Properties

Label 5225.2.a.j.1.5
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.39788 q^{2} +2.59435 q^{3} +3.74982 q^{4} +6.22094 q^{6} +2.89389 q^{7} +4.19584 q^{8} +3.73066 q^{9} +O(q^{10})\) \(q+2.39788 q^{2} +2.59435 q^{3} +3.74982 q^{4} +6.22094 q^{6} +2.89389 q^{7} +4.19584 q^{8} +3.73066 q^{9} -1.00000 q^{11} +9.72834 q^{12} -4.73780 q^{13} +6.93920 q^{14} +2.56149 q^{16} +5.65389 q^{17} +8.94566 q^{18} +1.00000 q^{19} +7.50778 q^{21} -2.39788 q^{22} +4.00714 q^{23} +10.8855 q^{24} -11.3607 q^{26} +1.89558 q^{27} +10.8516 q^{28} +9.32825 q^{29} -6.60270 q^{31} -2.24955 q^{32} -2.59435 q^{33} +13.5573 q^{34} +13.9893 q^{36} -6.07686 q^{37} +2.39788 q^{38} -12.2915 q^{39} +5.47333 q^{41} +18.0027 q^{42} -10.9515 q^{43} -3.74982 q^{44} +9.60863 q^{46} +0.295438 q^{47} +6.64540 q^{48} +1.37462 q^{49} +14.6682 q^{51} -17.7659 q^{52} +3.81149 q^{53} +4.54538 q^{54} +12.1423 q^{56} +2.59435 q^{57} +22.3680 q^{58} -5.54910 q^{59} -1.01018 q^{61} -15.8325 q^{62} +10.7961 q^{63} -10.5171 q^{64} -6.22094 q^{66} -6.98807 q^{67} +21.2010 q^{68} +10.3959 q^{69} -1.02085 q^{71} +15.6533 q^{72} +0.202033 q^{73} -14.5716 q^{74} +3.74982 q^{76} -2.89389 q^{77} -29.4735 q^{78} +7.28690 q^{79} -6.27417 q^{81} +13.1244 q^{82} +13.7041 q^{83} +28.1528 q^{84} -26.2603 q^{86} +24.2008 q^{87} -4.19584 q^{88} -15.8152 q^{89} -13.7107 q^{91} +15.0260 q^{92} -17.1297 q^{93} +0.708423 q^{94} -5.83613 q^{96} -4.81308 q^{97} +3.29618 q^{98} -3.73066 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 7 q^{3} + 5 q^{4} + 2 q^{6} + 11 q^{7} - 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 3 q^{2} + 7 q^{3} + 5 q^{4} + 2 q^{6} + 11 q^{7} - 3 q^{8} + 8 q^{9} - 5 q^{11} + 7 q^{12} - q^{13} - 3 q^{16} + 3 q^{17} + 7 q^{18} + 5 q^{19} + 11 q^{21} - 3 q^{22} + 8 q^{23} + 9 q^{24} - 16 q^{26} + 10 q^{27} + 22 q^{28} + 11 q^{29} - 5 q^{31} + 2 q^{32} - 7 q^{33} + 4 q^{34} - 3 q^{36} + 9 q^{37} + 3 q^{38} - 8 q^{39} + 15 q^{41} - 11 q^{42} + 13 q^{43} - 5 q^{44} + 18 q^{46} + 20 q^{47} + 20 q^{48} + 20 q^{49} + 24 q^{51} - q^{52} + 5 q^{53} + 17 q^{54} + 7 q^{57} + 33 q^{58} - 17 q^{59} + 3 q^{61} - 14 q^{62} + 22 q^{63} - 17 q^{64} - 2 q^{66} + 28 q^{67} + 25 q^{68} - 2 q^{69} - 6 q^{71} + 26 q^{72} + 16 q^{73} - 21 q^{74} + 5 q^{76} - 11 q^{77} - 29 q^{78} + 3 q^{79} + q^{81} - 2 q^{82} + 33 q^{83} + 33 q^{84} + 10 q^{86} + 3 q^{88} - 16 q^{89} - 22 q^{91} + 19 q^{92} + 26 q^{93} - 10 q^{94} + 5 q^{96} + 14 q^{97} - 10 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.39788 1.69556 0.847778 0.530352i \(-0.177940\pi\)
0.847778 + 0.530352i \(0.177940\pi\)
\(3\) 2.59435 1.49785 0.748925 0.662655i \(-0.230570\pi\)
0.748925 + 0.662655i \(0.230570\pi\)
\(4\) 3.74982 1.87491
\(5\) 0 0
\(6\) 6.22094 2.53969
\(7\) 2.89389 1.09379 0.546895 0.837201i \(-0.315810\pi\)
0.546895 + 0.837201i \(0.315810\pi\)
\(8\) 4.19584 1.48345
\(9\) 3.73066 1.24355
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 9.72834 2.80833
\(13\) −4.73780 −1.31403 −0.657015 0.753878i \(-0.728181\pi\)
−0.657015 + 0.753878i \(0.728181\pi\)
\(14\) 6.93920 1.85458
\(15\) 0 0
\(16\) 2.56149 0.640372
\(17\) 5.65389 1.37127 0.685635 0.727946i \(-0.259525\pi\)
0.685635 + 0.727946i \(0.259525\pi\)
\(18\) 8.94566 2.10851
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 7.50778 1.63833
\(22\) −2.39788 −0.511229
\(23\) 4.00714 0.835547 0.417773 0.908551i \(-0.362811\pi\)
0.417773 + 0.908551i \(0.362811\pi\)
\(24\) 10.8855 2.22199
\(25\) 0 0
\(26\) −11.3607 −2.22801
\(27\) 1.89558 0.364805
\(28\) 10.8516 2.05075
\(29\) 9.32825 1.73221 0.866106 0.499860i \(-0.166615\pi\)
0.866106 + 0.499860i \(0.166615\pi\)
\(30\) 0 0
\(31\) −6.60270 −1.18588 −0.592940 0.805247i \(-0.702033\pi\)
−0.592940 + 0.805247i \(0.702033\pi\)
\(32\) −2.24955 −0.397669
\(33\) −2.59435 −0.451619
\(34\) 13.5573 2.32506
\(35\) 0 0
\(36\) 13.9893 2.33155
\(37\) −6.07686 −0.999029 −0.499515 0.866305i \(-0.666488\pi\)
−0.499515 + 0.866305i \(0.666488\pi\)
\(38\) 2.39788 0.388987
\(39\) −12.2915 −1.96822
\(40\) 0 0
\(41\) 5.47333 0.854791 0.427395 0.904065i \(-0.359431\pi\)
0.427395 + 0.904065i \(0.359431\pi\)
\(42\) 18.0027 2.77788
\(43\) −10.9515 −1.67009 −0.835043 0.550185i \(-0.814557\pi\)
−0.835043 + 0.550185i \(0.814557\pi\)
\(44\) −3.74982 −0.565306
\(45\) 0 0
\(46\) 9.60863 1.41672
\(47\) 0.295438 0.0430940 0.0215470 0.999768i \(-0.493141\pi\)
0.0215470 + 0.999768i \(0.493141\pi\)
\(48\) 6.64540 0.959181
\(49\) 1.37462 0.196375
\(50\) 0 0
\(51\) 14.6682 2.05395
\(52\) −17.7659 −2.46368
\(53\) 3.81149 0.523549 0.261774 0.965129i \(-0.415692\pi\)
0.261774 + 0.965129i \(0.415692\pi\)
\(54\) 4.54538 0.618547
\(55\) 0 0
\(56\) 12.1423 1.62259
\(57\) 2.59435 0.343630
\(58\) 22.3680 2.93706
