776 q^{21} +1.73890 q^{22} +6.15983 q^{23} +1.53003 q^{24} -6.33001 q^{26} -4.67572 q^{27} -2.28056 q^{28} -1.88204 q^{29} -0.183675 q^{31} +5.29846 q^{32} -0.901323 q^{33} +1.12081 q^{34} -2.23966 q^{36} +4.11428 q^{37} +1.73890 q^{38} +3.28102 q^{39} -1.53371 q^{41} +3.49130 q^{42} +1.53577 q^{43} -1.02379 q^{44} -10.7113 q^{46} -1.75837 q^{47} -4.50610 q^{48} -2.03793 q^{49} -0.580948 q^{51} +3.72682 q^{52} +2.81491 q^{53} +8.13063 q^{54} -3.78139 q^{56} -0.901323 q^{57} +3.27269 q^{58} -3.90068 q^{59} +0.734057 q^{61} +0.319392 q^{62} +4.87307 q^{63} +0.785358 q^{64} +1.56731 q^{66} +1.30264 q^{67} -0.659883 q^{68} +5.55199 q^{69} +10.5493 q^{71} -3.71357 q^{72} +5.17599 q^{73} -7.15433 q^{74} -1.02379 q^{76} +2.22757 q^{77} -5.70538 q^{78} +2.89974 q^{79} +2.34852 q^{81} +2.66698 q^{82} -13.8209 q^{83} -2.05552 q^{84} -2.67055 q^{86} -1.69633 q^{87} -1.69754 q^{88} -6.39884 q^{89} -8.10886 q^{91} +6.30635 q^{92} -0.165550 q^{93} +3.05763 q^{94} +4.77562 q^{96} -6.23352 q^{97} +3.54376 q^{98} +2.18762 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - 5 q^{7} + 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - 5 q^{7} + 12 q^{8} + q^{9} - 6 q^{11} - q^{12} + 5 q^{13} - 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{18} - 6 q^{19} - 21 q^{21} - 2 q^{22} - 4 q^{23} - q^{24} - 14 q^{26} + 16 q^{27} - 10 q^{28} - 9 q^{29} - 21 q^{31} + q^{32} - q^{33} - 28 q^{36} + 3 q^{37} - 2 q^{38} + 20 q^{39} - 23 q^{41} - q^{42} - 7 q^{43} - 4 q^{44} - 12 q^{46} + 18 q^{47} - 3 q^{49} - 16 q^{51} - 13 q^{52} + 17 q^{53} + q^{54} - 2 q^{56} - q^{57} - 23 q^{58} - 29 q^{59} + 17 q^{61} - 2 q^{62} - 6 q^{63} - 18 q^{64} - 8 q^{67} + q^{68} - 38 q^{69} - 12 q^{71} - 13 q^{72} - 2 q^{73} - 37 q^{74} - 4 q^{76} + 5 q^{77} - q^{78} + 3 q^{79} - 2 q^{81} - 24 q^{82} + 11 q^{83} - 3 q^{84} - 12 q^{86} + 12 q^{87} - 12 q^{88} - 22 q^{89} - 18 q^{91} + 15 q^{92} - 18 q^{93} + 22 q^{94} - 17 q^{96} + 2 q^{97} + q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73890 −1.22959 −0.614795 0.788687i \(-0.710761\pi\)
−0.614795 + 0.788687i \(0.710761\pi\)
\(3\) 0.901323 0.520379 0.260190 0.965558i \(-0.416215\pi\)
0.260190 + 0.965558i \(0.416215\pi\)
\(4\) 1.02379 0.511894
\(5\) 0 0
\(6\) −1.56731 −0.639853
\(7\) −2.22757 −0.841943 −0.420971 0.907074i \(-0.638311\pi\)
−0.420971 + 0.907074i \(0.638311\pi\)
\(8\) 1.69754 0.600171
\(9\) −2.18762 −0.729206
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0.922763 0.266379
\(13\) 3.64023 1.00962 0.504809 0.863231i \(-0.331563\pi\)
0.504809 + 0.863231i \(0.331563\pi\)
\(14\) 3.87353 1.03525
\(15\) 0 0
\(16\) −4.99943 −1.24986
\(17\) −0.644551 −0.156327 −0.0781633 0.996941i \(-0.524906\pi\)
−0.0781633 + 0.996941i \(0.524906\pi\)
\(18\) 3.80406 0.896625
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −2.00776 −0.438129
\(22\) 1.73890 0.370736
\(23\) 6.15983 1.28441 0.642206 0.766532i \(-0.278019\pi\)
0.642206 + 0.766532i \(0.278019\pi\)
\(24\) 1.53003 0.312316
\(25\) 0 0
\(26\) −6.33001 −1.24142
\(27\) −4.67572 −0.899842
\(28\) −2.28056 −0.430985
\(29\) −1.88204 −0.349487 −0.174743 0.984614i \(-0.555910\pi\)
−0.174743 + 0.984614i \(0.555910\pi\)
\(30\) 0 0
\(31\) −0.183675 −0.0329889 −0.0164945 0.999864i \(-0.505251\pi\)
−0.0164945 + 0.999864i \(0.505251\pi\)
\(32\) 5.29846 0.936644
\(33\) −0.901323 −0.156900
\(34\) 1.12081 0.192218
\(35\) 0 0
\(36\) −2.23966 −0.373276
\(37\) 4.11428 0.676383 0.338192 0.941077i \(-0.390185\pi\)
0.338192 + 0.941077i \(0.390185\pi\)
\(38\) 1.73890 0.282088
\(39\) 3.28102 0.525384
\(40\) 0 0
\(41\) −1.53371 −0.239525 −0.119763 0.992803i \(-0.538213\pi\)
−0.119763 + 0.992803i \(0.538213\pi\)
\(42\) 3.49130 0.538720
\(43\) 1.53577 0.234202 0.117101 0.993120i \(-0.462640\pi\)
0.117101 + 0.993120i \(0.462640\pi\)
\(44\) −1.02379 −0.154342
\(45\) 0 0
\(46\) −10.7113 −1.57930
\(47\) −1.75837 −0.256484 −0.128242 0.991743i \(-0.540933\pi\)
−0.128242 + 0.991743i \(0.540933\pi\)
\(48\) −4.50610 −0.650400
\(49\) −2.03793 −0.291133
\(50\) 0 0
\(51\) −0.580948 −0.0813491
\(52\) 3.72682 0.516817
\(53\) 2.81491 0.386658 0.193329 0.981134i \(-0.438071\pi\)
0.193329 + 0.981134i \(0.438071\pi\)
\(54\) 8.13063 1.10644
\(55\) 0 0
\(56\) −3.78139 −0.505309
\(57\) −0.901323 −0.119383
\(58\) 3.27269 0.429726
\(59\) −3.90068 −0.507825 −0.253913 0.967227i \(-0.581718\pi\)
−0.253913 + 0.967227i \(0.581718\pi\)
\(60\) 0 0
\(61\) 0.734057 0.0939863 0.0469932 0.998895i \(-0.485036\pi\)
0.0469932 + 0.998895i \(0.485036\pi\)
\(62\) 0.319392 0.0405629
\(63\) 4.87307 0.613949
\(64\) 0.785358 0.0981698
\(65\) 0 0
\(66\) 1.56731 0.192923
\(67\) 1.30264 0.159143 0.0795717 0.996829i \(-0.474645\pi\)
0.0795717 + 0.996829i \(0.474645\pi\)
\(68\) −0.659883 −0.0800226
\(69\) 5.55199 0.668381
