Properties

Label 5225.2.a.j.1.1
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.284630\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.22871 q^{2} +1.47889 q^{3} +2.96714 q^{4} -3.29602 q^{6} +4.42518 q^{7} -2.15546 q^{8} -0.812880 q^{9} +O(q^{10})\) \(q-2.22871 q^{2} +1.47889 q^{3} +2.96714 q^{4} -3.29602 q^{6} +4.42518 q^{7} -2.15546 q^{8} -0.812880 q^{9} -1.00000 q^{11} +4.38807 q^{12} +3.92613 q^{13} -9.86243 q^{14} -1.13037 q^{16} +1.61520 q^{17} +1.81167 q^{18} +1.00000 q^{19} +6.54436 q^{21} +2.22871 q^{22} -0.113248 q^{23} -3.18770 q^{24} -8.75019 q^{26} -5.63884 q^{27} +13.1301 q^{28} +1.08612 q^{29} -4.17296 q^{31} +6.83020 q^{32} -1.47889 q^{33} -3.59980 q^{34} -2.41193 q^{36} +5.75406 q^{37} -2.22871 q^{38} +5.80632 q^{39} +4.26750 q^{41} -14.5855 q^{42} -3.62271 q^{43} -2.96714 q^{44} +0.252396 q^{46} +6.39567 q^{47} -1.67170 q^{48} +12.5822 q^{49} +2.38870 q^{51} +11.6494 q^{52} -12.0154 q^{53} +12.5673 q^{54} -9.53832 q^{56} +1.47889 q^{57} -2.42065 q^{58} +0.883911 q^{59} +3.77712 q^{61} +9.30032 q^{62} -3.59714 q^{63} -12.9618 q^{64} +3.29602 q^{66} +12.2192 q^{67} +4.79251 q^{68} -0.167481 q^{69} +4.28400 q^{71} +1.75213 q^{72} +1.92676 q^{73} -12.8241 q^{74} +2.96714 q^{76} -4.42518 q^{77} -12.9406 q^{78} -7.81004 q^{79} -5.90059 q^{81} -9.51102 q^{82} +3.33410 q^{83} +19.4180 q^{84} +8.07397 q^{86} +1.60626 q^{87} +2.15546 q^{88} -11.9145 q^{89} +17.3738 q^{91} -0.336021 q^{92} -6.17136 q^{93} -14.2541 q^{94} +10.1011 q^{96} +13.3478 q^{97} -28.0421 q^{98} +0.812880 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 7 q^{3} + 5 q^{4} + 2 q^{6} + 11 q^{7} - 3 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 3 q^{2} + 7 q^{3} + 5 q^{4} + 2 q^{6} + 11 q^{7} - 3 q^{8} + 8 q^{9} - 5 q^{11} + 7 q^{12} - q^{13} - 3 q^{16} + 3 q^{17} + 7 q^{18} + 5 q^{19} + 11 q^{21} - 3 q^{22} + 8 q^{23} + 9 q^{24} - 16 q^{26} + 10 q^{27} + 22 q^{28} + 11 q^{29} - 5 q^{31} + 2 q^{32} - 7 q^{33} + 4 q^{34} - 3 q^{36} + 9 q^{37} + 3 q^{38} - 8 q^{39} + 15 q^{41} - 11 q^{42} + 13 q^{43} - 5 q^{44} + 18 q^{46} + 20 q^{47} + 20 q^{48} + 20 q^{49} + 24 q^{51} - q^{52} + 5 q^{53} + 17 q^{54} + 7 q^{57} + 33 q^{58} - 17 q^{59} + 3 q^{61} - 14 q^{62} + 22 q^{63} - 17 q^{64} - 2 q^{66} + 28 q^{67} + 25 q^{68} - 2 q^{69} - 6 q^{71} + 26 q^{72} + 16 q^{73} - 21 q^{74} + 5 q^{76} - 11 q^{77} - 29 q^{78} + 3 q^{79} + q^{81} - 2 q^{82} + 33 q^{83} + 33 q^{84} + 10 q^{86} + 3 q^{88} - 16 q^{89} - 22 q^{91} + 19 q^{92} + 26 q^{93} - 10 q^{94} + 5 q^{96} + 14 q^{97} - 10 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22871 −1.57593 −0.787967 0.615717i \(-0.788866\pi\)