\(59\) −5.54910 −0.722431 −0.361215 0.932482i \(-0.617638\pi\)
−0.361215 + 0.932482i \(0.617638\pi\)
\(60\) 0 0
\(61\) −1.01018 −0.129340 −0.0646700 0.997907i \(-0.520599\pi\)
−0.0646700 + 0.997907i \(0.520599\pi\)
\(62\) −15.8325 −2.01073
\(63\) 10.7961 1.36018
\(64\) −10.5171 −1.31464
\(65\) 0 0
\(66\) −6.22094 −0.765744
\(67\) −6.98807 −0.853729 −0.426864 0.904316i \(-0.640382\pi\)
−0.426864 + 0.904316i \(0.640382\pi\)
\(68\) 21.2010 2.57100
\(69\) 10.3959 1.25152
\(70\) 0 0
\(71\) −1.02085 −0.121152 −0.0605761 0.998164i \(-0.519294\pi\)
−0.0605761 + 0.998164i \(0.519294\pi\)
\(72\) 15.6533 1.84475
\(73\) 0.202033 0.0236462 0.0118231 0.999930i \(-0.496237\pi\)
0.0118231 + 0.999930i \(0.496237\pi\)
\(74\) −14.5716 −1.69391
\(75\) 0 0
\(76\) 3.74982 0.430133
\(77\) −2.89389 −0.329790
\(78\) −29.4735 −3.33722
\(79\) 7.28690 0.819840 0.409920 0.912121i \(-0.365557\pi\)
0.409920 + 0.912121i \(0.365557\pi\)
\(80\) 0 0
\(81\) −6.27417 −0.697130
\(82\) 13.1244 1.44935
\(83\) 13.7041 1.50422 0.752109 0.659039i \(-0.229037\pi\)
0.752109 + 0.659039i \(0.229037\pi\)
\(84\) 28.1528 3.07172
\(85\) 0 0
\(86\) −26.2603 −2.83172
\(87\) 24.2008 2.59459
\(88\) −4.19584 −0.447278
\(89\) −15.8152 −1.67641 −0.838203 0.545359i \(-0.816394\pi\)
−0.838203 + 0.545359i \(0.816394\pi\)
\(90\) 0 0
\(91\) −13.7107 −1.43727
\(92\) 15.0260 1.56657
\(93\) −17.1297 −1.77627
\(94\) 0.708423 0.0730683
\(95\) 0 0
\(96\) −5.83613 −0.595648
\(97\) −4.81308 −0.488694 −0.244347 0.969688i \(-0.578574\pi\)
−0.244347 + 0.969688i \(0.578574\pi\)
\(98\) 3.29618 0.332964
\(99\) −3.73066 −0.374945
\(100\) 0 0
\(101\) 1.76221 0.175346 0.0876730 0.996149i \(-0.472057\pi\)
0.0876730 + 0.996149i \(0.472057\pi\)
\(102\) 35.1725 3.48259
\(103\) 5.53571 0.545450 0.272725 0.962092i \(-0.412075\pi\)
0.272725 + 0.962092i \(0.412075\pi\)
\(104\) −19.8791 −1.94930
\(105\) 0 0
\(106\) 9.13949 0.887706
\(107\) 4.32073 0.417701 0.208851 0.977948i \(-0.433028\pi\)
0.208851 + 0.977948i \(0.433028\pi\)
\(108\) 7.10809 0.683976
\(109\) −13.0039 −1.24555 −0.622776 0.782400i \(-0.713995\pi\)
−0.622776 + 0.782400i \(0.713995\pi\)
\(110\) 0 0
\(111\) −15.7655 −1.49640
\(112\) 7.41267 0.700432
\(113\) 17.0047 1.59967 0.799833 0.600223i \(-0.204922\pi\)
0.799833 + 0.600223i \(0.204922\pi\)
\(114\) 6.22094 0.582644
\(115\) 0 0
\(116\) 34.9792 3.24774
\(117\) −17.6751 −1.63406
\(118\) −13.3061 −1.22492
\(119\) 16.3618 1.49988
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −2.42228 −0.219303
\(123\) 14.1997 1.28035
\(124\) −24.7589 −2.22342
\(125\) 0 0
\(126\) 25.8878 2.30627
\(127\) 9.80245 0.869826 0.434913 0.900472i \(-0.356779\pi\)
0.434913 + 0.900472i \(0.356779\pi\)
\(128\) −20.7197 −1.83138
\(129\) −28.4120 −2.50154
\(130\) 0 0
\(131\) −13.4383 −1.17411 −0.587053 0.809549i \(-0.699712\pi\)
−0.587053 + 0.809549i \(0.699712\pi\)
\(132\) −9.72834 −0.846743
\(133\) 2.89389 0.250932
\(134\) −16.7565 −1.44754
\(135\) 0 0
\(136\) 23.7228 2.03422
\(137\) 16.2122 1.38510 0.692549 0.721371i \(-0.256488\pi\)
0.692549 + 0.721371i \(0.256488\pi\)
\(138\) 24.9282 2.12203
\(139\) 19.0373 1.61472 0.807359 0.590060i \(-0.200896\pi\)
0.807359 + 0.590060i \(0.200896\pi\)
\(140\) 0 0
\(141\) 0.766469 0.0645484
\(142\) −2.44787 −0.205420
\(143\) 4.73780 0.396195
\(144\) 9.55603 0.796336
\(145\) 0 0
\(146\) 0.484451 0.0400934
\(147\) 3.56626 0.294140
\(148\) −22.7871 −1.87309
\(149\) −15.3234 −1.25534 −0.627670 0.778480i \(-0.715991\pi\)
−0.627670 + 0.778480i \(0.715991\pi\)
\(150\) 0 0
\(151\) −1.25936 −0.102485 −0.0512426 0.998686i \(-0.516318\pi\)
−0.0512426 + 0.998686i \(0.516318\pi\)
\(152\) 4.19584 0.340328
\(153\) 21.0927 1.70525
\(154\) −6.93920 −0.559177
\(155\) 0 0
\(156\) −46.0909 −3.69023
\(157\) −12.1861 −0.972559 −0.486279 0.873803i \(-0.661646\pi\)
−0.486279 + 0.873803i \(0.661646\pi\)
\(158\) 17.4731 1.39008
\(159\) 9.88835 0.784197
\(160\) 0 0
\(161\) 11.5962 0.913912
\(162\) −15.0447 −1.18202
\(163\) −6.09722 −0.477571 −0.238786 0.971072i \(-0.576749\pi\)
−0.238786 + 0.971072i \(0.576749\pi\)
\(164\) 20.5240 1.60265
\(165\) 0 0
\(166\) 32.8607 2.55048
\(167\) −1.06720 −0.0825826 −0.0412913 0.999147i \(-0.513147\pi\)
−0.0412913 + 0.999147i \(0.513147\pi\)
\(168\) 31.5015 2.43039
\(169\) 9.44675 0.726673
\(170\) 0 0
\(171\) 3.73066 0.285291
\(172\) −41.0661 −3.13126
\(173\) 13.0289 0.990571 0.495286 0.868730i \(-0.335063\pi\)
0.495286 + 0.868730i \(0.335063\pi\)
\(174\) 58.0304 4.39928
\(175\) 0 0
\(176\) −2.56149 −0.193079
\(177\) −14.3963 −1.08209
\(178\) −37.9229 −2.84244
\(179\) 20.6273 1.54176 0.770878 0.636983i \(-0.219818\pi\)
0.770878 + 0.636983i \(0.219818\pi\)
\(180\) 0 0
\(181\) −20.5908 −1.53050 −0.765251 0.643732i \(-0.777385\pi\)
−0.765251 + 0.643732i \(0.777385\pi\)
\(182\) −32.8766 −2.43697