\(70\) 0 0
\(71\) 10.5493 1.25197 0.625983 0.779837i \(-0.284698\pi\)
0.625983 + 0.779837i \(0.284698\pi\)
\(72\) −3.71357 −0.437648
\(73\) 5.17599 0.605804 0.302902 0.953022i \(-0.402044\pi\)
0.302902 + 0.953022i \(0.402044\pi\)
\(74\) −7.15433 −0.831674
\(75\) 0 0
\(76\) −1.02379 −0.117437
\(77\) 2.22757 0.253855
\(78\) −5.70538 −0.646007
\(79\) 2.89974 0.326246 0.163123 0.986606i \(-0.447843\pi\)
0.163123 + 0.986606i \(0.447843\pi\)
\(80\) 0 0
\(81\) 2.34852 0.260947
\(82\) 2.66698 0.294518
\(83\) −13.8209 −1.51704 −0.758522 0.651647i \(-0.774078\pi\)
−0.758522 + 0.651647i \(0.774078\pi\)
\(84\) −2.05552 −0.224276
\(85\) 0 0
\(86\) −2.67055 −0.287973
\(87\) −1.69633 −0.181866
\(88\) −1.69754 −0.180958
\(89\) −6.39884 −0.678275 −0.339138 0.940737i \(-0.610135\pi\)
−0.339138 + 0.940737i \(0.610135\pi\)
\(90\) 0 0
\(91\) −8.10886 −0.850040
\(92\) 6.30635 0.657483
\(93\) −0.165550 −0.0171667
\(94\) 3.05763 0.315371
\(95\) 0 0
\(96\) 4.77562 0.487410
\(97\) −6.23352 −0.632918 −0.316459 0.948606i \(-0.602494\pi\)
−0.316459 + 0.948606i \(0.602494\pi\)
\(98\) 3.54376 0.357974
\(99\) 2.18762 0.219864
\(100\) 0 0
\(101\) −16.3563 −1.62751 −0.813756 0.581206i \(-0.802581\pi\)
−0.813756 + 0.581206i \(0.802581\pi\)
\(102\) 1.01021 0.100026
\(103\) −0.645519 −0.0636049 −0.0318025 0.999494i \(-0.510125\pi\)
−0.0318025 + 0.999494i \(0.510125\pi\)
\(104\) 6.17943 0.605943
\(105\) 0 0
\(106\) −4.89487 −0.475432
\(107\) 17.5900 1.70049 0.850243 0.526390i \(-0.176455\pi\)
0.850243 + 0.526390i \(0.176455\pi\)
\(108\) −4.78694 −0.460624
\(109\) 19.4359 1.86162 0.930808 0.365507i \(-0.119104\pi\)
0.930808 + 0.365507i \(0.119104\pi\)
\(110\) 0 0
\(111\) 3.70829 0.351976
\(112\) 11.1366 1.05231
\(113\) 5.88383 0.553504 0.276752 0.960941i \(-0.410742\pi\)
0.276752 + 0.960941i \(0.410742\pi\)
\(114\) 1.56731 0.146792
\(115\) 0 0
\(116\) −1.92681 −0.178900
\(117\) −7.96342 −0.736219
\(118\) 6.78291 0.624417
\(119\) 1.43578 0.131618
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.27645 −0.115565
\(123\) −1.38237 −0.124644
\(124\) −0.188044 −0.0168868
\(125\) 0 0
\(126\) −8.47381 −0.754907
\(127\) −15.9676 −1.41690 −0.708450 0.705762i \(-0.750605\pi\)
−0.708450 + 0.705762i \(0.750605\pi\)
\(128\) −11.9626 −1.05735
\(129\) 1.38422 0.121874
\(130\) 0 0
\(131\) −3.93173 −0.343517 −0.171759 0.985139i \(-0.554945\pi\)
−0.171759 + 0.985139i \(0.554945\pi\)
\(132\) −0.922763 −0.0803162
\(133\) 2.22757 0.193155
\(134\) −2.26517 −0.195681
\(135\) 0 0
\(136\) −1.09415 −0.0938226
\(137\) −15.5422 −1.32786 −0.663929 0.747796i \(-0.731112\pi\)
−0.663929 + 0.747796i \(0.731112\pi\)
\(138\) −9.65438 −0.821836
\(139\) −6.69900 −0.568202 −0.284101 0.958794i \(-0.591695\pi\)
−0.284101 + 0.958794i \(0.591695\pi\)
\(140\) 0 0
\(141\) −1.58486 −0.133469
\(142\) −18.3441 −1.53941
\(143\) −3.64023 −0.304411
\(144\) 10.9368 0.911404
\(145\) 0 0
\(146\) −9.00056 −0.744891
\(147\) −1.83683 −0.151499
\(148\) 4.21215 0.346236
\(149\) 0.783045 0.0641496 0.0320748 0.999485i \(-0.489789\pi\)
0.0320748 + 0.999485i \(0.489789\pi\)
\(150\) 0 0
\(151\) 8.46749 0.689075 0.344537 0.938773i \(-0.388036\pi\)
0.344537 + 0.938773i \(0.388036\pi\)
\(152\) −1.69754 −0.137689
\(153\) 1.41003 0.113994
\(154\) −3.87353 −0.312138
\(155\) 0 0
\(156\) 3.35907 0.268941
\(157\) −8.27024 −0.660037 −0.330019 0.943974i \(-0.607055\pi\)
−0.330019 + 0.943974i \(0.607055\pi\)
\(158\) −5.04237 −0.401150
\(159\) 2.53715 0.201209
\(160\) 0 0
\(161\) −13.7215 −1.08140
\(162\) −4.08385 −0.320858
\(163\) −23.9030 −1.87223 −0.936113 0.351699i \(-0.885604\pi\)
−0.936113 + 0.351699i \(0.885604\pi\)
\(164\) −1.57019 −0.122612
\(165\) 0 0
\(166\) 24.0333 1.86534
\(167\) 19.4405 1.50435 0.752176 0.658962i \(-0.229004\pi\)
0.752176 + 0.658962i \(0.229004\pi\)
\(168\) −3.40825 −0.262952
\(169\) 0.251253 0.0193272
\(170\) 0 0
\(171\) 2.18762 0.167291
\(172\) 1.57230 0.119887
\(173\) 11.6888 0.888682 0.444341 0.895858i \(-0.353438\pi\)
0.444341 + 0.895858i \(0.353438\pi\)
\(174\) 2.94975 0.223620
\(175\) 0 0
\(176\) 4.99943 0.376847
\(177\) −3.51577 −0.264261
\(178\) 11.1270 0.834001
\(179\) −6.77452 −0.506351 −0.253176 0.967420i \(-0.581475\pi\)
−0.253176 + 0.967420i \(0.581475\pi\)
\(180\) 0 0
\(181\) −4.34551 −0.322999 −0.161500 0.986873i \(-0.551633\pi\)
−0.161500 + 0.986873i \(0.551633\pi\)
\(182\) 14.1005 1.04520
\(183\) 0.661622 0.0489085
\(184\) 10.4565 0.770867
\(185\) 0 0
\(186\) 0.287876 0.0211081
\(187\) 0.644551 0.0471342
\(188\) −1.80020 −0.131293
\(189\) 10.4155 0.757616
\(190\) 0 0
\(191\) −1.37612 −0.0995728 −0.0497864 0.998760i \(-0.515854\pi\)
−0.0497864 + 0.998760i \(0.515854\pi\)
\(192\) 0.707861 0.0510855
\(193\) −5.15711 −0.371217 −0.185609 0.982624i \(-0.559426\pi\)
−0.185609 + 0.982624i \(0.559426\pi\)