−0.787967 + 0.615717i \(0.788866\pi\)
\(3\) 1.47889 0.853838 0.426919 0.904290i \(-0.359599\pi\)
0.426919 + 0.904290i \(0.359599\pi\)
\(4\) 2.96714 1.48357
\(5\) 0 0
\(6\) −3.29602 −1.34559
\(7\) 4.42518 1.67256 0.836281 0.548302i \(-0.184725\pi\)
0.836281 + 0.548302i \(0.184725\pi\)
\(8\) −2.15546 −0.762072
\(9\) −0.812880 −0.270960
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 4.38807 1.26673
\(13\) 3.92613 1.08891 0.544456 0.838789i \(-0.316736\pi\)
0.544456 + 0.838789i \(0.316736\pi\)
\(14\) −9.86243 −2.63585
\(15\) 0 0
\(16\) −1.13037 −0.282593
\(17\) 1.61520 0.391743 0.195872 0.980630i \(-0.437246\pi\)
0.195872 + 0.980630i \(0.437246\pi\)
\(18\) 1.81167 0.427015
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 6.54436 1.42810
\(22\) 2.22871 0.475162
\(23\) −0.113248 −0.0236138 −0.0118069 0.999930i \(-0.503758\pi\)
−0.0118069 + 0.999930i \(0.503758\pi\)
\(24\) −3.18770 −0.650686
\(25\) 0 0
\(26\) −8.75019 −1.71605
\(27\) −5.63884 −1.08519
\(28\) 13.1301 2.48136
\(29\) 1.08612 0.201688 0.100844 0.994902i \(-0.467846\pi\)
0.100844 + 0.994902i \(0.467846\pi\)
\(30\) 0 0
\(31\) −4.17296 −0.749487 −0.374743 0.927129i \(-0.622269\pi\)
−0.374743 + 0.927129i \(0.622269\pi\)
\(32\) 6.83020 1.20742
\(33\) −1.47889 −0.257442
\(34\) −3.59980 −0.617361
\(35\) 0 0
\(36\) −2.41193 −0.401988
\(37\) 5.75406 0.945962 0.472981 0.881073i \(-0.343178\pi\)
0.472981 + 0.881073i \(0.343178\pi\)
\(38\) −2.22871 −0.361544
\(39\) 5.80632 0.929755
\(40\) 0 0
\(41\) 4.26750 0.666472 0.333236 0.942843i \(-0.391859\pi\)
0.333236 + 0.942843i \(0.391859\pi\)
\(42\) −14.5855 −2.25059
\(43\) −3.62271 −0.552459 −0.276229 0.961092i \(-0.589085\pi\)
−0.276229 + 0.961092i \(0.589085\pi\)
\(44\) −2.96714 −0.447313
\(45\) 0 0
\(46\) 0.252396 0.0372138
\(47\) 6.39567 0.932904 0.466452 0.884547i \(-0.345532\pi\)
0.466452 + 0.884547i \(0.345532\pi\)
\(48\) −1.67170 −0.241289
\(49\) 12.5822 1.79746
\(50\) 0 0
\(51\) 2.38870 0.334485
\(52\) 11.6494 1.61548
\(53\) −12.0154 −1.65044 −0.825219 0.564812i \(-0.808949\pi\)
−0.825219 + 0.564812i \(0.808949\pi\)
\(54\) 12.5673 1.71019
\(55\) 0 0
\(56\) −9.53832 −1.27461
\(57\) 1.47889 0.195884
\(58\) −2.42065 −0.317847
\(59\) 0.883911 0.115075 0.0575377 0.998343i \(-0.481675\pi\)
0.0575377 + 0.998343i \(0.481675\pi\)
\(60\) 0 0
\(61\) 3.77712 0.483611 0.241805 0.970325i \(-0.422260\pi\)