\(183\) −2.62076 −0.193732
\(184\) 16.8133 1.23950
\(185\) 0 0
\(186\) −41.0750 −3.01176
\(187\) −5.65389 −0.413453
\(188\) 1.10784 0.0807973
\(189\) 5.48562 0.399020
\(190\) 0 0
\(191\) 8.40047 0.607837 0.303918 0.952698i \(-0.401705\pi\)
0.303918 + 0.952698i \(0.401705\pi\)
\(192\) −27.2851 −1.96913
\(193\) −11.4982 −0.827661 −0.413830 0.910354i \(-0.635809\pi\)
−0.413830 + 0.910354i \(0.635809\pi\)
\(194\) −11.5412 −0.828607
\(195\) 0 0
\(196\) 5.15458 0.368185
\(197\) −27.0376 −1.92635 −0.963173 0.268883i \(-0.913345\pi\)
−0.963173 + 0.268883i \(0.913345\pi\)
\(198\) −8.94566 −0.635740
\(199\) −5.18460 −0.367526 −0.183763 0.982971i \(-0.558828\pi\)
−0.183763 + 0.982971i \(0.558828\pi\)
\(200\) 0 0
\(201\) −18.1295 −1.27876
\(202\) 4.22555 0.297309
\(203\) 26.9950 1.89468
\(204\) 55.0029 3.85098
\(205\) 0 0
\(206\) 13.2740 0.924840
\(207\) 14.9493 1.03905
\(208\) −12.1358 −0.841467
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −21.5427 −1.48306 −0.741529 0.670921i \(-0.765899\pi\)
−0.741529 + 0.670921i \(0.765899\pi\)
\(212\) 14.2924 0.981606
\(213\) −2.64844 −0.181468
\(214\) 10.3606 0.708235
\(215\) 0 0
\(216\) 7.95357 0.541172
\(217\) −19.1075 −1.29710
\(218\) −31.1818 −2.11190
\(219\) 0.524145 0.0354184
\(220\) 0 0
\(221\) −26.7870 −1.80189
\(222\) −37.8037 −2.53722
\(223\) 26.9600 1.80537 0.902687 0.430298i \(-0.141592\pi\)
0.902687 + 0.430298i \(0.141592\pi\)
\(224\) −6.50997 −0.434966
\(225\) 0 0
\(226\) 40.7751 2.71232
\(227\) −9.02570 −0.599057 −0.299528 0.954087i \(-0.596829\pi\)
−0.299528 + 0.954087i \(0.596829\pi\)
\(228\) 9.72834 0.644275
\(229\) −13.7697 −0.909926 −0.454963 0.890510i \(-0.650347\pi\)
−0.454963 + 0.890510i \(0.650347\pi\)
\(230\) 0 0
\(231\) −7.50778 −0.493976
\(232\) 39.1399 2.56966
\(233\) 2.45587 0.160890 0.0804448 0.996759i \(-0.474366\pi\)
0.0804448 + 0.996759i \(0.474366\pi\)
\(234\) −42.3827 −2.77065
\(235\) 0 0
\(236\) −20.8081 −1.35449
\(237\) 18.9048 1.22800
\(238\) 39.2335 2.54313
\(239\) −22.8439 −1.47765 −0.738825 0.673897i \(-0.764619\pi\)
−0.738825 + 0.673897i \(0.764619\pi\)
\(240\) 0 0
\(241\) 16.1181 1.03826 0.519129 0.854696i \(-0.326256\pi\)
0.519129 + 0.854696i \(0.326256\pi\)
\(242\) 2.39788 0.154141
\(243\) −21.9641 −1.40900
\(244\) −3.78798 −0.242501
\(245\) 0 0
\(246\) 34.0492 2.17090
\(247\) −4.73780 −0.301459
\(248\) −27.7039 −1.75920
\(249\) 35.5532 2.25309
\(250\) 0 0
\(251\) −18.8758 −1.19143 −0.595716 0.803195i \(-0.703132\pi\)
−0.595716 + 0.803195i \(0.703132\pi\)
\(252\) 40.4835 2.55022
\(253\) −4.00714 −0.251927
\(254\) 23.5051 1.47484
\(255\) 0 0
\(256\) −28.6490 −1.79056
\(257\) −7.48029 −0.466608 −0.233304 0.972404i \(-0.574954\pi\)
−0.233304 + 0.972404i \(0.574954\pi\)
\(258\) −68.1285 −4.24150
\(259\) −17.5858 −1.09273
\(260\) 0 0
\(261\) 34.8005 2.15410
\(262\) −32.2233 −1.99076
\(263\) 17.7703 1.09577 0.547883 0.836555i \(-0.315434\pi\)
0.547883 + 0.836555i \(0.315434\pi\)
\(264\) −10.8855 −0.669956
\(265\) 0 0
\(266\) 6.93920 0.425470
\(267\) −41.0301 −2.51100
\(268\) −26.2040 −1.60066
\(269\) 25.9320 1.58110 0.790550 0.612398i \(-0.209795\pi\)
0.790550 + 0.612398i \(0.209795\pi\)
\(270\) 0 0
\(271\) −16.2686 −0.988248 −0.494124 0.869391i \(-0.664511\pi\)
−0.494124 + 0.869391i \(0.664511\pi\)
\(272\) 14.4824 0.878122
\(273\) −35.5703 −2.15282
\(274\) 38.8748 2.34851
\(275\) 0 0
\(276\) 38.9828 2.34649
\(277\) 17.9217 1.07681 0.538405 0.842686i \(-0.319027\pi\)
0.538405 + 0.842686i \(0.319027\pi\)
\(278\) 45.6490 2.73784
\(279\) −24.6324 −1.47470
\(280\) 0 0
\(281\) −28.8563 −1.72142 −0.860712 0.509093i \(-0.829981\pi\)
−0.860712 + 0.509093i \(0.829981\pi\)
\(282\) 1.83790 0.109445
\(283\) 10.7620 0.639736 0.319868 0.947462i \(-0.396361\pi\)
0.319868 + 0.947462i \(0.396361\pi\)
\(284\) −3.82799 −0.227149
\(285\) 0 0
\(286\) 11.3607 0.671770
\(287\) 15.8392 0.934961
\(288\) −8.39232 −0.494522
\(289\) 14.9665 0.880380
\(290\) 0 0
\(291\) −12.4868 −0.731990
\(292\) 0.757587 0.0443345
\(293\) −5.14307 −0.300462 −0.150231 0.988651i \(-0.548002\pi\)
−0.150231 + 0.988651i \(0.548002\pi\)
\(294\) 8.55144 0.498730
\(295\) 0 0
\(296\) −25.4975 −1.48201
\(297\) −1.89558 −0.109993
\(298\) −36.7436 −2.12850
\(299\) −18.9850 −1.09793
\(300\) 0 0
\(301\) −31.6924 −1.82672
\(302\) −3.01979 −0.173769
\(303\) 4.57178 0.262642
\(304\) 2.56149 0.146911
\(305\) 0 0
\(306\) 50.5778 2.89134
\(307\) −28.1017 −1.60385 −0.801925 0.597425i \(-0.796191\pi\)
−0.801925 + 0.597425i \(0.796191\pi\)
\(308\) −10.8516 −0.618326
\(309\) 14.3616 0.817002
\(310\) 0 0
\(311\) −14.1909 −0.804692 −0.402346 0.915488i \(-0.631805\pi\)
−0.402346 + 0.915488i \(0.631805\pi\)
\(312\) −51.5733 −2.91976
\(313\) 9.46083 0.534758 0.267379 0.963591i \(-0.413842\pi\)
0.267379 + 0.963591i \(0.413842\pi\)