\(194\) 10.8395 0.778231
\(195\) 0 0
\(196\) −2.08641 −0.149029
\(197\) −12.0998 −0.862072 −0.431036 0.902335i \(-0.641852\pi\)
−0.431036 + 0.902335i \(0.641852\pi\)
\(198\) −3.80406 −0.270343
\(199\) −13.2948 −0.942445 −0.471223 0.882014i \(-0.656187\pi\)
−0.471223 + 0.882014i \(0.656187\pi\)
\(200\) 0 0
\(201\) 1.17410 0.0828149
\(202\) 28.4420 2.00117
\(203\) 4.19239 0.294248
\(204\) −0.594768 −0.0416421
\(205\) 0 0
\(206\) 1.12250 0.0782080
\(207\) −13.4753 −0.936601
\(208\) −18.1991 −1.26188
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −26.0866 −1.79588 −0.897939 0.440120i \(-0.854936\pi\)
−0.897939 + 0.440120i \(0.854936\pi\)
\(212\) 2.88188 0.197928
\(213\) 9.50828 0.651497
\(214\) −30.5873 −2.09090
\(215\) 0 0
\(216\) −7.93722 −0.540059
\(217\) 0.409148 0.0277748
\(218\) −33.7971 −2.28903
\(219\) 4.66524 0.315248
\(220\) 0 0
\(221\) −2.34631 −0.157830
\(222\) −6.44837 −0.432786
\(223\) −13.8606 −0.928175 −0.464087 0.885789i \(-0.653618\pi\)
−0.464087 + 0.885789i \(0.653618\pi\)
\(224\) −11.8027 −0.788600
\(225\) 0 0
\(226\) −10.2314 −0.680583
\(227\) 12.9104 0.856893 0.428446 0.903567i \(-0.359061\pi\)
0.428446 + 0.903567i \(0.359061\pi\)
\(228\) −0.922763 −0.0611115
\(229\) 7.93710 0.524499 0.262249 0.965000i \(-0.415536\pi\)
0.262249 + 0.965000i \(0.415536\pi\)
\(230\) 0 0
\(231\) 2.00776 0.132101
\(232\) −3.19484 −0.209752
\(233\) −17.6265 −1.15475 −0.577374 0.816480i \(-0.695922\pi\)
−0.577374 + 0.816480i \(0.695922\pi\)
\(234\) 13.8476 0.905248
\(235\) 0 0
\(236\) −3.99347 −0.259953
\(237\) 2.61360 0.169772
\(238\) −2.49669 −0.161836
\(239\) −18.6909 −1.20901 −0.604507 0.796600i \(-0.706630\pi\)
−0.604507 + 0.796600i \(0.706630\pi\)
\(240\) 0 0
\(241\) −0.877285 −0.0565109 −0.0282555 0.999601i \(-0.508995\pi\)
−0.0282555 + 0.999601i \(0.508995\pi\)
\(242\) −1.73890 −0.111781
\(243\) 16.1439 1.03563
\(244\) 0.751518 0.0481110
\(245\) 0 0
\(246\) 2.40381 0.153261
\(247\) −3.64023 −0.231622
\(248\) −0.311795 −0.0197990
\(249\) −12.4571 −0.789438
\(250\) 0 0
\(251\) −0.448818 −0.0283291 −0.0141646 0.999900i \(-0.504509\pi\)
−0.0141646 + 0.999900i \(0.504509\pi\)
\(252\) 4.98899 0.314277
\(253\) −6.15983 −0.387265
\(254\) 27.7662 1.74221
\(255\) 0 0
\(256\) 19.2311 1.20194
\(257\) 7.85809 0.490174 0.245087 0.969501i \(-0.421183\pi\)
0.245087 + 0.969501i \(0.421183\pi\)
\(258\) −2.40703 −0.149855
\(259\) −9.16484 −0.569476
\(260\) 0 0
\(261\) 4.11719 0.254848
\(262\) 6.83691 0.422386
\(263\) −0.585215 −0.0360859 −0.0180429 0.999837i \(-0.505744\pi\)
−0.0180429 + 0.999837i \(0.505744\pi\)
\(264\) −1.53003 −0.0941669
\(265\) 0 0
\(266\) −3.87353 −0.237502
\(267\) −5.76742 −0.352960
\(268\) 1.33363 0.0814645
\(269\) −3.59078 −0.218934 −0.109467 0.993990i \(-0.534914\pi\)
−0.109467 + 0.993990i \(0.534914\pi\)
\(270\) 0 0
\(271\) −23.4466 −1.42428 −0.712139 0.702038i \(-0.752274\pi\)
−0.712139 + 0.702038i \(0.752274\pi\)
\(272\) 3.22239 0.195386
\(273\) −7.30870 −0.442343
\(274\) 27.0264 1.63272
\(275\) 0 0
\(276\) 5.68406 0.342140
\(277\) 19.2912 1.15909 0.579547 0.814939i \(-0.303229\pi\)
0.579547 + 0.814939i \(0.303229\pi\)
\(278\) 11.6489 0.698656
\(279\) 0.401809 0.0240557
\(280\) 0 0
\(281\) −5.82550 −0.347520 −0.173760 0.984788i \(-0.555592\pi\)
−0.173760 + 0.984788i \(0.555592\pi\)
\(282\) 2.75592 0.164112
\(283\) 15.5166 0.922368 0.461184 0.887305i \(-0.347425\pi\)
0.461184 + 0.887305i \(0.347425\pi\)
\(284\) 10.8002 0.640874
\(285\) 0 0
\(286\) 6.33001 0.374301
\(287\) 3.41645 0.201667
\(288\) −11.5910 −0.683006
\(289\) −16.5846 −0.975562
\(290\) 0 0
\(291\) −5.61842 −0.329357
\(292\) 5.29912 0.310107
\(293\) 12.8089 0.748305 0.374152 0.927367i \(-0.377934\pi\)
0.374152 + 0.927367i \(0.377934\pi\)
\(294\) 3.19407 0.186282
\(295\) 0 0
\(296\) 6.98415 0.405945
\(297\) 4.67572 0.271313
\(298\) −1.36164 −0.0788777
\(299\) 22.4232 1.29677
\(300\) 0 0
\(301\) −3.42103 −0.197185
\(302\) −14.7242 −0.847280
\(303\) −14.7423 −0.846923
\(304\) 4.99943 0.286737
\(305\) 0 0
\(306\) −2.45191 −0.140166
\(307\) 14.0052 0.799321 0.399661 0.916663i \(-0.369128\pi\)
0.399661 + 0.916663i \(0.369128\pi\)
\(308\) 2.28056 0.129947
\(309\) −0.581821 −0.0330987
\(310\) 0 0
\(311\) 4.10325 0.232674 0.116337 0.993210i \(-0.462885\pi\)
0.116337 + 0.993210i \(0.462885\pi\)
\(312\) 5.56966 0.315320
\(313\) −21.5394 −1.21748 −0.608740 0.793370i \(-0.708325\pi\)
−0.608740 + 0.793370i \(0.708325\pi\)
\(314\) 14.3812 0.811576
\(315\) 0 0
\(316\) 2.96872 0.167004
\(317\) 8.36917 0.470059 0.235030 0.971988i \(-0.424481\pi\)
0.235030 + 0.971988i \(0.424481\pi\)
\(318\) −4.41186 −0.247405
\(319\) 1.88204 0.105374
\(320\) 0 0
\(321\) 15.8542 0.884898
\(322\) 23.8603 1.32968
\(323\) 0.644551 0.0358638
\(324\) 2.40439 0.133577
\(325\) 0 0
