Properties

Label 5225.2.a.j.1.3
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.830830\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.37279 q^{2} +1.23648 q^{3} -0.115460 q^{4} +1.69742 q^{6} -2.43232 q^{7} -2.90407 q^{8} -1.47112 q^{9} +O(q^{10})\) \(q+1.37279 q^{2} +1.23648 q^{3} -0.115460 q^{4} +1.69742 q^{6} -2.43232 q^{7} -2.90407 q^{8} -1.47112 q^{9} -1.00000 q^{11} -0.142763 q^{12} +4.84815 q^{13} -3.33906 q^{14} -3.75575 q^{16} +1.04001 q^{17} -2.01953 q^{18} +1.00000 q^{19} -3.00752 q^{21} -1.37279 q^{22} -0.377030 q^{23} -3.59082 q^{24} +6.65547 q^{26} -5.52845 q^{27} +0.280835 q^{28} +4.50688 q^{29} +4.76341 q^{31} +0.652306 q^{32} -1.23648 q^{33} +1.42770 q^{34} +0.169855 q^{36} -3.01428 q^{37} +1.37279 q^{38} +5.99464 q^{39} +0.790451 q^{41} -4.12867 q^{42} +7.46777 q^{43} +0.115460 q^{44} -0.517582 q^{46} +9.67305 q^{47} -4.64391 q^{48} -1.08380 q^{49} +1.28594 q^{51} -0.559766 q^{52} +12.7465 q^{53} -7.58937 q^{54} +7.06364 q^{56} +1.23648 q^{57} +6.18698 q^{58} +1.32111 q^{59} -5.58779 q^{61} +6.53915 q^{62} +3.57824 q^{63} +8.40698 q^{64} -1.69742 q^{66} +1.20728 q^{67} -0.120079 q^{68} -0.466190 q^{69} -0.259538 q^{71} +4.27224 q^{72} +6.27686 q^{73} -4.13797 q^{74} -0.115460 q^{76} +2.43232 q^{77} +8.22935 q^{78} -9.16926 q^{79} -2.42245 q^{81} +1.08512 q^{82} +14.2430 q^{83} +0.347247 q^{84} +10.2517 q^{86} +5.57266 q^{87} +2.90407 q^{88} -1.23983 q^{89} -11.7923 q^{91} +0.0435318 q^{92} +5.88986 q^{93} +13.2790 q^{94} +0.806563 q^{96} -2.95633 q^{97} -1.48783 q^{98} +1.47112 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 7 q^{3} + 5 q^{4} + 2 q^{6} + 11 q^{7} - 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 3 q^{2} + 7 q^{3} + 5 q^{4} + 2 q^{6} + 11 q^{7} - 3 q^{8} + 8 q^{9} - 5 q^{11} + 7 q^{12} - q^{13} - 3 q^{16} + 3 q^{17} + 7 q^{18} + 5 q^{19} + 11 q^{21} - 3 q^{22} + 8 q^{23} + 9 q^{24} - 16 q^{26} + 10 q^{27} + 22 q^{28} + 11 q^{29} - 5 q^{31} + 2 q^{32} - 7 q^{33} + 4 q^{34} - 3 q^{36} + 9 q^{37} + 3 q^{38} - 8 q^{39} + 15 q^{41} - 11 q^{42} + 13 q^{43} - 5 q^{44} + 18 q^{46} + 20 q^{47} + 20 q^{48} + 20 q^{49} + 24 q^{51} - q^{52} + 5 q^{53} + 17 q^{54} + 7 q^{57} + 33 q^{58} - 17 q^{59} + 3 q^{61} - 14 q^{62} + 22 q^{63} - 17 q^{64} - 2 q^{66} + 28 q^{67} + 25 q^{68} - 2 q^{69} - 6 q^{71} + 26 q^{72} + 16 q^{73} - 21 q^{74} + 5 q^{76} - 11 q^{77} - 29 q^{78} + 3 q^{79} + q^{81} - 2 q^{82} + 33 q^{83} + 33 q^{84} + 10 q^{86} + 3 q^{88} - 16 q^{89} - 22 q^{91} + 19 q^{92} + 26 q^{93} - 10 q^{94} + 5 q^{96} + 14 q^{97} - 10 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37279 0.970706 0.485353 0.874318i \(-0.338691\pi\)
0.485353 + 0.874318i \(0.338691\pi\)
\(3\) 1.23648 0.713881 0.356941 0.934127i \(-0.383820\pi\)
0.356941 + 0.934127i \(0.383820\pi\)
\(4\) −0.115460 −0.0577299
\(5\) 0 0
\(6\) 1.69742 0.692969
\(7\) −2.43232 −0.919332 −0.459666 0.888092i \(-0.652031\pi\)
−0.459666 + 0.888092i \(0.652031\pi\)
\(8\) −2.90407 −1.02674
\(9\) −1.47112 −0.490373
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) −0.142763 −0.0412123
\(13\) 4.84815 1.34463 0.672317 0.740263i \(-0.265299\pi\)
0.672317 + 0.740263i \(0.265299\pi\)
\(14\) −3.33906 −0.892401
\(15\) 0 0
\(16\) −3.75575 −0.938937
\(17\) 1.04001 0.252238 0.126119 0.992015i \(-0.459748\pi\)
0.126119 + 0.992015i \(0.459748\pi\)
\(18\) −2.01953 −0.476008
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −3.00752 −0.656294
\(22\) −1.37279 −0.292679
\(23\) −0.377030 −0.0786163 −0.0393081 0.999227i \(-0.512515\pi\)
−0.0393081 + 0.999227i \(0.512515\pi\)
\(24\) −3.59082 −0.732974
\(25\) 0 0
\(26\) 6.65547 1.30525
\(27\) −5.52845 −1.06395
\(28\) 0.280835 0.0530729
\(29\) 4.50688 0.836907 0.418453 0.908238i \(-0.362572\pi\)
0.418453 + 0.908238i \(0.362572\pi\)
\(30\) 0 0
\(31\) 4.76341 0.855535 0.427767 0.903889i \(-0.359300\pi\)
0.427767 + 0.903889i \(0.359300\pi\)
\(32\) 0.652306 0.115313
\(33\) −1.23648 −0.215243
\(34\) 1.42770 0.244849
\(35\) 0 0
\(36\) 0.169855 0.0283092
\(37\) −3.01428 −0.495545 −0.247773 0.968818i \(-0.579699\pi\)
−0.247773 + 0.968818i \(0.579699\pi\)
\(38\) 1.37279 0.222695
\(39\) 5.99464 0.959910
\(40\) 0 0
\(41\) 0.790451 0.123448 0.0617238 0.998093i \(-0.480340\pi\)
0.0617238 + 0.998093i \(0.480340\pi\)
\(42\) −4.12867 −0.637068
\(43\) 7.46777 1.13882 0.569412 0.822052i \(-0.307171\pi\)
0.569412 + 0.822052i \(0.307171\pi\)
\(44\) 0.115460 0.0174062
\(45\) 0 0
\(46\) −0.517582 −0.0763133
\(47\) 9.67305 1.41096 0.705479 0.708730i \(-0.250732\pi\)
0.705479 + 0.708730i \(0.250732\pi\)
\(48\) −4.64391 −0.670290
\(49\) −1.08380 −0.154829
\(50\) 0 0
\(51\) 1.28594 0.180068
\(52\) −0.559766 −0.0776256
\(53\) 12.7465 1.75087 0.875435 0.483336i \(-0.160575\pi\)
0.875435 + 0.483336i \(0.160575\pi\)
\(54\) −7.58937 −1.03278
\(55\) 0 0
\(56\) 7.06364 0.943919
\(57\) 1.23648 0.163776