\(314\) −29.2208 −1.64903
\(315\) 0 0
\(316\) 27.3245 1.53712
\(317\) 23.8673 1.34052 0.670260 0.742126i \(-0.266182\pi\)
0.670260 + 0.742126i \(0.266182\pi\)
\(318\) 23.7111 1.32965
\(319\) −9.32825 −0.522282
\(320\) 0 0
\(321\) 11.2095 0.625653
\(322\) 27.8064 1.54959
\(323\) 5.65389 0.314591
\(324\) −23.5270 −1.30705
\(325\) 0 0
\(326\) −14.6204 −0.809748
\(327\) −33.7368 −1.86565
\(328\) 22.9652 1.26804
\(329\) 0.854966 0.0471358
\(330\) 0 0
\(331\) −13.1843 −0.724674 −0.362337 0.932047i \(-0.618021\pi\)
−0.362337 + 0.932047i \(0.618021\pi\)
\(332\) 51.3877 2.82027
\(333\) −22.6707 −1.24235
\(334\) −2.55902 −0.140023
\(335\) 0 0
\(336\) 19.2311 1.04914
\(337\) −17.0148 −0.926854 −0.463427 0.886135i \(-0.653380\pi\)
−0.463427 + 0.886135i \(0.653380\pi\)
\(338\) 22.6521 1.23211
\(339\) 44.1161 2.39606
\(340\) 0 0
\(341\) 6.60270 0.357556
\(342\) 8.94566 0.483726
\(343\) −16.2792 −0.878997
\(344\) −45.9507 −2.47750
\(345\) 0 0
\(346\) 31.2418 1.67957
\(347\) 30.2606 1.62447 0.812236 0.583329i \(-0.198250\pi\)
0.812236 + 0.583329i \(0.198250\pi\)
\(348\) 90.7484 4.86462
\(349\) 5.13463 0.274851 0.137425 0.990512i \(-0.456117\pi\)
0.137425 + 0.990512i \(0.456117\pi\)
\(350\) 0 0
\(351\) −8.98089 −0.479365
\(352\) 2.24955 0.119902
\(353\) 10.5661 0.562376 0.281188 0.959653i \(-0.409272\pi\)
0.281188 + 0.959653i \(0.409272\pi\)
\(354\) −34.5206 −1.83475
\(355\) 0 0
\(356\) −59.3040 −3.14311
\(357\) 42.4481 2.24659
\(358\) 49.4617 2.61413
\(359\) 16.5178 0.871778 0.435889 0.900000i \(-0.356434\pi\)
0.435889 + 0.900000i \(0.356434\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −49.3742 −2.59505
\(363\) 2.59435 0.136168
\(364\) −51.4126 −2.69475
\(365\) 0 0
\(366\) −6.28426 −0.328483
\(367\) −19.8761 −1.03752 −0.518762 0.854919i \(-0.673607\pi\)
−0.518762 + 0.854919i \(0.673607\pi\)
\(368\) 10.2642 0.535061
\(369\) 20.4191 1.06298
\(370\) 0 0
\(371\) 11.0301 0.572652
\(372\) −64.2333 −3.33034
\(373\) 11.4151 0.591052 0.295526 0.955335i \(-0.404505\pi\)
0.295526 + 0.955335i \(0.404505\pi\)
\(374\) −13.5573 −0.701033
\(375\) 0 0
\(376\) 1.23961 0.0639280
\(377\) −44.1954 −2.27618
\(378\) 13.1538 0.676560
\(379\) 1.99925 0.102695 0.0513474 0.998681i \(-0.483648\pi\)
0.0513474 + 0.998681i \(0.483648\pi\)
\(380\) 0 0
\(381\) 25.4310 1.30287
\(382\) 20.1433 1.03062
\(383\) 7.07007 0.361264 0.180632 0.983551i \(-0.442186\pi\)
0.180632 + 0.983551i \(0.442186\pi\)
\(384\) −53.7541 −2.74313
\(385\) 0 0
\(386\) −27.5713 −1.40334
\(387\) −40.8563 −2.07684
\(388\) −18.0481 −0.916256
\(389\) 17.0237 0.863135 0.431568 0.902081i \(-0.357961\pi\)
0.431568 + 0.902081i \(0.357961\pi\)
\(390\) 0 0
\(391\) 22.6559 1.14576
\(392\) 5.76771 0.291313
\(393\) −34.8636 −1.75863
\(394\) −64.8327 −3.26623
\(395\) 0 0
\(396\) −13.9893 −0.702988
\(397\) 25.3590 1.27273 0.636366 0.771387i \(-0.280437\pi\)
0.636366 + 0.771387i \(0.280437\pi\)
\(398\) −12.4320 −0.623161
\(399\) 7.50778 0.375859
\(400\) 0 0
\(401\) 19.6449 0.981019 0.490509 0.871436i \(-0.336811\pi\)
0.490509 + 0.871436i \(0.336811\pi\)
\(402\) −43.4723 −2.16820
\(403\) 31.2823 1.55828
\(404\) 6.60795 0.328758
\(405\) 0 0
\(406\) 64.7306 3.21253
\(407\) 6.07686 0.301219
\(408\) 61.5454 3.04695
\(409\) −28.6527 −1.41678 −0.708392 0.705819i \(-0.750579\pi\)
−0.708392 + 0.705819i \(0.750579\pi\)
\(410\) 0 0
\(411\) 42.0600 2.07467
\(412\) 20.7579 1.02267
\(413\) −16.0585 −0.790187
\(414\) 35.8465 1.76176
\(415\) 0 0
\(416\) 10.6579 0.522548
\(417\) 49.3893 2.41861
\(418\) −2.39788 −0.117284
\(419\) −2.80518 −0.137042 −0.0685211 0.997650i \(-0.521828\pi\)
−0.0685211 + 0.997650i \(0.521828\pi\)
\(420\) 0 0
\(421\) 3.26165 0.158963 0.0794815 0.996836i \(-0.474674\pi\)
0.0794815 + 0.996836i \(0.474674\pi\)
\(422\) −51.6566 −2.51461
\(423\) 1.10218 0.0535897
\(424\) 15.9924 0.776661
\(425\) 0 0
\(426\) −6.35062 −0.307689
\(427\) −2.92335 −0.141471
\(428\) 16.2020 0.783151
\(429\) 12.2915 0.593440
\(430\) 0 0
\(431\) 32.7606 1.57802 0.789012 0.614378i \(-0.210593\pi\)
0.789012 + 0.614378i \(0.210593\pi\)
\(432\) 4.85551 0.233611
\(433\) 21.8656 1.05079 0.525396 0.850858i \(-0.323917\pi\)
0.525396 + 0.850858i \(0.323917\pi\)
\(434\) −45.8175 −2.19931
\(435\) 0 0
\(436\) −48.7624 −2.33529
\(437\) 4.00714 0.191688
\(438\) 1.25684 0.0600539
\(439\) 30.6280 1.46180 0.730898 0.682486i \(-0.239101\pi\)
0.730898 + 0.682486i \(0.239101\pi\)
\(440\) 0 0
\(441\) 5.12825 0.244202
\(442\) −64.2319 −3.05520
\(443\) −4.54914 −0.216136 −0.108068 0.994144i \(-0.534466\pi\)
−0.108068 + 0.994144i \(0.534466\pi\)
\(444\) −59.1177 −2.80560
\(445\) 0 0
\(446\) 64.6467 3.06111
\(447\) −39.7542 −1.88031
\(448\) −30.4355 −1.43794
\(449\) 11.5308 0.544172 0.272086 0.962273i \(-0.412286\pi\)
0.272086 + 0.962273i \(0.412286\pi\)