0.241805 + 0.970325i \(0.422260\pi\)
\(62\) 9.30032 1.18114
\(63\) −3.59714 −0.453197
\(64\) −12.9618 −1.62022
\(65\) 0 0
\(66\) 3.29602 0.405712
\(67\) 12.2192 1.49282 0.746409 0.665487i \(-0.231776\pi\)
0.746409 + 0.665487i \(0.231776\pi\)
\(68\) 4.79251 0.581178
\(69\) −0.167481 −0.0201624
\(70\) 0 0
\(71\) 4.28400 0.508417 0.254209 0.967149i \(-0.418185\pi\)
0.254209 + 0.967149i \(0.418185\pi\)
\(72\) 1.75213 0.206491
\(73\) 1.92676 0.225510 0.112755 0.993623i \(-0.464032\pi\)
0.112755 + 0.993623i \(0.464032\pi\)
\(74\) −12.8241 −1.49077
\(75\) 0 0
\(76\) 2.96714 0.340354
\(77\) −4.42518 −0.504296
\(78\) −12.9406 −1.46523
\(79\) −7.81004 −0.878698 −0.439349 0.898316i \(-0.644791\pi\)
−0.439349 + 0.898316i \(0.644791\pi\)
\(80\) 0 0
\(81\) −5.90059 −0.655621
\(82\) −9.51102 −1.05032
\(83\) 3.33410 0.365964 0.182982 0.983116i \(-0.441425\pi\)
0.182982 + 0.983116i \(0.441425\pi\)
\(84\) 19.4180 2.11868
\(85\) 0 0
\(86\) 8.07397 0.870639
\(87\) 1.60626 0.172209
\(88\) 2.15546 0.229773
\(89\) −11.9145 −1.26293 −0.631466 0.775403i \(-0.717547\pi\)
−0.631466 + 0.775403i \(0.717547\pi\)
\(90\) 0 0
\(91\) 17.3738 1.82127
\(92\) −0.336021 −0.0350327
\(93\) −6.17136 −0.639940
\(94\) −14.2541 −1.47019
\(95\) 0 0
\(96\) 10.1011 1.03094
\(97\) 13.3478 1.35526 0.677631 0.735402i \(-0.263007\pi\)
0.677631 + 0.735402i \(0.263007\pi\)
\(98\) −28.0421 −2.83268
\(99\) 0.812880 0.0816975
\(100\) 0 0
\(101\) 3.72067 0.370221 0.185110 0.982718i \(-0.440736\pi\)
0.185110 + 0.982718i \(0.440736\pi\)
\(102\) −5.32372 −0.527127
\(103\) 18.7975 1.85218 0.926088 0.377308i \(-0.123150\pi\)
0.926088 + 0.377308i \(0.123150\pi\)
\(104\) −8.46263 −0.829829
\(105\) 0 0
\(106\) 26.7788 2.60098
\(107\) 5.33910 0.516150 0.258075 0.966125i \(-0.416912\pi\)
0.258075 + 0.966125i \(0.416912\pi\)
\(108\) −16.7312 −1.60996
\(109\) 16.7781 1.60706 0.803528 0.595268i \(-0.202954\pi\)
0.803528 + 0.595268i \(0.202954\pi\)
\(110\) 0 0
\(111\) 8.50963 0.807698
\(112\) −5.00211 −0.472655
\(113\) −9.64670 −0.907485 −0.453742 0.891133i \(-0.649911\pi\)
−0.453742 + 0.891133i \(0.649911\pi\)
\(114\) −3.29602 −0.308700
\(115\) 0 0
\(116\) 3.22268 0.299218
\(117\) −3.19147 −0.295052
\(118\) −1.96998 −0.181351
\(119\) 7.14754 0.655214
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −8.41809 −0.762138
\(123\) 6.31118 0.569060
\(124\) −12.3818 −1.11191
\(125\) 0 0
\(126\) 8.01698 0.714209
\(127\) −0.515860 −0.0457752 −0.0228876 0.999738i \(-0.507286\pi\)
−0.0228876 + 0.999738i \(0.507286\pi\)