\(326\) 41.5650 2.30207
\(327\) 17.5180 0.968746
\(328\) −2.60353 −0.143756
\(329\) 3.91689 0.215945
\(330\) 0 0
\(331\) −29.1194 −1.60055 −0.800274 0.599635i \(-0.795312\pi\)
−0.800274 + 0.599635i \(0.795312\pi\)
\(332\) −14.1497 −0.776565
\(333\) −9.00046 −0.493222
\(334\) −33.8052 −1.84974
\(335\) 0 0
\(336\) 10.0377 0.547600
\(337\) −3.36844 −0.183491 −0.0917453 0.995783i \(-0.529245\pi\)
−0.0917453 + 0.995783i \(0.529245\pi\)
\(338\) −0.436905 −0.0237645
\(339\) 5.30323 0.288032
\(340\) 0 0
\(341\) 0.183675 0.00994653
\(342\) −3.80406 −0.205700
\(343\) 20.1326 1.08706
\(344\) 2.60702 0.140561
\(345\) 0 0
\(346\) −20.3257 −1.09272
\(347\) −3.97272 −0.213267 −0.106633 0.994298i \(-0.534007\pi\)
−0.106633 + 0.994298i \(0.534007\pi\)
\(348\) −1.73668 −0.0930959
\(349\) 1.51616 0.0811581 0.0405790 0.999176i \(-0.487080\pi\)
0.0405790 + 0.999176i \(0.487080\pi\)
\(350\) 0 0
\(351\) −17.0207 −0.908496
\(352\) −5.29846 −0.282409
\(353\) −4.76876 −0.253816 −0.126908 0.991915i \(-0.540505\pi\)
−0.126908 + 0.991915i \(0.540505\pi\)
\(354\) 6.11359 0.324934
\(355\) 0 0
\(356\) −6.55105 −0.347205
\(357\) 1.29410 0.0684912
\(358\) 11.7802 0.622605
\(359\) 0.542750 0.0286453 0.0143226 0.999897i \(-0.495441\pi\)
0.0143226 + 0.999897i \(0.495441\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 7.55643 0.397157
\(363\) 0.901323 0.0473072
\(364\) −8.30176 −0.435130
\(365\) 0 0
\(366\) −1.15050 −0.0601375
\(367\) 26.1792 1.36654 0.683271 0.730165i \(-0.260557\pi\)
0.683271 + 0.730165i \(0.260557\pi\)
\(368\) −30.7956 −1.60533
\(369\) 3.35517 0.174663
\(370\) 0 0
\(371\) −6.27042 −0.325544
\(372\) −0.169488 −0.00878755
\(373\) 12.7807 0.661760 0.330880 0.943673i \(-0.392655\pi\)
0.330880 + 0.943673i \(0.392655\pi\)
\(374\) −1.12081 −0.0579558
\(375\) 0 0
\(376\) −2.98490 −0.153934
\(377\) −6.85107 −0.352848
\(378\) −18.1115 −0.931557
\(379\) −26.0931 −1.34031 −0.670157 0.742219i \(-0.733773\pi\)
−0.670157 + 0.742219i \(0.733773\pi\)
\(380\) 0 0
\(381\) −14.3920 −0.737325
\(382\) 2.39295 0.122434
\(383\) 12.7812 0.653091 0.326545 0.945182i \(-0.394115\pi\)
0.326545 + 0.945182i \(0.394115\pi\)
\(384\) −10.7821 −0.550224
\(385\) 0 0
\(386\) 8.96773 0.456445
\(387\) −3.35967 −0.170781
\(388\) −6.38180 −0.323987
\(389\) −8.97979 −0.455293 −0.227647 0.973744i \(-0.573103\pi\)
−0.227647 + 0.973744i \(0.573103\pi\)
\(390\) 0 0
\(391\) −3.97032 −0.200788
\(392\) −3.45946 −0.174729
\(393\) −3.54376 −0.178759
\(394\) 21.0403 1.06000
\(395\) 0 0
\(396\) 2.23966 0.112547
\(397\) −26.8417 −1.34715 −0.673573 0.739120i \(-0.735242\pi\)
−0.673573 + 0.739120i \(0.735242\pi\)
\(398\) 23.1184 1.15882
\(399\) 2.00776 0.100514
\(400\) 0 0
\(401\) −9.25518 −0.462182 −0.231091 0.972932i \(-0.574229\pi\)
−0.231091 + 0.972932i \(0.574229\pi\)
\(402\) −2.04165 −0.101828
\(403\) −0.668617 −0.0333062
\(404\) −16.7454 −0.833114
\(405\) 0 0
\(406\) −7.29016 −0.361804
\(407\) −4.11428 −0.203937
\(408\) −0.986183 −0.0488233
\(409\) 26.0835 1.28975 0.644874 0.764289i \(-0.276910\pi\)
0.644874 + 0.764289i \(0.276910\pi\)
\(410\) 0 0
\(411\) −14.0085 −0.690990
\(412\) −0.660875 −0.0325590
\(413\) 8.68904 0.427560
\(414\) 23.4323 1.15164
\(415\) 0 0
\(416\) 19.2876 0.945652
\(417\) −6.03796 −0.295680
\(418\) −1.73890 −0.0850526
\(419\) −32.5181 −1.58861 −0.794307 0.607517i \(-0.792166\pi\)
−0.794307 + 0.607517i \(0.792166\pi\)
\(420\) 0 0
\(421\) 3.16934 0.154464 0.0772320 0.997013i \(-0.475392\pi\)
0.0772320 + 0.997013i \(0.475392\pi\)
\(422\) 45.3621 2.20819
\(423\) 3.84664 0.187030
\(424\) 4.77843 0.232061
\(425\) 0 0
\(426\) −16.5340 −0.801074
\(427\) −1.63516 −0.0791311
\(428\) 18.0084 0.870469
\(429\) −3.28102 −0.158409
\(430\) 0 0
\(431\) −1.19700 −0.0576575 −0.0288288 0.999584i \(-0.509178\pi\)
−0.0288288 + 0.999584i \(0.509178\pi\)
\(432\) 23.3759 1.12468
\(433\) −23.4218 −1.12558 −0.562789 0.826601i \(-0.690272\pi\)
−0.562789 + 0.826601i \(0.690272\pi\)
\(434\) −0.711469 −0.0341516
\(435\) 0 0
\(436\) 19.8982 0.952950
\(437\) −6.15983 −0.294664
\(438\) −8.11241 −0.387626
\(439\) −21.4961 −1.02595 −0.512975 0.858403i \(-0.671457\pi\)
−0.512975 + 0.858403i \(0.671457\pi\)
\(440\) 0 0
\(441\) 4.45821 0.212295
\(442\) 4.08001 0.194066
\(443\) −23.6133 −1.12190 −0.560950 0.827850i \(-0.689564\pi\)
−0.560950 + 0.827850i \(0.689564\pi\)
\(444\) 3.79650 0.180174
\(445\) 0 0
\(446\) 24.1023 1.14128
\(447\) 0.705777 0.0333821
\(448\) −1.74944 −0.0826533
\(449\) −5.35004 −0.252484 −0.126242 0.991999i \(-0.540292\pi\)
−0.126242 + 0.991999i \(0.540292\pi\)
\(450\) 0 0
\(451\) 1.53371 0.0722196
\(452\) 6.02379 0.283335
\(453\) 7.63194 0.358580
\(454\) −22.4499 −1.05363
\(455\) 0 0
\(456\) −1.53003 −0.0716503
\(457\) −39.7929 −1.86143 −0.930716 0.365742i \(-0.880815\pi\)