\(450\) 0 0
\(451\) −5.47333 −0.257729
\(452\) 63.7644 2.99923
\(453\) −3.26722 −0.153507
\(454\) −21.6425 −1.01573
\(455\) 0 0
\(456\) 10.8855 0.509760
\(457\) −11.3778 −0.532231 −0.266115 0.963941i \(-0.585740\pi\)
−0.266115 + 0.963941i \(0.585740\pi\)
\(458\) −33.0180 −1.54283
\(459\) 10.7174 0.500246
\(460\) 0 0
\(461\) 4.37265 0.203655 0.101827 0.994802i \(-0.467531\pi\)
0.101827 + 0.994802i \(0.467531\pi\)
\(462\) −18.0027 −0.837563
\(463\) 9.31982 0.433129 0.216564 0.976268i \(-0.430515\pi\)
0.216564 + 0.976268i \(0.430515\pi\)
\(464\) 23.8942 1.10926
\(465\) 0 0
\(466\) 5.88888 0.272797
\(467\) 28.0711 1.29897 0.649487 0.760372i \(-0.274984\pi\)
0.649487 + 0.760372i \(0.274984\pi\)
\(468\) −66.2784 −3.06372
\(469\) −20.2227 −0.933799
\(470\) 0 0
\(471\) −31.6151 −1.45675
\(472\) −23.2831 −1.07169
\(473\) 10.9515 0.503550
\(474\) 45.3313 2.08214
\(475\) 0 0
\(476\) 61.3536 2.81214
\(477\) 14.2194 0.651060
\(478\) −54.7769 −2.50544
\(479\) −5.65184 −0.258239 −0.129120 0.991629i \(-0.541215\pi\)
−0.129120 + 0.991629i \(0.541215\pi\)
\(480\) 0 0
\(481\) 28.7909 1.31275
\(482\) 38.6492 1.76042
\(483\) 30.0847 1.36890
\(484\) 3.74982 0.170446
\(485\) 0 0
\(486\) −52.6673 −2.38904
\(487\) 6.09349 0.276122 0.138061 0.990424i \(-0.455913\pi\)
0.138061 + 0.990424i \(0.455913\pi\)
\(488\) −4.23855 −0.191870
\(489\) −15.8183 −0.715330
\(490\) 0 0
\(491\) 8.56286 0.386436 0.193218 0.981156i \(-0.438107\pi\)
0.193218 + 0.981156i \(0.438107\pi\)
\(492\) 53.2464 2.40053
\(493\) 52.7409 2.37533
\(494\) −11.3607 −0.511140
\(495\) 0 0
\(496\) −16.9127 −0.759404
\(497\) −2.95422 −0.132515
\(498\) 85.2522 3.82024
\(499\) −1.35537 −0.0606749 −0.0303374 0.999540i \(-0.509658\pi\)
−0.0303374 + 0.999540i \(0.509658\pi\)
\(500\) 0 0
\(501\) −2.76870 −0.123696
\(502\) −45.2619 −2.02014
\(503\) −13.9030 −0.619903 −0.309952 0.950752i \(-0.600313\pi\)
−0.309952 + 0.950752i \(0.600313\pi\)
\(504\) 45.2989 2.01777
\(505\) 0 0
\(506\) −9.60863 −0.427156
\(507\) 24.5082 1.08845
\(508\) 36.7574 1.63084
\(509\) −3.21978 −0.142714 −0.0713572 0.997451i \(-0.522733\pi\)
−0.0713572 + 0.997451i \(0.522733\pi\)
\(510\) 0 0
\(511\) 0.584663 0.0258640
\(512\) −27.2574 −1.20462
\(513\) 1.89558 0.0836920
\(514\) −17.9368 −0.791160
\(515\) 0 0
\(516\) −106.540 −4.69015
\(517\) −0.295438 −0.0129933
\(518\) −42.1686 −1.85278
\(519\) 33.8016 1.48373
\(520\) 0 0
\(521\) 3.09750 0.135704 0.0678520 0.997695i \(-0.478385\pi\)
0.0678520 + 0.997695i \(0.478385\pi\)
\(522\) 83.4474 3.65239
\(523\) −13.2007 −0.577228 −0.288614 0.957446i \(-0.593194\pi\)
−0.288614 + 0.957446i \(0.593194\pi\)
\(524\) −50.3910 −2.20134
\(525\) 0 0
\(526\) 42.6111 1.85793
\(527\) −37.3309 −1.62616
\(528\) −6.64540 −0.289204
\(529\) −6.94281 −0.301861
\(530\) 0 0
\(531\) −20.7018 −0.898381
\(532\) 10.8516 0.470475
\(533\) −25.9316 −1.12322
\(534\) −98.3852 −4.25755
\(535\) 0 0
\(536\) −29.3209 −1.26647
\(537\) 53.5144 2.30932
\(538\) 62.1817 2.68084
\(539\) −1.37462 −0.0592092
\(540\) 0 0
\(541\) −6.57608 −0.282728 −0.141364 0.989958i \(-0.545149\pi\)
−0.141364 + 0.989958i \(0.545149\pi\)
\(542\) −39.0102 −1.67563
\(543\) −53.4198 −2.29246
\(544\) −12.7187 −0.545311
\(545\) 0 0
\(546\) −85.2933 −3.65022
\(547\) 23.9559 1.02428 0.512139 0.858902i \(-0.328853\pi\)
0.512139 + 0.858902i \(0.328853\pi\)
\(548\) 60.7926 2.59693
\(549\) −3.76863 −0.160841
\(550\) 0 0
\(551\) 9.32825 0.397397
\(552\) 43.6197 1.85658
\(553\) 21.0875 0.896732
\(554\) 42.9740 1.82579
\(555\) 0 0
\(556\) 71.3862 3.02745
\(557\) 11.2404 0.476271 0.238135 0.971232i \(-0.423464\pi\)
0.238135 + 0.971232i \(0.423464\pi\)
\(558\) −59.0655 −2.50044
\(559\) 51.8860 2.19454
\(560\) 0 0
\(561\) −14.6682 −0.619291
\(562\) −69.1939 −2.91877
\(563\) −44.9880 −1.89602 −0.948009 0.318242i \(-0.896907\pi\)
−0.948009 + 0.318242i \(0.896907\pi\)
\(564\) 2.87412 0.121022
\(565\) 0 0
\(566\) 25.8060 1.08471
\(567\) −18.1568 −0.762513
\(568\) −4.28331 −0.179724
\(569\) 33.2099 1.39223 0.696115 0.717930i \(-0.254910\pi\)
0.696115 + 0.717930i \(0.254910\pi\)
\(570\) 0 0
\(571\) −44.6440 −1.86829 −0.934146 0.356891i \(-0.883837\pi\)
−0.934146 + 0.356891i \(0.883837\pi\)
\(572\) 17.7659 0.742829
\(573\) 21.7938 0.910448
\(574\) 37.9806 1.58528
\(575\) 0 0
\(576\) −39.2358 −1.63483
\(577\) 45.6776 1.90158 0.950792 0.309831i \(-0.100272\pi\)
0.950792 + 0.309831i \(0.100272\pi\)
\(578\) 35.8877 1.49273
\(579\) −29.8304 −1.23971
\(580\) 0 0
\(581\) 39.6581 1.64530
\(582\) −29.9418 −1.24113
\(583\) −3.81149 −0.157856
\(584\) 0.847700 0.0350781
\(585\) 0 0
\(586\) −12.3325 −0.509449
\(587\) 17.5933 0.726155 0.363078 0.931759i \(-0.381726\pi\)
0.363078 + 0.931759i \(0.381726\pi\)
\(588\) 13.3728 0.551485
\(589\) −6.60270 −0.272060
\(590\) 0 0