\(58\) 6.18698 0.812390
\(59\) 1.32111 0.171994 0.0859968 0.996295i \(-0.472593\pi\)
0.0859968 + 0.996295i \(0.472593\pi\)
\(60\) 0 0
\(61\) −5.58779 −0.715443 −0.357721 0.933828i \(-0.616446\pi\)
−0.357721 + 0.933828i \(0.616446\pi\)
\(62\) 6.53915 0.830472
\(63\) 3.57824 0.450816
\(64\) 8.40698 1.05087
\(65\) 0 0
\(66\) −1.69742 −0.208938
\(67\) 1.20728 0.147493 0.0737465 0.997277i \(-0.476504\pi\)
0.0737465 + 0.997277i \(0.476504\pi\)
\(68\) −0.120079 −0.0145617
\(69\) −0.466190 −0.0561227
\(70\) 0 0
\(71\) −0.259538 −0.0308015 −0.0154007 0.999881i \(-0.504902\pi\)
−0.0154007 + 0.999881i \(0.504902\pi\)
\(72\) 4.27224 0.503488
\(73\) 6.27686 0.734651 0.367325 0.930093i \(-0.380274\pi\)
0.367325 + 0.930093i \(0.380274\pi\)
\(74\) −4.13797 −0.481029
\(75\) 0 0
\(76\) −0.115460 −0.0132441
\(77\) 2.43232 0.277189
\(78\) 8.22935 0.931790
\(79\) −9.16926 −1.03162 −0.515811 0.856702i \(-0.672509\pi\)
−0.515811 + 0.856702i \(0.672509\pi\)
\(80\) 0 0
\(81\) −2.42245 −0.269161
\(82\) 1.08512 0.119831
\(83\) 14.2430 1.56337 0.781686 0.623673i \(-0.214360\pi\)
0.781686 + 0.623673i \(0.214360\pi\)
\(84\) 0.347247 0.0378877
\(85\) 0 0
\(86\) 10.2517 1.10546
\(87\) 5.57266 0.597452
\(88\) 2.90407 0.309575
\(89\) −1.23983 −0.131421 −0.0657107 0.997839i \(-0.520931\pi\)
−0.0657107 + 0.997839i \(0.520931\pi\)
\(90\) 0 0
\(91\) −11.7923 −1.23617
\(92\) 0.0435318 0.00453851
\(93\) 5.88986 0.610750
\(94\) 13.2790 1.36963
\(95\) 0 0
\(96\) 0.806563 0.0823195
\(97\) −2.95633 −0.300170 −0.150085 0.988673i \(-0.547955\pi\)
−0.150085 + 0.988673i \(0.547955\pi\)
\(98\) −1.48783 −0.150294
\(99\) 1.47112 0.147853
\(100\) 0 0
\(101\) −1.55010 −0.154241 −0.0771204 0.997022i \(-0.524573\pi\)
−0.0771204 + 0.997022i \(0.524573\pi\)
\(102\) 1.76533 0.174793
\(103\) 0.339313 0.0334335 0.0167168 0.999860i \(-0.494679\pi\)
0.0167168 + 0.999860i \(0.494679\pi\)
\(104\) −14.0794 −1.38060
\(105\) 0 0
\(106\) 17.4982 1.69958
\(107\) 9.05124 0.875017 0.437508 0.899214i \(-0.355861\pi\)
0.437508 + 0.899214i \(0.355861\pi\)
\(108\) 0.638313 0.0614217
\(109\) 14.7515 1.41294 0.706471 0.707742i \(-0.250286\pi\)
0.706471 + 0.707742i \(0.250286\pi\)
\(110\) 0 0
\(111\) −3.72710 −0.353761
\(112\) 9.13520 0.863195
\(113\) 4.71030 0.443108 0.221554 0.975148i \(-0.428887\pi\)
0.221554 + 0.975148i \(0.428887\pi\)
\(114\) 1.69742 0.158978
\(115\) 0 0
\(116\) −0.520363 −0.0483145
\(117\) −7.13221 −0.659373
\(118\) 1.81360 0.166955
\(119\) −2.52963 −0.231891
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −7.67083 −0.694485
\(123\) 0.977376 0.0881270
\(124\) −0.549982 −0.0493899
\(125\) 0 0
\(126\) 4.91215 0.437610
\(127\) −14.7860 −1.31205 −0.656024 0.754740i \(-0.727763\pi\)
−0.656024 + 0.754740i \(0.727763\pi\)
\(128\) 10.2364 0.904775
\(129\) 9.23374 0.812986
\(130\) 0 0
\(131\) −7.82065 −0.683294 −0.341647 0.939828i \(-0.610985\pi\)
−0.341647 + 0.939828i \(0.610985\pi\)
\(132\) 0.142763 0.0124260
\(133\) −2.43232 −0.210909
\(134\) 1.65734 0.143172
\(135\) 0 0
\(136\) −3.02025 −0.258984
\(137\) 7.70625 0.658389 0.329195 0.944262i \(-0.393223\pi\)
0.329195 + 0.944262i \(0.393223\pi\)
\(138\) −0.639979 −0.0544786
\(139\) 14.3953 1.22099 0.610495 0.792020i \(-0.290970\pi\)
0.610495 + 0.792020i \(0.290970\pi\)
\(140\) 0 0
\(141\) 11.9605 1.00726
\(142\) −0.356290 −0.0298992
\(143\) −4.84815 −0.405423
\(144\) 5.52516 0.460430
\(145\) 0 0
\(146\) 8.61678 0.713130
\(147\) −1.34010 −0.110530
\(148\) 0.348028 0.0286078
\(149\) −13.8399 −1.13381 −0.566906 0.823783i \(-0.691860\pi\)
−0.566906 + 0.823783i \(0.691860\pi\)
\(150\) 0 0
\(151\) −8.10281 −0.659398 −0.329699 0.944086i \(-0.606947\pi\)
−0.329699 + 0.944086i \(0.606947\pi\)
\(152\) −2.90407 −0.235551
\(153\) −1.52997 −0.123691
\(154\) 3.33906 0.269069
\(155\) 0 0
\(156\) −0.692139 −0.0554155
\(157\) 7.13378 0.569338 0.284669 0.958626i \(-0.408116\pi\)
0.284669 + 0.958626i \(0.408116\pi\)
\(158\) −12.5874 −1.00140
\(159\) 15.7608 1.24991
\(160\) 0 0
\(161\) 0.917060 0.0722744
\(162\) −3.32550 −0.261276
\(163\) 23.8705 1.86968 0.934840 0.355068i \(-0.115542\pi\)
0.934840 + 0.355068i \(0.115542\pi\)
\(164\) −0.0912652 −0.00712661
\(165\) 0 0
\(166\) 19.5526 1.51757
\(167\) 8.49981 0.657735 0.328868 0.944376i \(-0.393333\pi\)
0.328868 + 0.944376i \(0.393333\pi\)
\(168\) 8.73405 0.673846
\(169\) 10.5046 0.808043
\(170\) 0 0
\(171\) −1.47112 −0.112499
\(172\) −0.862227 −0.0657442
\(173\) 3.76732 0.286424 0.143212 0.989692i \(-0.454257\pi\)
0.143212 + 0.989692i \(0.454257\pi\)
\(174\) 7.65007 0.579950
\(175\) 0 0
\(176\) 3.75575 0.283100
\(177\) 1.63352 0.122783
\(178\) −1.70202 −0.127571
\(179\) −12.0321 −0.899323 −0.449661 0.893199i \(-0.648455\pi\)
−0.449661 + 0.893199i \(0.648455\pi\)
\(180\) 0 0
\(181\) −9.01903 −0.670380 −0.335190 0.942151i \(-0.608800\pi\)
−0.335190 + 0.942151i \(0.608800\pi\)