−0.930716 + 0.365742i \(0.880815\pi\)
\(458\) −13.8019 −0.644919
\(459\) 3.01374 0.140669
\(460\) 0 0
\(461\) −3.21566 −0.149768 −0.0748840 0.997192i \(-0.523859\pi\)
−0.0748840 + 0.997192i \(0.523859\pi\)
\(462\) −3.49130 −0.162430
\(463\) −16.7065 −0.776416 −0.388208 0.921572i \(-0.626906\pi\)
−0.388208 + 0.921572i \(0.626906\pi\)
\(464\) 9.40915 0.436809
\(465\) 0 0
\(466\) 30.6507 1.41987
\(467\) 37.8565 1.75179 0.875894 0.482503i \(-0.160272\pi\)
0.875894 + 0.482503i \(0.160272\pi\)
\(468\) −8.15285 −0.376866
\(469\) −2.90173 −0.133990
\(470\) 0 0
\(471\) −7.45416 −0.343469
\(472\) −6.62156 −0.304782
\(473\) −1.53577 −0.0706146
\(474\) −4.54481 −0.208750
\(475\) 0 0
\(476\) 1.46994 0.0673744
\(477\) −6.15796 −0.281953
\(478\) 32.5017 1.48659
\(479\) −16.6101 −0.758936 −0.379468 0.925205i \(-0.623893\pi\)
−0.379468 + 0.925205i \(0.623893\pi\)
\(480\) 0 0
\(481\) 14.9769 0.682888
\(482\) 1.52552 0.0694853
\(483\) −12.3675 −0.562739
\(484\) 1.02379 0.0465358
\(485\) 0 0
\(486\) −28.0727 −1.27341
\(487\) −29.2975 −1.32760 −0.663798 0.747912i \(-0.731056\pi\)
−0.663798 + 0.747912i \(0.731056\pi\)
\(488\) 1.24609 0.0564079
\(489\) −21.5443 −0.974267
\(490\) 0 0
\(491\) −0.806717 −0.0364066 −0.0182033 0.999834i \(-0.505795\pi\)
−0.0182033 + 0.999834i \(0.505795\pi\)
\(492\) −1.41525 −0.0638045
\(493\) 1.21307 0.0546340
\(494\) 6.33001 0.284800
\(495\) 0 0
\(496\) 0.918269 0.0412315
\(497\) −23.4992 −1.05408
\(498\) 21.6617 0.970686
\(499\) −30.7212 −1.37527 −0.687634 0.726058i \(-0.741351\pi\)
−0.687634 + 0.726058i \(0.741351\pi\)
\(500\) 0 0
\(501\) 17.5222 0.782833
\(502\) 0.780451 0.0348332
\(503\) 13.0527 0.581991 0.290995 0.956724i \(-0.406014\pi\)
0.290995 + 0.956724i \(0.406014\pi\)
\(504\) 8.27223 0.368475
\(505\) 0 0
\(506\) 10.7113 0.476178
\(507\) 0.226460 0.0100574
\(508\) −16.3475 −0.725302
\(509\) −22.6615 −1.00445 −0.502226 0.864736i \(-0.667485\pi\)
−0.502226 + 0.864736i \(0.667485\pi\)
\(510\) 0 0
\(511\) −11.5299 −0.510052
\(512\) −9.51581 −0.420544
\(513\) 4.67572 0.206438
\(514\) −13.6645 −0.602713
\(515\) 0 0
\(516\) 1.41715 0.0623865
\(517\) 1.75837 0.0773329
\(518\) 15.9368 0.700222
\(519\) 10.5354 0.462451
\(520\) 0 0
\(521\) 19.0608 0.835070 0.417535 0.908661i \(-0.362894\pi\)
0.417535 + 0.908661i \(0.362894\pi\)
\(522\) −7.15940 −0.313358
\(523\) −15.1864 −0.664054 −0.332027 0.943270i \(-0.607732\pi\)
−0.332027 + 0.943270i \(0.607732\pi\)
\(524\) −4.02526 −0.175844
\(525\) 0 0
\(526\) 1.01763 0.0443709
\(527\) 0.118388 0.00515704
\(528\) 4.50610 0.196103
\(529\) 14.9435 0.649716
\(530\) 0 0
\(531\) 8.53319 0.370309
\(532\) 2.28056 0.0988748
\(533\) −5.58305 −0.241829
\(534\) 10.0290 0.433997
\(535\) 0 0
\(536\) 2.21129 0.0955132
\(537\) −6.10603 −0.263495
\(538\) 6.24402 0.269199
\(539\) 2.03793 0.0877798
\(540\) 0 0
\(541\) 41.1432 1.76888 0.884442 0.466650i \(-0.154539\pi\)
0.884442 + 0.466650i \(0.154539\pi\)
\(542\) 40.7714 1.75128
\(543\) −3.91671 −0.168082
\(544\) −3.41513 −0.146422
\(545\) 0 0
\(546\) 12.7091 0.543901
\(547\) −40.7714 −1.74326 −0.871630 0.490164i \(-0.836937\pi\)
−0.871630 + 0.490164i \(0.836937\pi\)
\(548\) −15.9119 −0.679722
\(549\) −1.60583 −0.0685354
\(550\) 0 0
\(551\) 1.88204 0.0801778
\(552\) 9.42473 0.401143
\(553\) −6.45938 −0.274681
\(554\) −33.5455 −1.42521
\(555\) 0 0
\(556\) −6.85835 −0.290859
\(557\) 14.2315 0.603009 0.301504 0.953465i \(-0.402511\pi\)
0.301504 + 0.953465i \(0.402511\pi\)
\(558\) −0.698708 −0.0295787
\(559\) 5.59054 0.236454
\(560\) 0 0
\(561\) 0.580948 0.0245277
\(562\) 10.1300 0.427308
\(563\) 11.1511 0.469963 0.234982 0.972000i \(-0.424497\pi\)
0.234982 + 0.972000i \(0.424497\pi\)
\(564\) −1.62256 −0.0683220
\(565\) 0 0
\(566\) −26.9819 −1.13414
\(567\) −5.23149 −0.219702
\(568\) 17.9078 0.751393
\(569\) 11.4022 0.478005 0.239003 0.971019i \(-0.423180\pi\)
0.239003 + 0.971019i \(0.423180\pi\)
\(570\) 0 0
\(571\) 12.5111 0.523573 0.261787 0.965126i \(-0.415688\pi\)
0.261787 + 0.965126i \(0.415688\pi\)
\(572\) −3.72682 −0.155826
\(573\) −1.24033 −0.0518156
\(574\) −5.94088 −0.247967
\(575\) 0 0
\(576\) −1.71806 −0.0715860
\(577\) −7.95520 −0.331179 −0.165590 0.986195i \(-0.552953\pi\)
−0.165590 + 0.986195i \(0.552953\pi\)
\(578\) 28.8390 1.19954
\(579\) −4.64822 −0.193174
\(580\) 0 0
\(581\) 30.7871 1.27726
\(582\) 9.76989 0.404975
\(583\) −2.81491 −0.116582
\(584\) 8.78645 0.363586
\(585\) 0 0
\(586\) −22.2735 −0.920109
\(587\) −45.7680 −1.88905 −0.944524 0.328443i \(-0.893476\pi\)
−0.944524 + 0.328443i \(0.893476\pi\)
\(588\) −1.88052 −0.0775515
\(589\) 0.183675 0.00756818
\(590\) 0 0
\(591\) −10.9058 −0.448604
\(592\) −20.5691 −0.845383
\(593\) 26.3613 1.08253 0.541264 0.840853i \(-0.317946\pi\)
0.541264 + 0.840853i \(0.317946\pi\)
\(594\) −8.13063 −0.333604