\(128\) 15.2276 1.34594
\(129\) −5.35760 −0.471710
\(130\) 0 0
\(131\) −2.12758 −0.185888 −0.0929439 0.995671i \(-0.529628\pi\)
−0.0929439 + 0.995671i \(0.529628\pi\)
\(132\) −4.38807 −0.381933
\(133\) 4.42518 0.383712
\(134\) −27.2331 −2.35258
\(135\) 0 0
\(136\) −3.48150 −0.298536
\(137\) −3.76917 −0.322022 −0.161011 0.986953i \(-0.551475\pi\)
−0.161011 + 0.986953i \(0.551475\pi\)
\(138\) 0.373266 0.0317745
\(139\) −11.2237 −0.951981 −0.475990 0.879451i \(-0.657910\pi\)
−0.475990 + 0.879451i \(0.657910\pi\)
\(140\) 0 0
\(141\) 9.45849 0.796549
\(142\) −9.54778 −0.801232
\(143\) −3.92613 −0.328319
\(144\) 0.918858 0.0765715
\(145\) 0 0
\(146\) −4.29418 −0.355389
\(147\) 18.6077 1.53474
\(148\) 17.0731 1.40340
\(149\) 21.0620 1.72546 0.862732 0.505662i \(-0.168752\pi\)
0.862732 + 0.505662i \(0.168752\pi\)
\(150\) 0 0
\(151\) 7.46759 0.607704 0.303852 0.952719i \(-0.401727\pi\)
0.303852 + 0.952719i \(0.401727\pi\)
\(152\) −2.15546 −0.174831
\(153\) −1.31296 −0.106147
\(154\) 9.86243 0.794738
\(155\) 0 0
\(156\) 17.2281 1.37935
\(157\) 5.84405 0.466406 0.233203 0.972428i \(-0.425079\pi\)
0.233203 + 0.972428i \(0.425079\pi\)
\(158\) 17.4063 1.38477
\(159\) −17.7694 −1.40921
\(160\) 0 0
\(161\) −0.501142 −0.0394955
\(162\) 13.1507 1.03321
\(163\) 20.3077 1.59062 0.795311 0.606202i \(-0.207308\pi\)
0.795311 + 0.606202i \(0.207308\pi\)
\(164\) 12.6623 0.988757
\(165\) 0 0
\(166\) −7.43072 −0.576736
\(167\) −10.6177 −0.821625 −0.410812 0.911720i \(-0.634755\pi\)
−0.410812 + 0.911720i \(0.634755\pi\)
\(168\) −14.1061 −1.08831
\(169\) 2.41448 0.185729
\(170\) 0 0
\(171\) −0.812880 −0.0621625
\(172\) −10.7491 −0.819610
\(173\) −24.7343 −1.88051 −0.940257 0.340466i \(-0.889415\pi\)
−0.940257 + 0.340466i \(0.889415\pi\)
\(174\) −3.57988 −0.271390
\(175\) 0 0
\(176\) 1.13037 0.0852051
\(177\) 1.30721 0.0982558
\(178\) 26.5539 1.99030
\(179\) −14.9732 −1.11915 −0.559574 0.828781i \(-0.689035\pi\)
−0.559574 + 0.828781i \(0.689035\pi\)
\(180\) 0 0
\(181\) −11.2782 −0.838298 −0.419149 0.907917i \(-0.637672\pi\)
−0.419149 + 0.907917i \(0.637672\pi\)
\(182\) −38.7212 −2.87020
\(183\) 5.58595 0.412925
\(184\) 0.244101 0.0179954
\(185\) 0 0
\(186\) 13.7542 1.00850
\(187\) −1.61520 −0.118115
\(188\) 18.9768 1.38403
\(189\) −24.9529 −1.81505
\(190\) 0 0
\(191\) 22.3038 1.61385 0.806923 0.590656i \(-0.201131\pi\)
0.806923 + 0.590656i \(0.201131\pi\)
\(192\) −19.1691 −1.38341
\(193\) −25.1845 −1.81282 −0.906412 0.422395i \(-0.861189\pi\)