\(182\) −16.1883 −1.19995
\(183\) −6.90918 −0.510741
\(184\) 1.09492 0.0807188
\(185\) 0 0
\(186\) 8.08552 0.592859
\(187\) −1.04001 −0.0760527
\(188\) −1.11685 −0.0814544
\(189\) 13.4470 0.978123
\(190\) 0 0
\(191\) −15.2598 −1.10416 −0.552079 0.833792i \(-0.686165\pi\)
−0.552079 + 0.833792i \(0.686165\pi\)
\(192\) 10.3950 0.750198
\(193\) −3.17246 −0.228359 −0.114179 0.993460i \(-0.536424\pi\)
−0.114179 + 0.993460i \(0.536424\pi\)
\(194\) −4.05841 −0.291377
\(195\) 0 0
\(196\) 0.125136 0.00893827
\(197\) 6.09397 0.434178 0.217089 0.976152i \(-0.430344\pi\)
0.217089 + 0.976152i \(0.430344\pi\)
\(198\) 2.01953 0.143522
\(199\) −15.8148 −1.12108 −0.560541 0.828127i \(-0.689407\pi\)
−0.560541 + 0.828127i \(0.689407\pi\)
\(200\) 0 0
\(201\) 1.49278 0.105292
\(202\) −2.12796 −0.149723
\(203\) −10.9622 −0.769395
\(204\) −0.148475 −0.0103953
\(205\) 0 0
\(206\) 0.465805 0.0324541
\(207\) 0.554657 0.0385513
\(208\) −18.2084 −1.26253
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 10.4371 0.718522 0.359261 0.933237i \(-0.383029\pi\)
0.359261 + 0.933237i \(0.383029\pi\)
\(212\) −1.47171 −0.101077
\(213\) −0.320913 −0.0219886
\(214\) 12.4254 0.849384
\(215\) 0 0
\(216\) 16.0550 1.09240
\(217\) −11.5862 −0.786520
\(218\) 20.2507 1.37155
\(219\) 7.76120 0.524453
\(220\) 0 0
\(221\) 5.04210 0.339168
\(222\) −5.11651 −0.343397
\(223\) 15.2161 1.01895 0.509474 0.860486i \(-0.329840\pi\)
0.509474 + 0.860486i \(0.329840\pi\)
\(224\) −1.58662 −0.106010
\(225\) 0 0
\(226\) 6.46623 0.430127
\(227\) 15.4170 1.02326 0.511630 0.859206i \(-0.329042\pi\)
0.511630 + 0.859206i \(0.329042\pi\)
\(228\) −0.142763 −0.00945474
\(229\) 18.2529 1.20618 0.603091 0.797672i \(-0.293935\pi\)
0.603091 + 0.797672i \(0.293935\pi\)
\(230\) 0 0
\(231\) 3.00752 0.197880
\(232\) −13.0883 −0.859289
\(233\) −19.1041 −1.25155 −0.625776 0.780003i \(-0.715218\pi\)
−0.625776 + 0.780003i \(0.715218\pi\)
\(234\) −9.79100 −0.640057
\(235\) 0 0
\(236\) −0.152535 −0.00992917
\(237\) −11.3376 −0.736456
\(238\) −3.47264 −0.225098
\(239\) 20.6551 1.33607 0.668034 0.744131i \(-0.267136\pi\)
0.668034 + 0.744131i \(0.267136\pi\)
\(240\) 0 0
\(241\) 15.9963 1.03042 0.515208 0.857065i \(-0.327715\pi\)
0.515208 + 0.857065i \(0.327715\pi\)
\(242\) 1.37279 0.0882460
\(243\) 13.5900 0.871801
\(244\) 0.645164 0.0413024
\(245\) 0 0
\(246\) 1.34173 0.0855454
\(247\) 4.84815 0.308480
\(248\) −13.8333 −0.878416
\(249\) 17.6112 1.11606
\(250\) 0 0
\(251\) −11.3379 −0.715639 −0.357820 0.933791i \(-0.616480\pi\)
−0.357820 + 0.933791i \(0.616480\pi\)
\(252\) −0.413142 −0.0260255
\(253\) 0.377030 0.0237037
\(254\) −20.2981 −1.27361
\(255\) 0 0
\(256\) −2.76162 −0.172601
\(257\) −9.80023 −0.611322 −0.305661 0.952140i \(-0.598877\pi\)
−0.305661 + 0.952140i \(0.598877\pi\)
\(258\) 12.6759 0.789170
\(259\) 7.33171 0.455570
\(260\) 0 0
\(261\) −6.63016 −0.410397
\(262\) −10.7361 −0.663277
\(263\) 21.2899 1.31279 0.656395 0.754418i \(-0.272081\pi\)
0.656395 + 0.754418i \(0.272081\pi\)
\(264\) 3.59082 0.221000
\(265\) 0 0
\(266\) −3.33906 −0.204731
\(267\) −1.53302 −0.0938192
\(268\) −0.139392 −0.00851475
\(269\) −18.2788 −1.11448 −0.557240 0.830352i \(-0.688140\pi\)
−0.557240 + 0.830352i \(0.688140\pi\)
\(270\) 0 0
\(271\) 19.7872 1.20199 0.600994 0.799253i \(-0.294772\pi\)
0.600994 + 0.799253i \(0.294772\pi\)
\(272\) −3.90600 −0.236836
\(273\) −14.5809 −0.882476
\(274\) 10.5790 0.639103
\(275\) 0 0
\(276\) 0.0538262 0.00323995
\(277\) −24.5658 −1.47602 −0.738008 0.674792i \(-0.764233\pi\)
−0.738008 + 0.674792i \(0.764233\pi\)
\(278\) 19.7616 1.18522
\(279\) −7.00755 −0.419531
\(280\) 0 0
\(281\) 14.0898 0.840524 0.420262 0.907403i \(-0.361938\pi\)
0.420262 + 0.907403i \(0.361938\pi\)
\(282\) 16.4192 0.977751
\(283\) 18.8367 1.11973 0.559863 0.828585i \(-0.310854\pi\)
0.559863 + 0.828585i \(0.310854\pi\)
\(284\) 0.0299662 0.00177816
\(285\) 0 0
\(286\) −6.65547 −0.393546
\(287\) −1.92263 −0.113489
\(288\) −0.959621 −0.0565462
\(289\) −15.9184 −0.936376
\(290\) 0 0
\(291\) −3.65544 −0.214286
\(292\) −0.724724 −0.0424113
\(293\) −2.08270 −0.121673 −0.0608364 0.998148i \(-0.519377\pi\)
−0.0608364 + 0.998148i \(0.519377\pi\)
\(294\) −1.83967 −0.107292
\(295\) 0 0
\(296\) 8.75370 0.508798
\(297\) 5.52845 0.320793
\(298\) −18.9993 −1.10060
\(299\) −1.82790 −0.105710
\(300\) 0 0
\(301\) −18.1640 −1.04696
\(302\) −11.1234 −0.640081
\(303\) −1.91667 −0.110110
\(304\) −3.75575 −0.215407
\(305\) 0 0
\(306\) −2.10032 −0.120068
\(307\) −19.8442 −1.13257 −0.566284 0.824210i \(-0.691619\pi\)
−0.566284 + 0.824210i \(0.691619\pi\)
\(308\) −0.280835 −0.0160021
\(309\) 0.419554 0.0238676
\(310\) 0 0
\(311\) 3.71814 0.210836 0.105418 0.994428i \(-0.466382\pi\)
0.105418 + 0.994428i \(0.466382\pi\)
\(312\) −17.4089 −0.985582
\(313\) −27.0866 −1.53102 −0.765511 0.643423i \(-0.777514\pi\)
−0.765511 + 0.643423i \(0.777514\pi\)