\(595\) 0 0
\(596\) 0.801672 0.0328378
\(597\) −11.9829 −0.490429
\(598\) −38.9917 −1.59449
\(599\) 17.3368 0.708361 0.354180 0.935177i \(-0.384760\pi\)
0.354180 + 0.935177i \(0.384760\pi\)
\(600\) 0 0
\(601\) −15.7946 −0.644274 −0.322137 0.946693i \(-0.604401\pi\)
−0.322137 + 0.946693i \(0.604401\pi\)
\(602\) 5.94884 0.242457
\(603\) −2.84969 −0.116048
\(604\) 8.66891 0.352733
\(605\) 0 0
\(606\) 25.6355 1.04137
\(607\) 1.80754 0.0733659 0.0366829 0.999327i \(-0.488321\pi\)
0.0366829 + 0.999327i \(0.488321\pi\)
\(608\) −5.29846 −0.214881
\(609\) 3.77869 0.153120
\(610\) 0 0
\(611\) −6.40086 −0.258951
\(612\) 1.44357 0.0583529
\(613\) −10.9246 −0.441239 −0.220619 0.975360i \(-0.570808\pi\)
−0.220619 + 0.975360i \(0.570808\pi\)
\(614\) −24.3538 −0.982838
\(615\) 0 0
\(616\) 3.78139 0.152357
\(617\) 2.68742 0.108191 0.0540957 0.998536i \(-0.482772\pi\)
0.0540957 + 0.998536i \(0.482772\pi\)
\(618\) 1.01173 0.0406978
\(619\) 18.2439 0.733284 0.366642 0.930362i \(-0.380507\pi\)
0.366642 + 0.930362i \(0.380507\pi\)
\(620\) 0 0
\(621\) −28.8016 −1.15577
\(622\) −7.13515 −0.286094
\(623\) 14.2539 0.571069
\(624\) −16.4032 −0.656655
\(625\) 0 0
\(626\) 37.4550 1.49700
\(627\) 0.901323 0.0359954
\(628\) −8.46697 −0.337869
\(629\) −2.65186 −0.105737
\(630\) 0 0
\(631\) 9.12012 0.363066 0.181533 0.983385i \(-0.441894\pi\)
0.181533 + 0.983385i \(0.441894\pi\)
\(632\) 4.92243 0.195804
\(633\) −23.5125 −0.934537
\(634\) −14.5532 −0.577981
\(635\) 0 0
\(636\) 2.59750 0.102998
\(637\) −7.41852 −0.293932
\(638\) −3.27269 −0.129567
\(639\) −23.0777 −0.912940
\(640\) 0 0
\(641\) −2.90773 −0.114848 −0.0574241 0.998350i \(-0.518289\pi\)
−0.0574241 + 0.998350i \(0.518289\pi\)
\(642\) −27.5690 −1.08806
\(643\) 3.35603 0.132349 0.0661745 0.997808i \(-0.478921\pi\)
0.0661745 + 0.997808i \(0.478921\pi\)
\(644\) −14.0479 −0.553563
\(645\) 0 0
\(646\) −1.12081 −0.0440978
\(647\) −26.5428 −1.04351 −0.521753 0.853096i \(-0.674722\pi\)
−0.521753 + 0.853096i \(0.674722\pi\)
\(648\) 3.98670 0.156613
\(649\) 3.90068 0.153115
\(650\) 0 0
\(651\) 0.368774 0.0144534
\(652\) −24.4716 −0.958381
\(653\) −28.6844 −1.12251 −0.561253 0.827644i \(-0.689681\pi\)
−0.561253 + 0.827644i \(0.689681\pi\)
\(654\) −30.4621 −1.19116
\(655\) 0 0
\(656\) 7.66768 0.299373
\(657\) −11.3231 −0.441756
\(658\) −6.81110 −0.265524
\(659\) −39.0719 −1.52203 −0.761013 0.648737i \(-0.775297\pi\)
−0.761013 + 0.648737i \(0.775297\pi\)
\(660\) 0 0
\(661\) −21.1901 −0.824199 −0.412099 0.911139i \(-0.635204\pi\)
−0.412099 + 0.911139i \(0.635204\pi\)
\(662\) 50.6358 1.96802
\(663\) −2.11478 −0.0821314
\(664\) −23.4616 −0.910486
\(665\) 0 0
\(666\) 15.6509 0.606462
\(667\) −11.5931 −0.448885
\(668\) 19.9030 0.770069
\(669\) −12.4929 −0.483003
\(670\) 0 0
\(671\) −0.734057 −0.0283379
\(672\) −10.6380 −0.410371
\(673\) 24.6931 0.951849 0.475924 0.879486i \(-0.342114\pi\)
0.475924 + 0.879486i \(0.342114\pi\)
\(674\) 5.85739 0.225618
\(675\) 0 0
\(676\) 0.257230 0.00989345
\(677\) −5.41516 −0.208122 −0.104061 0.994571i \(-0.533184\pi\)
−0.104061 + 0.994571i \(0.533184\pi\)
\(678\) −9.22180 −0.354161
\(679\) 13.8856 0.532881
\(680\) 0 0
\(681\) 11.6364 0.445909
\(682\) −0.319392 −0.0122302
\(683\) 13.7885 0.527604 0.263802 0.964577i \(-0.415023\pi\)
0.263802 + 0.964577i \(0.415023\pi\)
\(684\) 2.23966 0.0856354
\(685\) 0 0
\(686\) −35.0087 −1.33664
\(687\) 7.15389 0.272938
\(688\) −7.67796 −0.292719
\(689\) 10.2469 0.390377
\(690\) 0 0
\(691\) −31.5750 −1.20117 −0.600586 0.799560i \(-0.705066\pi\)
−0.600586 + 0.799560i \(0.705066\pi\)
\(692\) 11.9668 0.454911
\(693\) −4.87307 −0.185113
\(694\) 6.90818 0.262231
\(695\) 0 0
\(696\) −2.87959 −0.109150
\(697\) 0.988554 0.0374442
\(698\) −2.63645 −0.0997912
\(699\) −15.8871 −0.600906
\(700\) 0 0
\(701\) −17.4459 −0.658924 −0.329462 0.944169i \(-0.606867\pi\)
−0.329462 + 0.944169i \(0.606867\pi\)
\(702\) 29.5973 1.11708
\(703\) −4.11428 −0.155173
\(704\) −0.785358 −0.0295993
\(705\) 0 0
\(706\) 8.29242 0.312089
\(707\) 36.4348 1.37027
\(708\) −3.59940 −0.135274
\(709\) −38.7266 −1.45441 −0.727205 0.686421i \(-0.759181\pi\)
−0.727205 + 0.686421i \(0.759181\pi\)
\(710\) 0 0
\(711\) −6.34352 −0.237901
\(712\) −10.8623 −0.407081
\(713\) −1.13140 −0.0423714
\(714\) −2.25032 −0.0842162
\(715\) 0 0
\(716\) −6.93567 −0.259198
\(717\) −16.8465 −0.629145
\(718\) −0.943791 −0.0352220
\(719\) −28.9402 −1.07929 −0.539644 0.841894i \(-0.681441\pi\)
−0.539644 + 0.841894i \(0.681441\pi\)
\(720\) 0 0
\(721\) 1.43794 0.0535517
\(722\) −1.73890 −0.0647153
\(723\) −0.790717 −0.0294071
\(724\) −4.44888 −0.165341
\(725\) 0 0
\(726\) −1.56731 −0.0581685
\(727\) 0.331738 0.0123035 0.00615174 0.999981i \(-0.498042\pi\)
0.00615174 + 0.999981i \(0.498042\pi\)
\(728\) −13.7651 −0.510169