\(591\) −70.1449 −2.88538
\(592\) −15.5658 −0.639750
\(593\) −32.4709 −1.33342 −0.666710 0.745317i \(-0.732298\pi\)
−0.666710 + 0.745317i \(0.732298\pi\)
\(594\) −4.54538 −0.186499
\(595\) 0 0
\(596\) −57.4598 −2.35365
\(597\) −13.4507 −0.550499
\(598\) −45.5238 −1.86161
\(599\) 1.31594 0.0537679 0.0268839 0.999639i \(-0.491442\pi\)
0.0268839 + 0.999639i \(0.491442\pi\)
\(600\) 0 0
\(601\) −4.53331 −0.184918 −0.0924588 0.995717i \(-0.529473\pi\)
−0.0924588 + 0.995717i \(0.529473\pi\)
\(602\) −75.9946 −3.09731
\(603\) −26.0701 −1.06166
\(604\) −4.72236 −0.192150
\(605\) 0 0
\(606\) 10.9626 0.445324
\(607\) 14.2654 0.579016 0.289508 0.957176i \(-0.406508\pi\)
0.289508 + 0.957176i \(0.406508\pi\)
\(608\) −2.24955 −0.0912315
\(609\) 70.0344 2.83794
\(610\) 0 0
\(611\) −1.39972 −0.0566268
\(612\) 79.0938 3.19718
\(613\) −5.06662 −0.204639 −0.102319 0.994752i \(-0.532626\pi\)
−0.102319 + 0.994752i \(0.532626\pi\)
\(614\) −67.3845 −2.71942
\(615\) 0 0
\(616\) −12.1423 −0.489228
\(617\) −19.5460 −0.786893 −0.393446 0.919348i \(-0.628717\pi\)
−0.393446 + 0.919348i \(0.628717\pi\)
\(618\) 34.4373 1.38527
\(619\) 8.78654 0.353161 0.176580 0.984286i \(-0.443496\pi\)
0.176580 + 0.984286i \(0.443496\pi\)
\(620\) 0 0
\(621\) 7.59587 0.304812
\(622\) −34.0280 −1.36440
\(623\) −45.7675 −1.83363
\(624\) −31.4846 −1.26039
\(625\) 0 0
\(626\) 22.6859 0.906712
\(627\) −2.59435 −0.103608
\(628\) −45.6957 −1.82346
\(629\) −34.3579 −1.36994
\(630\) 0 0
\(631\) −0.0559751 −0.00222833 −0.00111417 0.999999i \(-0.500355\pi\)
−0.00111417 + 0.999999i \(0.500355\pi\)
\(632\) 30.5747 1.21620
\(633\) −55.8892 −2.22140
\(634\) 57.2308 2.27293
\(635\) 0 0
\(636\) 37.0795 1.47030
\(637\) −6.51269 −0.258042
\(638\) −22.3680 −0.885558
\(639\) −3.80843 −0.150659
\(640\) 0 0
\(641\) 4.49262 0.177448 0.0887239 0.996056i \(-0.471721\pi\)
0.0887239 + 0.996056i \(0.471721\pi\)
\(642\) 26.8790 1.06083
\(643\) 5.48669 0.216374 0.108187 0.994131i \(-0.465495\pi\)
0.108187 + 0.994131i \(0.465495\pi\)
\(644\) 43.4838 1.71350
\(645\) 0 0
\(646\) 13.5573 0.533406
\(647\) 34.5798 1.35947 0.679736 0.733456i \(-0.262094\pi\)
0.679736 + 0.733456i \(0.262094\pi\)
\(648\) −26.3254 −1.03416
\(649\) 5.54910 0.217821
\(650\) 0 0
\(651\) −49.5716 −1.94286
\(652\) −22.8635 −0.895402
\(653\) −11.3537 −0.444304 −0.222152 0.975012i \(-0.571308\pi\)
−0.222152 + 0.975012i \(0.571308\pi\)
\(654\) −80.8967 −3.16331
\(655\) 0 0
\(656\) 14.0199 0.547384
\(657\) 0.753717 0.0294053
\(658\) 2.05010 0.0799213
\(659\) 27.1448 1.05741 0.528706 0.848805i \(-0.322677\pi\)
0.528706 + 0.848805i \(0.322677\pi\)
\(660\) 0 0
\(661\) 5.01901 0.195217 0.0976084 0.995225i \(-0.468881\pi\)
0.0976084 + 0.995225i \(0.468881\pi\)
\(662\) −31.6143 −1.22873
\(663\) −69.4949 −2.69896
\(664\) 57.5002 2.23144
\(665\) 0 0
\(666\) −54.3615 −2.10647
\(667\) 37.3796 1.44734
\(668\) −4.00181 −0.154835
\(669\) 69.9436 2.70418
\(670\) 0 0
\(671\) 1.01018 0.0389975
\(672\) −16.8892 −0.651513
\(673\) 38.5035 1.48420 0.742100 0.670289i \(-0.233830\pi\)
0.742100 + 0.670289i \(0.233830\pi\)
\(674\) −40.7994 −1.57153
\(675\) 0 0
\(676\) 35.4236 1.36244
\(677\) −17.8660 −0.686647 −0.343324 0.939217i \(-0.611553\pi\)
−0.343324 + 0.939217i \(0.611553\pi\)
\(678\) 105.785 4.06265
\(679\) −13.9285 −0.534528
\(680\) 0 0
\(681\) −23.4158 −0.897297
\(682\) 15.8325 0.606257
\(683\) −44.9512 −1.72001 −0.860005 0.510286i \(-0.829540\pi\)
−0.860005 + 0.510286i \(0.829540\pi\)
\(684\) 13.9893 0.534894
\(685\) 0 0
\(686\) −39.0356 −1.49039
\(687\) −35.7234 −1.36293
\(688\) −28.0521 −1.06948
\(689\) −18.0581 −0.687958
\(690\) 0 0
\(691\) 24.1309 0.917983 0.458991 0.888441i \(-0.348211\pi\)
0.458991 + 0.888441i \(0.348211\pi\)
\(692\) 48.8561 1.85723
\(693\) −10.7961 −0.410111
\(694\) 72.5611 2.75438
\(695\) 0 0
\(696\) 101.543 3.84896
\(697\) 30.9456 1.17215
\(698\) 12.3122 0.466024
\(699\) 6.37139 0.240988
\(700\) 0 0
\(701\) −1.53772 −0.0580789 −0.0290395 0.999578i \(-0.509245\pi\)
−0.0290395 + 0.999578i \(0.509245\pi\)
\(702\) −21.5351 −0.812789
\(703\) −6.07686 −0.229193
\(704\) 10.5171 0.396379
\(705\) 0 0
\(706\) 25.3362 0.953540
\(707\) 5.09964 0.191792
\(708\) −53.9835 −2.02882
\(709\) 5.19348 0.195045 0.0975226 0.995233i \(-0.468908\pi\)
0.0975226 + 0.995233i \(0.468908\pi\)
\(710\) 0 0
\(711\) 27.1849 1.01951
\(712\) −66.3580 −2.48687
\(713\) −26.4580 −0.990858
\(714\) 101.785 3.80922
\(715\) 0 0
\(716\) 77.3485 2.89065
\(717\) −59.2652 −2.21330
\(718\) 39.6077 1.47815
\(719\) −37.4841 −1.39792 −0.698960 0.715160i \(-0.746354\pi\)
−0.698960 + 0.715160i \(0.746354\pi\)
\(720\) 0 0
\(721\) 16.0198 0.596607
\(722\) 2.39788 0.0892398
\(723\) 41.8160 1.55515
\(724\) −77.2117 −2.86955
\(725\) 0 0
\(726\) 6.22094 0.230881
\(727\) −28.1916 −1.04557 −0.522785 0.852464i \(-0.675107\pi\)