\(314\) 9.79316 0.552660
\(315\) 0 0
\(316\) 1.05868 0.0595554
\(317\) −9.50445 −0.533823 −0.266911 0.963721i \(-0.586003\pi\)
−0.266911 + 0.963721i \(0.586003\pi\)
\(318\) 21.6362 1.21330
\(319\) −4.50688 −0.252337
\(320\) 0 0
\(321\) 11.1917 0.624658
\(322\) 1.25893 0.0701572
\(323\) 1.04001 0.0578674
\(324\) 0.279695 0.0155386
\(325\) 0 0
\(326\) 32.7691 1.81491
\(327\) 18.2400 1.00867
\(328\) −2.29553 −0.126749
\(329\) −23.5280 −1.29714
\(330\) 0 0
\(331\) 7.27869 0.400073 0.200036 0.979788i \(-0.435894\pi\)
0.200036 + 0.979788i \(0.435894\pi\)
\(332\) −1.64449 −0.0902532
\(333\) 4.43437 0.243002
\(334\) 11.6684 0.638467
\(335\) 0 0
\(336\) 11.2955 0.616219
\(337\) −29.3790 −1.60037 −0.800187 0.599750i \(-0.795267\pi\)
−0.800187 + 0.599750i \(0.795267\pi\)
\(338\) 14.4205 0.784372
\(339\) 5.82419 0.316326
\(340\) 0 0
\(341\) −4.76341 −0.257953
\(342\) −2.01953 −0.109204
\(343\) 19.6624 1.06167
\(344\) −21.6870 −1.16928
\(345\) 0 0
\(346\) 5.17173 0.278034
\(347\) −28.1028 −1.50864 −0.754318 0.656509i \(-0.772032\pi\)
−0.754318 + 0.656509i \(0.772032\pi\)
\(348\) −0.643418 −0.0344908
\(349\) 20.9948 1.12383 0.561913 0.827196i \(-0.310065\pi\)
0.561913 + 0.827196i \(0.310065\pi\)
\(350\) 0 0
\(351\) −26.8027 −1.43062
\(352\) −0.652306 −0.0347680
\(353\) −15.1874 −0.808345 −0.404172 0.914683i \(-0.632440\pi\)
−0.404172 + 0.914683i \(0.632440\pi\)
\(354\) 2.24248 0.119186
\(355\) 0 0
\(356\) 0.143150 0.00758693
\(357\) −3.12783 −0.165542
\(358\) −16.5175 −0.872978
\(359\) 11.5028 0.607093 0.303546 0.952817i \(-0.401829\pi\)
0.303546 + 0.952817i \(0.401829\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −12.3812 −0.650741
\(363\) 1.23648 0.0648983
\(364\) 1.36153 0.0713637
\(365\) 0 0
\(366\) −9.48483 −0.495780
\(367\) 1.52355 0.0795284 0.0397642 0.999209i \(-0.487339\pi\)
0.0397642 + 0.999209i \(0.487339\pi\)
\(368\) 1.41603 0.0738158
\(369\) −1.16285 −0.0605354
\(370\) 0 0
\(371\) −31.0037 −1.60963
\(372\) −0.680042 −0.0352585
\(373\) −16.5646 −0.857682 −0.428841 0.903380i \(-0.641078\pi\)
−0.428841 + 0.903380i \(0.641078\pi\)
\(374\) −1.42770 −0.0738248
\(375\) 0 0
\(376\) −28.0912 −1.44869
\(377\) 21.8500 1.12533
\(378\) 18.4598 0.949470
\(379\) −0.0190602 −0.000979058 0 −0.000489529 1.00000i \(-0.500156\pi\)
−0.000489529 1.00000i \(0.500156\pi\)
\(380\) 0 0
\(381\) −18.2826 −0.936647
\(382\) −20.9484 −1.07181
\(383\) −18.2085 −0.930412 −0.465206 0.885202i \(-0.654020\pi\)
−0.465206 + 0.885202i \(0.654020\pi\)
\(384\) 12.6570 0.645902
\(385\) 0 0
\(386\) −4.35511 −0.221669
\(387\) −10.9860 −0.558449
\(388\) 0.341337 0.0173288
\(389\) −31.4031 −1.59220 −0.796099 0.605166i \(-0.793107\pi\)
−0.796099 + 0.605166i \(0.793107\pi\)
\(390\) 0 0
\(391\) −0.392114 −0.0198300
\(392\) 3.14745 0.158970
\(393\) −9.67007 −0.487791
\(394\) 8.36572 0.421459
\(395\) 0 0
\(396\) −0.169855 −0.00853554
\(397\) 25.8619 1.29797 0.648985 0.760801i \(-0.275194\pi\)
0.648985 + 0.760801i \(0.275194\pi\)
\(398\) −21.7103 −1.08824
\(399\) −3.00752 −0.150564
\(400\) 0 0
\(401\) −15.5141 −0.774737 −0.387369 0.921925i \(-0.626616\pi\)
−0.387369 + 0.921925i \(0.626616\pi\)
\(402\) 2.04926 0.102208
\(403\) 23.0938 1.15038
\(404\) 0.178974 0.00890430
\(405\) 0 0
\(406\) −15.0487 −0.746856
\(407\) 3.01428 0.149412
\(408\) −3.73448 −0.184884
\(409\) 20.7451 1.02578 0.512889 0.858455i \(-0.328575\pi\)
0.512889 + 0.858455i \(0.328575\pi\)
\(410\) 0 0
\(411\) 9.52862 0.470012
\(412\) −0.0391770 −0.00193011
\(413\) −3.21336 −0.158119
\(414\) 0.761425 0.0374220
\(415\) 0 0
\(416\) 3.16248 0.155053
\(417\) 17.7994 0.871643
\(418\) −1.37279 −0.0671451
\(419\) 6.94955 0.339508 0.169754 0.985487i \(-0.445703\pi\)
0.169754 + 0.985487i \(0.445703\pi\)
\(420\) 0 0
\(421\) 17.0486 0.830897 0.415448 0.909617i \(-0.363625\pi\)
0.415448 + 0.909617i \(0.363625\pi\)
\(422\) 14.3280 0.697474
\(423\) −14.2302 −0.691897
\(424\) −37.0168 −1.79770
\(425\) 0 0
\(426\) −0.440545 −0.0213445
\(427\) 13.5913 0.657729
\(428\) −1.04505 −0.0505146
\(429\) −5.99464 −0.289424
\(430\) 0 0
\(431\) 10.6174 0.511421 0.255711 0.966753i \(-0.417691\pi\)
0.255711 + 0.966753i \(0.417691\pi\)
\(432\) 20.7635 0.998982
\(433\) 5.21952 0.250834 0.125417 0.992104i \(-0.459973\pi\)
0.125417 + 0.992104i \(0.459973\pi\)
\(434\) −15.9053 −0.763480
\(435\) 0 0
\(436\) −1.70321 −0.0815689
\(437\) −0.377030 −0.0180358
\(438\) 10.6545 0.509090
\(439\) −25.8096 −1.23182 −0.615912 0.787815i \(-0.711212\pi\)
−0.615912 + 0.787815i \(0.711212\pi\)
\(440\) 0 0
\(441\) 1.59441 0.0759241
\(442\) 6.92172 0.329233
\(443\) 30.3917 1.44395 0.721977 0.691917i \(-0.243234\pi\)
0.721977 + 0.691917i \(0.243234\pi\)
\(444\) 0.430330 0.0204225
\(445\) 0 0
\(446\) 20.8885 0.989099
\(447\) −17.1128 −0.809407
\(448\) −20.4485 −0.966100
\(449\) 10.8574 0.512394 0.256197 0.966625i \(-0.417530\pi\)