\(729\) 7.50533 0.277975
\(730\) 0 0
\(731\) −0.989879 −0.0366120
\(732\) 0.677361 0.0250360
\(733\) 30.5241 1.12743 0.563716 0.825969i \(-0.309371\pi\)
0.563716 + 0.825969i \(0.309371\pi\)
\(734\) −45.5231 −1.68029
\(735\) 0 0
\(736\) 32.6376 1.20304
\(737\) −1.30264 −0.0479835
\(738\) −5.83432 −0.214764
\(739\) −8.65314 −0.318311 −0.159155 0.987254i \(-0.550877\pi\)
−0.159155 + 0.987254i \(0.550877\pi\)
\(740\) 0 0
\(741\) −3.28102 −0.120531
\(742\) 10.9037 0.400286
\(743\) −33.9919 −1.24704 −0.623521 0.781807i \(-0.714298\pi\)
−0.623521 + 0.781807i \(0.714298\pi\)
\(744\) −0.281028 −0.0103030
\(745\) 0 0
\(746\) −22.2244 −0.813694
\(747\) 30.2349 1.10624
\(748\) 0.659883 0.0241277
\(749\) −39.1829 −1.43171
\(750\) 0 0
\(751\) −50.2581 −1.83394 −0.916972 0.398951i \(-0.869374\pi\)
−0.916972 + 0.398951i \(0.869374\pi\)
\(752\) 8.79085 0.320569
\(753\) −0.404530 −0.0147419
\(754\) 11.9133 0.433859
\(755\) 0 0
\(756\) 10.6633 0.387819
\(757\) −10.7948 −0.392344 −0.196172 0.980570i \(-0.562851\pi\)
−0.196172 + 0.980570i \(0.562851\pi\)
\(758\) 45.3734 1.64804
\(759\) −5.55199 −0.201525
\(760\) 0 0
\(761\) 15.5661 0.564272 0.282136 0.959374i \(-0.408957\pi\)
0.282136 + 0.959374i \(0.408957\pi\)
\(762\) 25.0263 0.906608
\(763\) −43.2947 −1.56737
\(764\) −1.40886 −0.0509707
\(765\) 0 0
\(766\) −22.2254 −0.803035
\(767\) −14.1994 −0.512709
\(768\) 17.3334 0.625465
\(769\) 19.6520 0.708671 0.354335 0.935118i \(-0.384707\pi\)
0.354335 + 0.935118i \(0.384707\pi\)
\(770\) 0 0
\(771\) 7.08267 0.255076
\(772\) −5.27979 −0.190024
\(773\) 41.0208 1.47541 0.737707 0.675121i \(-0.235908\pi\)
0.737707 + 0.675121i \(0.235908\pi\)
\(774\) 5.84214 0.209991
\(775\) 0 0
\(776\) −10.5817 −0.379859
\(777\) −8.26048 −0.296343
\(778\) 15.6150 0.559825
\(779\) 1.53371 0.0549509
\(780\) 0 0
\(781\) −10.5493 −0.377482
\(782\) 6.90401 0.246887
\(783\) 8.79991 0.314483
\(784\) 10.1885 0.363874
\(785\) 0 0
\(786\) 6.16226 0.219801
\(787\) −25.2114 −0.898688 −0.449344 0.893359i \(-0.648342\pi\)
−0.449344 + 0.893359i \(0.648342\pi\)
\(788\) −12.3876 −0.441289
\(789\) −0.527467 −0.0187783
\(790\) 0 0
\(791\) −13.1066 −0.466018
\(792\) 3.71357 0.131956
\(793\) 2.67213 0.0948902
\(794\) 46.6752 1.65644
\(795\) 0 0
\(796\) −13.6111 −0.482432
\(797\) 23.4053 0.829057 0.414528 0.910036i \(-0.363947\pi\)
0.414528 + 0.910036i \(0.363947\pi\)
\(798\) −3.49130 −0.123591
\(799\) 1.13336 0.0400953
\(800\) 0 0
\(801\) 13.9982 0.494602
\(802\) 16.0939 0.568294
\(803\) −5.17599 −0.182657
\(804\) 1.20203 0.0423924
\(805\) 0 0
\(806\) 1.16266 0.0409530
\(807\) −3.23645 −0.113929
\(808\) −27.7655 −0.976786
\(809\) −25.3235 −0.890325 −0.445163 0.895450i \(-0.646854\pi\)
−0.445163 + 0.895450i \(0.646854\pi\)
\(810\) 0 0
\(811\) −1.24610 −0.0437566 −0.0218783 0.999761i \(-0.506965\pi\)
−0.0218783 + 0.999761i \(0.506965\pi\)
\(812\) 4.29211 0.150624
\(813\) −21.1329 −0.741165
\(814\) 7.15433 0.250759
\(815\) 0 0
\(816\) 2.90441 0.101675
\(817\) −1.53577 −0.0537296
\(818\) −45.3567 −1.58586
\(819\) 17.7391 0.619854
\(820\) 0 0
\(821\) 20.4113 0.712359 0.356180 0.934418i \(-0.384079\pi\)
0.356180 + 0.934418i \(0.384079\pi\)
\(822\) 24.3595 0.849634
\(823\) 15.4655 0.539093 0.269546 0.962987i \(-0.413126\pi\)
0.269546 + 0.962987i \(0.413126\pi\)
\(824\) −1.09579 −0.0381738
\(825\) 0 0
\(826\) −15.1094 −0.525723
\(827\) 46.2008 1.60656 0.803280 0.595602i \(-0.203087\pi\)
0.803280 + 0.595602i \(0.203087\pi\)
\(828\) −13.7959 −0.479440
\(829\) 2.91356 0.101192 0.0505961 0.998719i \(-0.483888\pi\)
0.0505961 + 0.998719i \(0.483888\pi\)
\(830\) 0 0
\(831\) 17.3876 0.603168
\(832\) 2.85888 0.0991139
\(833\) 1.31355 0.0455117
\(834\) 10.4994 0.363566
\(835\) 0 0
\(836\) 1.02379 0.0354084
\(837\) 0.858810 0.0296848
\(838\) 56.5459 1.95334
\(839\) 28.2887 0.976633 0.488317 0.872667i \(-0.337611\pi\)
0.488317 + 0.872667i \(0.337611\pi\)
\(840\) 0 0
\(841\) −25.4579 −0.877859
\(842\) −5.51117 −0.189928
\(843\) −5.25066 −0.180842
\(844\) −26.7072 −0.919299
\(845\) 0 0
\(846\) −6.68893 −0.229970
\(847\) −2.22757 −0.0765402
\(848\) −14.0730 −0.483268
\(849\) 13.9855 0.479981
\(850\) 0 0
\(851\) 25.3432 0.868755
\(852\) 9.73446 0.333497
\(853\) −41.9234 −1.43543 −0.717715 0.696337i \(-0.754812\pi\)
−0.717715 + 0.696337i \(0.754812\pi\)
\(854\) 2.84339 0.0972989
\(855\) 0 0
\(856\) 29.8597 1.02058
\(857\) −52.4352 −1.79115 −0.895576 0.444909i \(-0.853236\pi\)
−0.895576 + 0.444909i \(0.853236\pi\)
\(858\) 5.70538 0.194778
\(859\) −21.2305 −0.724374 −0.362187 0.932105i \(-0.617970\pi\)
−0.362187 + 0.932105i \(0.617970\pi\)
\(860\) 0 0
\(861\) 3.07932 0.104943
\(862\) 2.08147 0.0708952
\(863\) −1.75582 −0.0597690 −0.0298845 0.999553i \(-0.509514\pi\)
−0.0298845 + 0.999553i \(0.509514\pi\)