−0.522785 + 0.852464i \(0.675107\pi\)
\(728\) −57.5279 −2.13213
\(729\) −38.1602 −1.41334
\(730\) 0 0
\(731\) −61.9185 −2.29014
\(732\) −9.82736 −0.363230
\(733\) 18.1906 0.671884 0.335942 0.941883i \(-0.390945\pi\)
0.335942 + 0.941883i \(0.390945\pi\)
\(734\) −47.6604 −1.75918
\(735\) 0 0
\(736\) −9.01428 −0.332271
\(737\) 6.98807 0.257409
\(738\) 48.9626 1.80234
\(739\) 5.65484 0.208017 0.104008 0.994576i \(-0.466833\pi\)
0.104008 + 0.994576i \(0.466833\pi\)
\(740\) 0 0
\(741\) −12.2915 −0.451540
\(742\) 26.4487 0.970963
\(743\) 44.5565 1.63462 0.817310 0.576198i \(-0.195464\pi\)
0.817310 + 0.576198i \(0.195464\pi\)
\(744\) −71.8737 −2.63502
\(745\) 0 0
\(746\) 27.3720 1.00216
\(747\) 51.1252 1.87057
\(748\) −21.2010 −0.775187
\(749\) 12.5037 0.456877
\(750\) 0 0
\(751\) −18.8205 −0.686769 −0.343384 0.939195i \(-0.611573\pi\)
−0.343384 + 0.939195i \(0.611573\pi\)
\(752\) 0.756760 0.0275962
\(753\) −48.9705 −1.78459
\(754\) −105.975 −3.85939
\(755\) 0 0
\(756\) 20.5701 0.748126
\(757\) −2.97780 −0.108230 −0.0541150 0.998535i \(-0.517234\pi\)
−0.0541150 + 0.998535i \(0.517234\pi\)
\(758\) 4.79397 0.174125
\(759\) −10.3959 −0.377348
\(760\) 0 0
\(761\) −41.9642 −1.52120 −0.760601 0.649219i \(-0.775096\pi\)
−0.760601 + 0.649219i \(0.775096\pi\)
\(762\) 60.9804 2.20909
\(763\) −37.6320 −1.36237
\(764\) 31.5002 1.13964
\(765\) 0 0
\(766\) 16.9532 0.612542
\(767\) 26.2905 0.949295
\(768\) −74.3256 −2.68199
\(769\) −2.33683 −0.0842683 −0.0421341 0.999112i \(-0.513416\pi\)
−0.0421341 + 0.999112i \(0.513416\pi\)
\(770\) 0 0
\(771\) −19.4065 −0.698908
\(772\) −43.1162 −1.55179
\(773\) −4.40125 −0.158302 −0.0791509 0.996863i \(-0.525221\pi\)
−0.0791509 + 0.996863i \(0.525221\pi\)
\(774\) −97.9683 −3.52140
\(775\) 0 0
\(776\) −20.1949 −0.724955
\(777\) −45.6237 −1.63674
\(778\) 40.8207 1.46349
\(779\) 5.47333 0.196102
\(780\) 0 0
\(781\) 1.02085 0.0365288
\(782\) 54.3262 1.94270
\(783\) 17.6825 0.631920
\(784\) 3.52108 0.125753
\(785\) 0 0
\(786\) −83.5985 −2.98186
\(787\) 13.1902 0.470180 0.235090 0.971974i \(-0.424461\pi\)
0.235090 + 0.971974i \(0.424461\pi\)
\(788\) −101.386 −3.61172
\(789\) 46.1025 1.64129
\(790\) 0 0
\(791\) 49.2097 1.74970
\(792\) −15.6533 −0.556214
\(793\) 4.78602 0.169957
\(794\) 60.8078 2.15799
\(795\) 0 0
\(796\) −19.4413 −0.689078
\(797\) 39.1687 1.38743 0.693713 0.720252i \(-0.255974\pi\)
0.693713 + 0.720252i \(0.255974\pi\)
\(798\) 18.0027 0.637290
\(799\) 1.67037 0.0590935
\(800\) 0 0
\(801\) −59.0010 −2.08470
\(802\) 47.1060 1.66337
\(803\) −0.202033 −0.00712960
\(804\) −67.9823 −2.39755
\(805\) 0 0
\(806\) 75.0111 2.64215
\(807\) 67.2766 2.36825
\(808\) 7.39394 0.260118
\(809\) 18.2003 0.639887 0.319944 0.947437i \(-0.396336\pi\)
0.319944 + 0.947437i \(0.396336\pi\)
\(810\) 0 0
\(811\) −54.6434 −1.91879 −0.959395 0.282065i \(-0.908981\pi\)
−0.959395 + 0.282065i \(0.908981\pi\)
\(812\) 101.226 3.55234
\(813\) −42.2065 −1.48025
\(814\) 14.5716 0.510733
\(815\) 0 0
\(816\) 37.5723 1.31530
\(817\) −10.9515 −0.383144
\(818\) −68.7056 −2.40224
\(819\) −51.1499 −1.78732
\(820\) 0 0
\(821\) 18.3540 0.640560 0.320280 0.947323i \(-0.396223\pi\)
0.320280 + 0.947323i \(0.396223\pi\)
\(822\) 100.855 3.51772
\(823\) −9.63416 −0.335826 −0.167913 0.985802i \(-0.553703\pi\)
−0.167913 + 0.985802i \(0.553703\pi\)
\(824\) 23.2270 0.809150
\(825\) 0 0
\(826\) −38.5063 −1.33981
\(827\) −26.2829 −0.913947 −0.456973 0.889480i \(-0.651067\pi\)
−0.456973 + 0.889480i \(0.651067\pi\)
\(828\) 56.0570 1.94812
\(829\) −45.2690 −1.57226 −0.786128 0.618064i \(-0.787917\pi\)
−0.786128 + 0.618064i \(0.787917\pi\)
\(830\) 0 0
\(831\) 46.4952 1.61290
\(832\) 49.8281 1.72748
\(833\) 7.77197 0.269283
\(834\) 118.430 4.10088
\(835\) 0 0
\(836\) −3.74982 −0.129690
\(837\) −12.5160 −0.432615
\(838\) −6.72648 −0.232362
\(839\) 23.0656 0.796315 0.398157 0.917317i \(-0.369650\pi\)
0.398157 + 0.917317i \(0.369650\pi\)
\(840\) 0 0
\(841\) 58.0162 2.00056
\(842\) 7.82104 0.269531
\(843\) −74.8634 −2.57843
\(844\) −80.7810 −2.78060
\(845\) 0 0
\(846\) 2.64289 0.0908643
\(847\) 2.89389 0.0994354
\(848\) 9.76309 0.335266
\(849\) 27.9205 0.958228
\(850\) 0 0
\(851\) −24.3508 −0.834736
\(852\) −9.93115 −0.340235
\(853\) 10.1175 0.346418 0.173209 0.984885i \(-0.444586\pi\)
0.173209 + 0.984885i \(0.444586\pi\)
\(854\) −7.00983 −0.239872
\(855\) 0 0
\(856\) 18.1291 0.619641
\(857\) −17.5975 −0.601119 −0.300559 0.953763i \(-0.597173\pi\)
−0.300559 + 0.953763i \(0.597173\pi\)
\(858\) 29.4735 1.00621
\(859\) 51.9873 1.77378 0.886891 0.461978i \(-0.152860\pi\)
0.886891 + 0.461978i \(0.152860\pi\)
\(860\) 0 0
\(861\) 41.0926 1.40043
\(862\) 78.5560 2.67563
\(863\) 42.2968 1.43980 0.719900 0.694078i \(-0.244188\pi\)
0.719900 + 0.694078i \(0.244188\pi\)