0.256197 + 0.966625i \(0.417530\pi\)
\(450\) 0 0
\(451\) −0.790451 −0.0372209
\(452\) −0.543850 −0.0255805
\(453\) −10.0190 −0.470732
\(454\) 21.1642 0.993285
\(455\) 0 0
\(456\) −3.59082 −0.168156
\(457\) −18.3849 −0.860008 −0.430004 0.902827i \(-0.641488\pi\)
−0.430004 + 0.902827i \(0.641488\pi\)
\(458\) 25.0573 1.17085
\(459\) −5.74961 −0.268369
\(460\) 0 0
\(461\) −28.2662 −1.31649 −0.658245 0.752804i \(-0.728701\pi\)
−0.658245 + 0.752804i \(0.728701\pi\)
\(462\) 4.12867 0.192083
\(463\) −33.4266 −1.55346 −0.776732 0.629831i \(-0.783124\pi\)
−0.776732 + 0.629831i \(0.783124\pi\)
\(464\) −16.9267 −0.785803
\(465\) 0 0
\(466\) −26.2258 −1.21489
\(467\) 1.21297 0.0561297 0.0280648 0.999606i \(-0.491066\pi\)
0.0280648 + 0.999606i \(0.491066\pi\)
\(468\) 0.823483 0.0380655
\(469\) −2.93650 −0.135595
\(470\) 0 0
\(471\) 8.82077 0.406440
\(472\) −3.83659 −0.176594
\(473\) −7.46777 −0.343369
\(474\) −15.5641 −0.714882
\(475\) 0 0
\(476\) 0.292070 0.0133870
\(477\) −18.7517 −0.858580
\(478\) 28.3550 1.29693
\(479\) −25.9098 −1.18385 −0.591923 0.805994i \(-0.701631\pi\)
−0.591923 + 0.805994i \(0.701631\pi\)
\(480\) 0 0
\(481\) −14.6137 −0.666327
\(482\) 21.9596 1.00023
\(483\) 1.13392 0.0515954
\(484\) −0.115460 −0.00524817
\(485\) 0 0
\(486\) 18.6562 0.846262
\(487\) 3.09538 0.140265 0.0701326 0.997538i \(-0.477658\pi\)
0.0701326 + 0.997538i \(0.477658\pi\)
\(488\) 16.2273 0.734577
\(489\) 29.5154 1.33473
\(490\) 0 0
\(491\) 17.4687 0.788352 0.394176 0.919035i \(-0.371030\pi\)
0.394176 + 0.919035i \(0.371030\pi\)
\(492\) −0.112847 −0.00508756
\(493\) 4.68718 0.211100
\(494\) 6.65547 0.299444
\(495\) 0 0
\(496\) −17.8902 −0.803293
\(497\) 0.631280 0.0283168
\(498\) 24.1763 1.08337
\(499\) −6.47276 −0.289760 −0.144880 0.989449i \(-0.546280\pi\)
−0.144880 + 0.989449i \(0.546280\pi\)
\(500\) 0 0
\(501\) 10.5098 0.469545
\(502\) −15.5644 −0.694675
\(503\) 15.5931 0.695262 0.347631 0.937631i \(-0.386986\pi\)
0.347631 + 0.937631i \(0.386986\pi\)
\(504\) −10.3915 −0.462873
\(505\) 0 0
\(506\) 0.517582 0.0230093
\(507\) 12.9887 0.576847
\(508\) 1.70719 0.0757444
\(509\) 6.14404 0.272330 0.136165 0.990686i \(-0.456522\pi\)
0.136165 + 0.990686i \(0.456522\pi\)
\(510\) 0 0
\(511\) −15.2673 −0.675388
\(512\) −24.2638 −1.07232
\(513\) −5.52845 −0.244087
\(514\) −13.4536 −0.593414
\(515\) 0 0
\(516\) −1.06613 −0.0469335
\(517\) −9.67305 −0.425420
\(518\) 10.0649 0.442225
\(519\) 4.65822 0.204473
\(520\) 0 0
\(521\) 41.4684 1.81676 0.908382 0.418141i \(-0.137318\pi\)
0.908382 + 0.418141i \(0.137318\pi\)
\(522\) −9.10179 −0.398375
\(523\) −2.76287 −0.120812 −0.0604059 0.998174i \(-0.519240\pi\)
−0.0604059 + 0.998174i \(0.519240\pi\)
\(524\) 0.902970 0.0394464
\(525\) 0 0
\(526\) 29.2264 1.27433
\(527\) 4.95398 0.215799
\(528\) 4.64391 0.202100
\(529\) −22.8578 −0.993819
\(530\) 0 0
\(531\) −1.94351 −0.0843411
\(532\) 0.280835 0.0121758
\(533\) 3.83222 0.165992
\(534\) −2.10451 −0.0910709
\(535\) 0 0
\(536\) −3.50603 −0.151438
\(537\) −14.8775 −0.642010
\(538\) −25.0929 −1.08183
\(539\) 1.08380 0.0466828
\(540\) 0 0
\(541\) 29.6566 1.27504 0.637519 0.770435i \(-0.279961\pi\)
0.637519 + 0.770435i \(0.279961\pi\)
\(542\) 27.1636 1.16678
\(543\) −11.1518 −0.478572
\(544\) 0.678402 0.0290862
\(545\) 0 0
\(546\) −20.0164 −0.856624
\(547\) 21.7318 0.929184 0.464592 0.885525i \(-0.346201\pi\)
0.464592 + 0.885525i \(0.346201\pi\)
\(548\) −0.889761 −0.0380087
\(549\) 8.22031 0.350834
\(550\) 0 0
\(551\) 4.50688 0.192000
\(552\) 1.35385 0.0576237
\(553\) 22.3026 0.948403
\(554\) −33.7236 −1.43278
\(555\) 0 0
\(556\) −1.66207 −0.0704876
\(557\) −8.08244 −0.342464 −0.171232 0.985231i \(-0.554775\pi\)
−0.171232 + 0.985231i \(0.554775\pi\)
\(558\) −9.61987 −0.407242
\(559\) 36.2049 1.53130
\(560\) 0 0
\(561\) −1.28594 −0.0542926
\(562\) 19.3422 0.815902
\(563\) 25.7685 1.08601 0.543006 0.839729i \(-0.317286\pi\)
0.543006 + 0.839729i \(0.317286\pi\)
\(564\) −1.38096 −0.0581488
\(565\) 0 0
\(566\) 25.8588 1.08693
\(567\) 5.89217 0.247448
\(568\) 0.753717 0.0316253
\(569\) −19.2047 −0.805102 −0.402551 0.915398i \(-0.631876\pi\)
−0.402551 + 0.915398i \(0.631876\pi\)
\(570\) 0 0
\(571\) −28.0284 −1.17295 −0.586477 0.809966i \(-0.699486\pi\)
−0.586477 + 0.809966i \(0.699486\pi\)
\(572\) 0.559766 0.0234050
\(573\) −18.8684 −0.788237
\(574\) −2.63936 −0.110165
\(575\) 0 0
\(576\) −12.3677 −0.515320
\(577\) 34.8547 1.45102 0.725509 0.688212i \(-0.241604\pi\)
0.725509 + 0.688212i \(0.241604\pi\)
\(578\) −21.8525 −0.908946
\(579\) −3.92268 −0.163021
\(580\) 0 0
\(581\) −34.6436 −1.43726
\(582\) −5.01813 −0.208008
\(583\) −12.7465 −0.527907
\(584\) −18.2285 −0.754299
\(585\) 0 0
\(586\) −2.85910 −0.118109
\(587\) −7.98152 −0.329433 −0.164716 0.986341i \(-0.552671\pi\)
−0.164716 + 0.986341i \(0.552671\pi\)
\(588\) 0.154728 0.00638086
\(589\) 4.76341 0.196273