\(864\) −24.7741 −0.842832
\(865\) 0 0
\(866\) 40.7282 1.38400
\(867\) −14.9480 −0.507662
\(868\) 0.418881 0.0142177
\(869\) −2.89974 −0.0983670
\(870\) 0 0
\(871\) 4.74192 0.160674
\(872\) 32.9931 1.11729
\(873\) 13.6366 0.461528
\(874\) 10.7113 0.362317
\(875\) 0 0
\(876\) 4.77622 0.161373
\(877\) −27.7873 −0.938309 −0.469155 0.883116i \(-0.655441\pi\)
−0.469155 + 0.883116i \(0.655441\pi\)
\(878\) 37.3796 1.26150
\(879\) 11.5450 0.389402
\(880\) 0 0
\(881\) 38.8712 1.30960 0.654802 0.755800i \(-0.272752\pi\)
0.654802 + 0.755800i \(0.272752\pi\)
\(882\) −7.75239 −0.261037
\(883\) 1.20467 0.0405404 0.0202702 0.999795i \(-0.493547\pi\)
0.0202702 + 0.999795i \(0.493547\pi\)
\(884\) −2.40212 −0.0807922
\(885\) 0 0
\(886\) 41.0612 1.37948
\(887\) 44.0947 1.48056 0.740278 0.672301i \(-0.234694\pi\)
0.740278 + 0.672301i \(0.234694\pi\)
\(888\) 6.29497 0.211245
\(889\) 35.5691 1.19295
\(890\) 0 0
\(891\) −2.34852 −0.0786784
\(892\) −14.1903 −0.475127
\(893\) 1.75837 0.0588415
\(894\) −1.22728 −0.0410463
\(895\) 0 0
\(896\) 26.6475 0.890230
\(897\) 20.2105 0.674809
\(898\) 9.30320 0.310452
\(899\) 0.345683 0.0115292
\(900\) 0 0
\(901\) −1.81436 −0.0604450
\(902\) −2.66698 −0.0888006
\(903\) −3.08345 −0.102611
\(904\) 9.98803 0.332197
\(905\) 0 0
\(906\) −13.2712 −0.440907
\(907\) −36.2297 −1.20299 −0.601493 0.798878i \(-0.705427\pi\)
−0.601493 + 0.798878i \(0.705427\pi\)
\(908\) 13.2175 0.438638
\(909\) 35.7813 1.18679
\(910\) 0 0
\(911\) −5.41417 −0.179380 −0.0896898 0.995970i \(-0.528588\pi\)
−0.0896898 + 0.995970i \(0.528588\pi\)
\(912\) 4.50610 0.149212
\(913\) 13.8209 0.457406
\(914\) 69.1960 2.28880
\(915\) 0 0
\(916\) 8.12591 0.268488
\(917\) 8.75822 0.289222
\(918\) −5.24060 −0.172966
\(919\) 54.0931 1.78437 0.892183 0.451675i \(-0.149173\pi\)
0.892183 + 0.451675i \(0.149173\pi\)
\(920\) 0 0
\(921\) 12.6232 0.415950
\(922\) 5.59172 0.184153
\(923\) 38.4017 1.26401
\(924\) 2.05552 0.0676217
\(925\) 0 0
\(926\) 29.0510 0.954674
\(927\) 1.41215 0.0463811
\(928\) −9.97193 −0.327345
\(929\) 52.0785 1.70864 0.854320 0.519747i \(-0.173974\pi\)
0.854320 + 0.519747i \(0.173974\pi\)
\(930\) 0 0
\(931\) 2.03793 0.0667904
\(932\) −18.0457 −0.591108
\(933\) 3.69835 0.121079
\(934\) −65.8288 −2.15398
\(935\) 0 0
\(936\) −13.5182 −0.441857
\(937\) −35.9861 −1.17561 −0.587807 0.809002i \(-0.700008\pi\)
−0.587807 + 0.809002i \(0.700008\pi\)
\(938\) 5.04584 0.164752
\(939\) −19.4140 −0.633551
\(940\) 0 0
\(941\) 11.9972 0.391098 0.195549 0.980694i \(-0.437351\pi\)
0.195549 + 0.980694i \(0.437351\pi\)
\(942\) 12.9621 0.422327
\(943\) −9.44739 −0.307649
\(944\) 19.5012 0.634709
\(945\) 0 0
\(946\) 2.67055 0.0868271
\(947\) −37.1663 −1.20774 −0.603871 0.797082i \(-0.706376\pi\)
−0.603871 + 0.797082i \(0.706376\pi\)
\(948\) 2.67577 0.0869051
\(949\) 18.8418 0.611630
\(950\) 0 0
\(951\) 7.54332 0.244609
\(952\) 2.43730 0.0789933
\(953\) −16.5500 −0.536106 −0.268053 0.963404i \(-0.586380\pi\)
−0.268053 + 0.963404i \(0.586380\pi\)
\(954\) 10.7081 0.346687
\(955\) 0 0
\(956\) −19.1355 −0.618886
\(957\) 1.69633 0.0548345
\(958\) 28.8834 0.933180
\(959\) 34.6213 1.11798
\(960\) 0 0
\(961\) −30.9663 −0.998912
\(962\) −26.0434 −0.839673
\(963\) −38.4801 −1.24000
\(964\) −0.898154 −0.0289276
\(965\) 0 0
\(966\) 21.5058 0.691939
\(967\) −37.7443 −1.21377 −0.606887 0.794788i \(-0.707582\pi\)
−0.606887 + 0.794788i \(0.707582\pi\)
\(968\) 1.69754 0.0545610
\(969\) 0.580948 0.0186628
\(970\) 0 0
\(971\) −40.2912 −1.29301 −0.646504 0.762911i \(-0.723769\pi\)
−0.646504 + 0.762911i \(0.723769\pi\)
\(972\) 16.5280 0.530134
\(973\) 14.9225 0.478393
\(974\) 50.9455 1.63240
\(975\) 0 0
\(976\) −3.66987 −0.117470
\(977\) −1.24031 −0.0396812 −0.0198406 0.999803i \(-0.506316\pi\)
−0.0198406 + 0.999803i \(0.506316\pi\)
\(978\) 37.4635 1.19795
\(979\) 6.39884 0.204508
\(980\) 0 0
\(981\) −42.5182 −1.35750
\(982\) 1.40280 0.0447653
\(983\) −8.75471 −0.279232 −0.139616 0.990206i \(-0.544587\pi\)
−0.139616 + 0.990206i \(0.544587\pi\)
\(984\) −2.34662 −0.0748077
\(985\) 0 0
\(986\) −2.10942 −0.0671775
\(987\) 3.53038 0.112373
\(988\) −3.72682 −0.118566
\(989\) 9.46005 0.300812
\(990\) 0 0
\(991\) 49.7066 1.57898 0.789491 0.613763i \(-0.210345\pi\)
0.789491 + 0.613763i \(0.210345\pi\)
\(992\) −0.973192 −0.0308989
\(993\) −26.2460 −0.832891
\(994\) 40.8629 1.29609
\(995\) 0 0
\(996\) −12.7534 −0.404108
\(997\) −46.3005 −1.46635 −0.733176 0.680039i \(-0.761963\pi\)
−0.733176 + 0.680039i \(0.761963\pi\)
\(998\) 53.4211 1.69102
\(999\) −19.2372 −0.608638
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.l.1.1 6
5.4 even 2 1045.2.a.f.1.6 6
15.14 odd 2 9405.2.a.z.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.6 6 5.4 even 2
5225.2.a.l.1.1 6 1.1 even 1 trivial
9405.2.a.z.1.1 6 15.14 odd 2