\(864\) −4.26422 −0.145072
\(865\) 0 0
\(866\) 52.4310 1.78168
\(867\) 38.8282 1.31868
\(868\) −71.6497 −2.43195
\(869\) −7.28690 −0.247191
\(870\) 0 0
\(871\) 33.1081 1.12182
\(872\) −54.5625 −1.84772
\(873\) −17.9559 −0.607716
\(874\) 9.60863 0.325017
\(875\) 0 0
\(876\) 1.96545 0.0664063
\(877\) 4.60606 0.155535 0.0777677 0.996972i \(-0.475221\pi\)
0.0777677 + 0.996972i \(0.475221\pi\)
\(878\) 73.4423 2.47856
\(879\) −13.3429 −0.450046
\(880\) 0 0
\(881\) 45.1124 1.51987 0.759937 0.649997i \(-0.225230\pi\)
0.759937 + 0.649997i \(0.225230\pi\)
\(882\) 12.2969 0.414059
\(883\) 40.3849 1.35906 0.679530 0.733648i \(-0.262184\pi\)
0.679530 + 0.733648i \(0.262184\pi\)
\(884\) −100.446 −3.37837
\(885\) 0 0
\(886\) −10.9083 −0.366471
\(887\) −50.2462 −1.68710 −0.843551 0.537050i \(-0.819539\pi\)
−0.843551 + 0.537050i \(0.819539\pi\)
\(888\) −66.1496 −2.21984
\(889\) 28.3672 0.951407
\(890\) 0 0
\(891\) 6.27417 0.210192
\(892\) 101.095 3.38491
\(893\) 0.295438 0.00988645
\(894\) −95.3257 −3.18817
\(895\) 0 0
\(896\) −59.9606 −2.00314
\(897\) −49.2538 −1.64454
\(898\) 27.6495 0.922674
\(899\) −61.5916 −2.05420
\(900\) 0 0
\(901\) 21.5498 0.717926
\(902\) −13.1244 −0.436994
\(903\) −82.2213 −2.73615
\(904\) 71.3490 2.37303
\(905\) 0 0
\(906\) −7.83439 −0.260280
\(907\) −58.4194 −1.93979 −0.969893 0.243532i \(-0.921694\pi\)
−0.969893 + 0.243532i \(0.921694\pi\)
\(908\) −33.8447 −1.12318
\(909\) 6.57419 0.218052
\(910\) 0 0
\(911\) −39.2409 −1.30011 −0.650054 0.759888i \(-0.725254\pi\)
−0.650054 + 0.759888i \(0.725254\pi\)
\(912\) 6.64540 0.220051
\(913\) −13.7041 −0.453539
\(914\) −27.2826 −0.902427
\(915\) 0 0
\(916\) −51.6337 −1.70603
\(917\) −38.8889 −1.28422
\(918\) 25.6990 0.848195
\(919\) 18.4113 0.607334 0.303667 0.952778i \(-0.401789\pi\)
0.303667 + 0.952778i \(0.401789\pi\)
\(920\) 0 0
\(921\) −72.9057 −2.40233
\(922\) 10.4851 0.345308
\(923\) 4.83657 0.159198
\(924\) −28.1528 −0.926159
\(925\) 0 0
\(926\) 22.3478 0.734393
\(927\) 20.6518 0.678296
\(928\) −20.9844 −0.688847
\(929\) −32.8679 −1.07836 −0.539180 0.842191i \(-0.681266\pi\)
−0.539180 + 0.842191i \(0.681266\pi\)
\(930\) 0 0
\(931\) 1.37462 0.0450515
\(932\) 9.20907 0.301653
\(933\) −36.8162 −1.20531
\(934\) 67.3110 2.20248
\(935\) 0 0
\(936\) −74.1620 −2.42406
\(937\) −4.34616 −0.141983 −0.0709914 0.997477i \(-0.522616\pi\)
−0.0709914 + 0.997477i \(0.522616\pi\)
\(938\) −48.4917 −1.58331
\(939\) 24.5447 0.800987
\(940\) 0 0
\(941\) −55.1238 −1.79699 −0.898493 0.438989i \(-0.855337\pi\)
−0.898493 + 0.438989i \(0.855337\pi\)
\(942\) −75.8091 −2.46999
\(943\) 21.9324 0.714218
\(944\) −14.2139 −0.462625
\(945\) 0 0
\(946\) 26.2603 0.853797
\(947\) −16.6794 −0.542007 −0.271004 0.962578i \(-0.587356\pi\)
−0.271004 + 0.962578i \(0.587356\pi\)
\(948\) 70.8894 2.30238
\(949\) −0.957193 −0.0310718
\(950\) 0 0
\(951\) 61.9201 2.00790
\(952\) 68.6514 2.22500
\(953\) −51.8274 −1.67885 −0.839427 0.543472i \(-0.817109\pi\)
−0.839427 + 0.543472i \(0.817109\pi\)
\(954\) 34.0963 1.10391
\(955\) 0 0
\(956\) −85.6605 −2.77046
\(957\) −24.2008 −0.782299
\(958\) −13.5524 −0.437859
\(959\) 46.9163 1.51501
\(960\) 0 0
\(961\) 12.5957 0.406312
\(962\) 69.0371 2.22585
\(963\) 16.1192 0.519433
\(964\) 60.4399 1.94664
\(965\) 0 0
\(966\) 72.1395 2.32105
\(967\) 28.7146 0.923398 0.461699 0.887037i \(-0.347240\pi\)
0.461699 + 0.887037i \(0.347240\pi\)
\(968\) 4.19584 0.134860
\(969\) 14.6682 0.471210
\(970\) 0 0
\(971\) 43.9744 1.41121 0.705603 0.708607i \(-0.250676\pi\)
0.705603 + 0.708607i \(0.250676\pi\)
\(972\) −82.3615 −2.64175
\(973\) 55.0918 1.76616
\(974\) 14.6114 0.468180
\(975\) 0 0
\(976\) −2.58756 −0.0828258
\(977\) −19.2496 −0.615848 −0.307924 0.951411i \(-0.599634\pi\)
−0.307924 + 0.951411i \(0.599634\pi\)
\(978\) −37.9304 −1.21288
\(979\) 15.8152 0.505455
\(980\) 0 0
\(981\) −48.5132 −1.54891
\(982\) 20.5327 0.655224
\(983\) 12.7410 0.406373 0.203187 0.979140i \(-0.434870\pi\)
0.203187 + 0.979140i \(0.434870\pi\)
\(984\) 59.5799 1.89934
\(985\) 0 0
\(986\) 126.466 4.02750
\(987\) 2.21808 0.0706023
\(988\) −17.7659 −0.565208
\(989\) −43.8842 −1.39544
\(990\) 0 0
\(991\) 27.9827 0.888900 0.444450 0.895804i \(-0.353399\pi\)
0.444450 + 0.895804i \(0.353399\pi\)
\(992\) 14.8531 0.471588
\(993\) −34.2047 −1.08545
\(994\) −7.08387 −0.224687
\(995\) 0 0
\(996\) 133.318 4.22434
\(997\) 47.7121 1.51106 0.755528 0.655116i \(-0.227380\pi\)
0.755528 + 0.655116i \(0.227380\pi\)
\(998\) −3.25002 −0.102878
\(999\) −11.5192 −0.364451
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.j.1.5 5
5.4 even 2 1045.2.a.d.1.1 5
15.14 odd 2 9405.2.a.v.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.d.1.1 5 5.4 even 2
5225.2.a.j.1.5 5 1.1 even 1 trivial
9405.2.a.v.1.5 5 15.14 odd 2