\(590\) 0 0
\(591\) 7.53507 0.309951
\(592\) 11.3209 0.465286
\(593\) −11.6876 −0.479951 −0.239976 0.970779i \(-0.577139\pi\)
−0.239976 + 0.970779i \(0.577139\pi\)
\(594\) 7.58937 0.311396
\(595\) 0 0
\(596\) 1.59796 0.0654548
\(597\) −19.5547 −0.800320
\(598\) −2.50931 −0.102614
\(599\) −20.3132 −0.829973 −0.414986 0.909828i \(-0.636214\pi\)
−0.414986 + 0.909828i \(0.636214\pi\)
\(600\) 0 0
\(601\) 32.4805 1.32491 0.662453 0.749104i \(-0.269516\pi\)
0.662453 + 0.749104i \(0.269516\pi\)
\(602\) −24.9353 −1.01629
\(603\) −1.77606 −0.0723266
\(604\) 0.935548 0.0380669
\(605\) 0 0
\(606\) −2.63117 −0.106884
\(607\) 45.4701 1.84557 0.922787 0.385311i \(-0.125906\pi\)
0.922787 + 0.385311i \(0.125906\pi\)
\(608\) 0.652306 0.0264545
\(609\) −13.5545 −0.549257
\(610\) 0 0
\(611\) 46.8964 1.89722
\(612\) 0.176650 0.00714066
\(613\) −4.06460 −0.164168 −0.0820839 0.996625i \(-0.526158\pi\)
−0.0820839 + 0.996625i \(0.526158\pi\)
\(614\) −27.2418 −1.09939
\(615\) 0 0
\(616\) −7.06364 −0.284602
\(617\) 27.7980 1.11911 0.559554 0.828794i \(-0.310973\pi\)
0.559554 + 0.828794i \(0.310973\pi\)
\(618\) 0.575958 0.0231684
\(619\) 31.8288 1.27931 0.639654 0.768663i \(-0.279077\pi\)
0.639654 + 0.768663i \(0.279077\pi\)
\(620\) 0 0
\(621\) 2.08439 0.0836438
\(622\) 5.10420 0.204660
\(623\) 3.01566 0.120820
\(624\) −22.5144 −0.901295
\(625\) 0 0
\(626\) −37.1840 −1.48617
\(627\) −1.23648 −0.0493802
\(628\) −0.823665 −0.0328678
\(629\) −3.13487 −0.124995
\(630\) 0 0
\(631\) 32.8526 1.30784 0.653920 0.756564i \(-0.273123\pi\)
0.653920 + 0.756564i \(0.273123\pi\)
\(632\) 26.6282 1.05921
\(633\) 12.9053 0.512940
\(634\) −13.0476 −0.518185
\(635\) 0 0
\(636\) −1.81974 −0.0721573
\(637\) −5.25445 −0.208189
\(638\) −6.18698 −0.244945
\(639\) 0.381811 0.0151042
\(640\) 0 0
\(641\) 31.2727 1.23520 0.617599 0.786493i \(-0.288106\pi\)
0.617599 + 0.786493i \(0.288106\pi\)
\(642\) 15.3638 0.606359
\(643\) 13.7579 0.542557 0.271279 0.962501i \(-0.412554\pi\)
0.271279 + 0.962501i \(0.412554\pi\)
\(644\) −0.105883 −0.00417239
\(645\) 0 0
\(646\) 1.42770 0.0561723
\(647\) −20.3525 −0.800140 −0.400070 0.916485i \(-0.631014\pi\)
−0.400070 + 0.916485i \(0.631014\pi\)
\(648\) 7.03496 0.276359
\(649\) −1.32111 −0.0518580
\(650\) 0 0
\(651\) −14.3260 −0.561482
\(652\) −2.75608 −0.107936
\(653\) 4.04869 0.158437 0.0792187 0.996857i \(-0.474757\pi\)
0.0792187 + 0.996857i \(0.474757\pi\)
\(654\) 25.0396 0.979124
\(655\) 0 0
\(656\) −2.96873 −0.115910
\(657\) −9.23401 −0.360253
\(658\) −32.2989 −1.25914
\(659\) −13.0892 −0.509882 −0.254941 0.966957i \(-0.582056\pi\)
−0.254941 + 0.966957i \(0.582056\pi\)
\(660\) 0 0
\(661\) 9.55227 0.371540 0.185770 0.982593i \(-0.440522\pi\)
0.185770 + 0.982593i \(0.440522\pi\)
\(662\) 9.99208 0.388353
\(663\) 6.23445 0.242126
\(664\) −41.3627 −1.60518
\(665\) 0 0
\(666\) 6.08744 0.235884
\(667\) −1.69923 −0.0657945
\(668\) −0.981386 −0.0379710
\(669\) 18.8144 0.727408
\(670\) 0 0
\(671\) 5.58779 0.215714
\(672\) −1.96182 −0.0756789
\(673\) −31.4730 −1.21320 −0.606598 0.795009i \(-0.707466\pi\)
−0.606598 + 0.795009i \(0.707466\pi\)
\(674\) −40.3310 −1.55349
\(675\) 0 0
\(676\) −1.21285 −0.0466482
\(677\) 35.4776 1.36352 0.681758 0.731578i \(-0.261216\pi\)
0.681758 + 0.731578i \(0.261216\pi\)
\(678\) 7.99536 0.307060
\(679\) 7.19075 0.275956
\(680\) 0 0
\(681\) 19.0628 0.730487
\(682\) −6.53915 −0.250397
\(683\) 40.6216 1.55434 0.777171 0.629289i \(-0.216654\pi\)
0.777171 + 0.629289i \(0.216654\pi\)
\(684\) 0.169855 0.00649457
\(685\) 0 0
\(686\) 26.9923 1.03057
\(687\) 22.5693 0.861072
\(688\) −28.0471 −1.06929
\(689\) 61.7971 2.35428
\(690\) 0 0
\(691\) −12.5025 −0.475616 −0.237808 0.971312i \(-0.576429\pi\)
−0.237808 + 0.971312i \(0.576429\pi\)
\(692\) −0.434974 −0.0165352
\(693\) −3.57824 −0.135926
\(694\) −38.5791 −1.46444
\(695\) 0 0
\(696\) −16.1834 −0.613431
\(697\) 0.822073 0.0311382
\(698\) 28.8214 1.09091
\(699\) −23.6218 −0.893460
\(700\) 0 0
\(701\) −22.1578 −0.836887 −0.418443 0.908243i \(-0.637424\pi\)
−0.418443 + 0.908243i \(0.637424\pi\)
\(702\) −36.7944 −1.38872
\(703\) −3.01428 −0.113686
\(704\) −8.40698 −0.316850
\(705\) 0 0
\(706\) −20.8491 −0.784665
\(707\) 3.77035 0.141798
\(708\) −0.188606 −0.00708825
\(709\) −32.1717 −1.20824 −0.604118 0.796895i \(-0.706474\pi\)
−0.604118 + 0.796895i \(0.706474\pi\)
\(710\) 0 0
\(711\) 13.4891 0.505880
\(712\) 3.60055 0.134936
\(713\) −1.79595 −0.0672589
\(714\) −4.29384 −0.160693
\(715\) 0 0
\(716\) 1.38922 0.0519178
\(717\) 25.5396 0.953794
\(718\) 15.7908 0.589308
\(719\) 4.63511 0.172860 0.0864302 0.996258i \(-0.472454\pi\)
0.0864302 + 0.996258i \(0.472454\pi\)
\(720\) 0 0
\(721\) −0.825320 −0.0307365
\(722\) 1.37279 0.0510898
\(723\) 19.7791 0.735594
\(724\) 1.04134 0.0387009
\(725\) 0 0
\(726\) 1.69742 0.0629972
\(727\) 29.6755 1.10060 0.550302 0.834966i \(-0.314513\pi\)
0.550302 + 0.834966i \(0.314513\pi\)
\(728\) 34.2456 1.26923
\(729\) 24.0711 0.891523
\(730\) 0 0
\(731\) 7.76652 0.287255
\(732\) 0.797732 0.0294850
\(733\) −36.0642 −1.33206 −0.666031 0.745924i \(-0.732008\pi\)
−0.666031 + 0.745924i \(0.732008\pi\)
\(734\) 2.09150 0.0771987
\(735\) 0 0
\(736\) −0.245939 −0.00906544
\(737\) −1.20728 −0.0444708
\(738\) −1.59634 −0.0587621
\(739\) 13.1048 0.482066 0.241033 0.970517i \(-0.422514\pi\)
0.241033 + 0.970517i \(0.422514\pi\)
\(740\) 0 0
\(741\) 5.99464 0.220218
\(742\) −42.5614 −1.56248
\(743\) −49.4215 −1.81310 −0.906550 0.422098i \(-0.861294\pi\)
−0.906550 + 0.422098i \(0.861294\pi\)
\(744\) −17.1046 −0.627085
\(745\) 0 0
\(746\) −22.7396 −0.832557
\(747\) −20.9531 −0.766636
\(748\) 0.120079 0.00439051
\(749\) −22.0155 −0.804431
\(750\) 0 0
\(751\) 5.10832 0.186405 0.0932026 0.995647i \(-0.470290\pi\)
0.0932026 + 0.995647i \(0.470290\pi\)
\(752\) −36.3295 −1.32480
\(753\) −14.0190 −0.510882
\(754\) 29.9954 1.09237
\(755\) 0 0
\(756\) −1.55258 −0.0564669
\(757\) 38.3696 1.39457 0.697283 0.716796i \(-0.254392\pi\)
0.697283 + 0.716796i \(0.254392\pi\)
\(758\) −0.0261656 −0.000950378 0
\(759\) 0.466190 0.0169216
\(760\) 0 0
\(761\) −34.9845 −1.26819 −0.634093 0.773257i \(-0.718626\pi\)
−0.634093 + 0.773257i \(0.718626\pi\)
\(762\) −25.0981 −0.909209
\(763\) −35.8805 −1.29896
\(764\) 1.76189 0.0637428
\(765\) 0 0
\(766\) −24.9964 −0.903157
\(767\) 6.40493 0.231269
\(768\) −3.41468 −0.123217
\(769\) 4.72143 0.170259 0.0851296 0.996370i \(-0.472870\pi\)
0.0851296 + 0.996370i \(0.472870\pi\)
\(770\) 0 0
\(771\) −12.1178 −0.436411
\(772\) 0.366292 0.0131831
\(773\) −47.5946 −1.71186 −0.855930 0.517092i \(-0.827014\pi\)
−0.855930 + 0.517092i \(0.827014\pi\)
\(774\) −15.0814 −0.542090
\(775\) 0 0
\(776\) 8.58539 0.308198
\(777\) 9.06551 0.325223
\(778\) −43.1097 −1.54556
\(779\) 0.790451 0.0283208
\(780\) 0 0
\(781\) 0.259538 0.00928700
\(782\) −0.538288 −0.0192491
\(783\) −24.9160 −0.890427
\(784\) 4.07050 0.145375
\(785\) 0 0
\(786\) −13.2749 −0.473501
\(787\) −1.02158 −0.0364154 −0.0182077 0.999834i \(-0.505796\pi\)
−0.0182077 + 0.999834i \(0.505796\pi\)
\(788\) −0.703608 −0.0250650
\(789\) 26.3245 0.937176
\(790\) 0 0
\(791\) −11.4570 −0.407363
\(792\) −4.27224 −0.151807
\(793\) −27.0904 −0.962010
\(794\) 35.5028 1.25995
\(795\) 0 0
\(796\) 1.82597 0.0647199
\(797\) 37.8469 1.34061 0.670304 0.742087i \(-0.266164\pi\)
0.670304 + 0.742087i \(0.266164\pi\)
\(798\) −4.12867 −0.146154
\(799\) 10.0600 0.355898
\(800\) 0 0
\(801\) 1.82393 0.0644455
\(802\) −21.2975 −0.752042
\(803\) −6.27686 −0.221506
\(804\) −0.172356 −0.00607852
\(805\) 0 0
\(806\) 31.7028 1.11668
\(807\) −22.6014 −0.795606
\(808\) 4.50161 0.158366
\(809\) 25.6686 0.902461 0.451231 0.892407i \(-0.350985\pi\)
0.451231 + 0.892407i \(0.350985\pi\)
\(810\) 0 0
\(811\) −6.16852 −0.216606 −0.108303 0.994118i \(-0.534542\pi\)
−0.108303 + 0.994118i \(0.534542\pi\)
\(812\) 1.26569 0.0444170
\(813\) 24.4665 0.858077
\(814\) 4.13797 0.145036
\(815\) 0 0
\(816\) −4.82969 −0.169073
\(817\) 7.46777 0.261264
\(818\) 28.4785 0.995729
\(819\) 17.3478 0.606183
\(820\) 0 0
\(821\) −30.9910 −1.08159 −0.540796 0.841154i \(-0.681877\pi\)
−0.540796 + 0.841154i \(0.681877\pi\)
\(822\) 13.0807 0.456243
\(823\) 40.7706 1.42117 0.710587 0.703609i \(-0.248429\pi\)
0.710587 + 0.703609i \(0.248429\pi\)
\(824\) −0.985391 −0.0343277
\(825\) 0 0
\(826\) −4.41126 −0.153487
\(827\) −46.2940 −1.60980 −0.804900 0.593410i \(-0.797781\pi\)
−0.804900 + 0.593410i \(0.797781\pi\)
\(828\) −0.0640405 −0.00222556
\(829\) −14.8471 −0.515660 −0.257830 0.966190i \(-0.583007\pi\)
−0.257830 + 0.966190i \(0.583007\pi\)
\(830\) 0 0
\(831\) −30.3751 −1.05370
\(832\) 40.7583 1.41304
\(833\) −1.12716 −0.0390539
\(834\) 24.4348 0.846109
\(835\) 0 0
\(836\) 0.115460 0.00399326
\(837\) −26.3343 −0.910246
\(838\) 9.54024 0.329562
\(839\) 36.8854 1.27343 0.636713 0.771101i \(-0.280294\pi\)
0.636713 + 0.771101i \(0.280294\pi\)
\(840\) 0 0
\(841\) −8.68803 −0.299587
\(842\) 23.4040 0.806556
\(843\) 17.4217 0.600035
\(844\) −1.20507 −0.0414802
\(845\) 0 0
\(846\) −19.5350 −0.671628
\(847\) −2.43232 −0.0835756
\(848\) −47.8728 −1.64396
\(849\) 23.2912 0.799352
\(850\) 0 0
\(851\) 1.13648 0.0389579
\(852\) 0.0370525 0.00126940
\(853\) −9.84716 −0.337160 −0.168580 0.985688i \(-0.553918\pi\)
−0.168580 + 0.985688i \(0.553918\pi\)
\(854\) 18.6579 0.638462
\(855\) 0 0
\(856\) −26.2855 −0.898419
\(857\) 25.6874 0.877464 0.438732 0.898618i \(-0.355428\pi\)
0.438732 + 0.898618i \(0.355428\pi\)
\(858\) −8.22935 −0.280945
\(859\) 48.4118 1.65179 0.825894 0.563825i \(-0.190671\pi\)
0.825894 + 0.563825i \(0.190671\pi\)
\(860\) 0 0
\(861\) −2.37729 −0.0810179
\(862\) 14.5754 0.496439
\(863\) −15.3028 −0.520913 −0.260457 0.965486i \(-0.583873\pi\)
−0.260457 + 0.965486i \(0.583873\pi\)
\(864\) −3.60624 −0.122687
\(865\) 0 0
\(866\) 7.16528 0.243486
\(867\) −19.6828 −0.668461
\(868\) 1.33773 0.0454057
\(869\) 9.16926 0.311046
\(870\) 0 0
\(871\) 5.85308 0.198324
\(872\) −42.8395 −1.45073
\(873\) 4.34911 0.147195
\(874\) −0.517582 −0.0175075
\(875\) 0 0
\(876\) −0.896106 −0.0302766
\(877\) 34.7213 1.17245 0.586227 0.810147i \(-0.300613\pi\)
0.586227 + 0.810147i \(0.300613\pi\)
\(878\) −35.4310 −1.19574
\(879\) −2.57522 −0.0868600
\(880\) 0 0
\(881\) 33.7901 1.13842 0.569208 0.822194i \(-0.307250\pi\)
0.569208 + 0.822194i \(0.307250\pi\)
\(882\) 2.18878 0.0737000
\(883\) −54.4286 −1.83167 −0.915835 0.401556i \(-0.868470\pi\)
−0.915835 + 0.401556i \(0.868470\pi\)
\(884\) −0.582160 −0.0195801
\(885\) 0 0
\(886\) 41.7213 1.40166
\(887\) −14.5748 −0.489373 −0.244686 0.969602i \(-0.578685\pi\)
−0.244686 + 0.969602i \(0.578685\pi\)
\(888\) 10.8238 0.363222
\(889\) 35.9644 1.20621
\(890\) 0 0
\(891\) 2.42245 0.0811550
\(892\) −1.75685 −0.0588237
\(893\) 9.67305 0.323696
\(894\) −23.4922 −0.785696
\(895\) 0 0
\(896\) −24.8981 −0.831789
\(897\) −2.26016 −0.0754645
\(898\) 14.9049 0.497384
\(899\) 21.4681 0.716003
\(900\) 0 0
\(901\) 13.2565 0.441636
\(902\) −1.08512 −0.0361305
\(903\) −22.4594 −0.747404
\(904\) −13.6791 −0.454959
\(905\) 0 0
\(906\) −13.7539 −0.456942
\(907\) 36.7115 1.21898 0.609492 0.792792i \(-0.291373\pi\)
0.609492 + 0.792792i \(0.291373\pi\)
\(908\) −1.78004 −0.0590727
\(909\) 2.28038 0.0756356
\(910\) 0 0
\(911\) 18.5321 0.613997 0.306999 0.951710i \(-0.400675\pi\)
0.306999 + 0.951710i \(0.400675\pi\)
\(912\) −4.64391 −0.153775
\(913\) −14.2430 −0.471374
\(914\) −25.2385 −0.834815
\(915\) 0 0
\(916\) −2.10747 −0.0696328
\(917\) 19.0224 0.628173
\(918\) −7.89298 −0.260507
\(919\) −30.1650 −0.995052 −0.497526 0.867449i \(-0.665758\pi\)
−0.497526 + 0.867449i \(0.665758\pi\)
\(920\) 0 0
\(921\) −24.5369 −0.808519
\(922\) −38.8035 −1.27792
\(923\) −1.25828 −0.0414167
\(924\) −0.347247 −0.0114236
\(925\) 0 0
\(926\) −45.8875 −1.50796
\(927\) −0.499171 −0.0163949
\(928\) 2.93987 0.0965058
\(929\) −53.1253 −1.74298 −0.871492 0.490409i \(-0.836847\pi\)
−0.871492 + 0.490409i \(0.836847\pi\)
\(930\) 0 0
\(931\) −1.08380 −0.0355203
\(932\) 2.20575 0.0722519
\(933\) 4.59740 0.150512
\(934\) 1.66515 0.0544854
\(935\) 0 0
\(936\) 20.7125 0.677008
\(937\) −46.9097 −1.53247 −0.766237 0.642558i \(-0.777873\pi\)
−0.766237 + 0.642558i \(0.777873\pi\)
\(938\) −4.03118 −0.131623
\(939\) −33.4919 −1.09297
\(940\) 0 0
\(941\) 36.0038 1.17369 0.586845 0.809699i \(-0.300370\pi\)
0.586845 + 0.809699i \(0.300370\pi\)
\(942\) 12.1090 0.394534
\(943\) −0.298024 −0.00970499
\(944\) −4.96175 −0.161491
\(945\) 0 0
\(946\) −10.2517 −0.333310
\(947\) 21.3336 0.693249 0.346625 0.938004i \(-0.387328\pi\)
0.346625 + 0.938004i \(0.387328\pi\)
\(948\) 1.30904 0.0425155
\(949\) 30.4312 0.987837
\(950\) 0 0
\(951\) −11.7520 −0.381086
\(952\) 7.34622 0.238093
\(953\) −0.777926 −0.0251995 −0.0125997 0.999921i \(-0.504011\pi\)
−0.0125997 + 0.999921i \(0.504011\pi\)
\(954\) −25.7420 −0.833429
\(955\) 0 0
\(956\) −2.38483 −0.0771310
\(957\) −5.57266 −0.180139
\(958\) −35.5685 −1.14917
\(959\) −18.7441 −0.605278
\(960\) 0 0
\(961\) −8.30988 −0.268061
\(962\) −20.0615 −0.646808
\(963\) −13.3155 −0.429085
\(964\) −1.84693 −0.0594857
\(965\) 0 0
\(966\) 1.55664 0.0500839
\(967\) −41.5502 −1.33616 −0.668082 0.744088i \(-0.732884\pi\)
−0.668082 + 0.744088i \(0.732884\pi\)
\(968\) −2.90407 −0.0933404
\(969\) 1.28594 0.0413105
\(970\) 0 0
\(971\) 41.5722 1.33412 0.667058 0.745006i \(-0.267553\pi\)
0.667058 + 0.745006i \(0.267553\pi\)
\(972\) −1.56910 −0.0503289
\(973\) −35.0139 −1.12250
\(974\) 4.24930 0.136156
\(975\) 0 0
\(976\) 20.9863 0.671756
\(977\) 4.43754 0.141969 0.0709847 0.997477i \(-0.477386\pi\)
0.0709847 + 0.997477i \(0.477386\pi\)
\(978\) 40.5183 1.29563
\(979\) 1.23983 0.0396250
\(980\) 0 0
\(981\) −21.7013 −0.692869
\(982\) 23.9808 0.765258
\(983\) −4.98576 −0.159021 −0.0795106 0.996834i \(-0.525336\pi\)
−0.0795106 + 0.996834i \(0.525336\pi\)
\(984\) −2.83837 −0.0904839
\(985\) 0 0
\(986\) 6.43449 0.204916
\(987\) −29.0918 −0.926004
\(988\) −0.559766 −0.0178085
\(989\) −2.81558 −0.0895301
\(990\) 0 0
\(991\) −39.9837 −1.27012 −0.635062 0.772461i \(-0.719025\pi\)
−0.635062 + 0.772461i \(0.719025\pi\)
\(992\) 3.10720 0.0986539
\(993\) 8.99994 0.285605
\(994\) 0.866612 0.0274873
\(995\) 0 0
\(996\) −2.03338 −0.0644301
\(997\) 31.3940 0.994258 0.497129 0.867677i \(-0.334388\pi\)
0.497129 + 0.867677i \(0.334388\pi\)
\(998\) −8.88571 −0.281272
\(999\) 16.6643 0.527235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.j.1.3 5
5.4 even 2 1045.2.a.d.1.3 5
15.14 odd 2 9405.2.a.v.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.d.1.3 5 5.4 even 2
5225.2.a.j.1.3 5 1.1 even 1 trivial
9405.2.a.v.1.3 5 15.14 odd 2