−0.906412 + 0.422395i \(0.861189\pi\)
\(194\) −29.7483 −2.13580
\(195\) 0 0
\(196\) 37.3332 2.66666
\(197\) 10.4483 0.744413 0.372207 0.928150i \(-0.378601\pi\)
0.372207 + 0.928150i \(0.378601\pi\)
\(198\) −1.81167 −0.128750
\(199\) −6.40716 −0.454191 −0.227096 0.973872i \(-0.572923\pi\)
−0.227096 + 0.973872i \(0.572923\pi\)
\(200\) 0 0
\(201\) 18.0709 1.27463
\(202\) −8.29229 −0.583444
\(203\) 4.80629 0.337336
\(204\) 7.08761 0.496232
\(205\) 0 0
\(206\) −41.8942 −2.91891
\(207\) 0.0920568 0.00639839
\(208\) −4.43799 −0.307719
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 7.96892 0.548603 0.274302 0.961644i \(-0.411553\pi\)
0.274302 + 0.961644i \(0.411553\pi\)
\(212\) −35.6513 −2.44854
\(213\) 6.33557 0.434106
\(214\) −11.8993 −0.813418
\(215\) 0 0
\(216\) 12.1543 0.826996
\(217\) −18.4661 −1.25356
\(218\) −37.3936 −2.53261
\(219\) 2.84947 0.192549
\(220\) 0 0
\(221\) 6.34147 0.426574
\(222\) −18.9655 −1.27288
\(223\) 23.9096 1.60111 0.800553 0.599262i \(-0.204539\pi\)
0.800553 + 0.599262i \(0.204539\pi\)
\(224\) 30.2249 2.01948
\(225\) 0 0
\(226\) 21.4997 1.43014
\(227\) 10.0128 0.664575 0.332287 0.943178i \(-0.392180\pi\)
0.332287 + 0.943178i \(0.392180\pi\)
\(228\) 4.38807 0.290607
\(229\) 10.4511 0.690629 0.345314 0.938487i \(-0.387772\pi\)
0.345314 + 0.938487i \(0.387772\pi\)
\(230\) 0 0
\(231\) −6.54436 −0.430587
\(232\) −2.34110 −0.153701
\(233\) 4.56505 0.299066 0.149533 0.988757i \(-0.452223\pi\)
0.149533 + 0.988757i \(0.452223\pi\)
\(234\) 7.11286 0.464982
\(235\) 0 0
\(236\) 2.62268 0.170722
\(237\) −11.5502 −0.750266
\(238\) −15.9298 −1.03257
\(239\) −15.3794 −0.994808 −0.497404 0.867519i \(-0.665713\pi\)
−0.497404 + 0.867519i \(0.665713\pi\)
\(240\) 0 0
\(241\) 17.8737 1.15135 0.575673 0.817680i \(-0.304740\pi\)
0.575673 + 0.817680i \(0.304740\pi\)
\(242\) −2.22871 −0.143267
\(243\) 8.19018 0.525400
\(244\) 11.2072 0.717469
\(245\) 0 0
\(246\) −14.0658 −0.896800
\(247\) 3.92613 0.249814
\(248\) 8.99468 0.571163
\(249\) 4.93076 0.312475
\(250\) 0 0
\(251\) −10.0425 −0.633878 −0.316939 0.948446i \(-0.602655\pi\)
−0.316939 + 0.948446i \(0.602655\pi\)
\(252\) −10.6732 −0.672349
\(253\) 0.113248 0.00711982
\(254\) 1.14970 0.0721387
\(255\) 0 0
\(256\) −8.01431 −0.500895
\(257\) 10.7636 0.671416 0.335708 0.941966i \(-0.391025\pi\)
0.335708 + 0.941966i \(0.391025\pi\)
\(258\) 11.9405 0.743385
\(259\) 25.4628 1.58218
\(260\) 0 0
\(261\) −0.882888 −0.0546494
\(262\) 4.74176 0.292947
\(263\) −22.9691 −1.41634 −0.708169 0.706043i \(-0.750478\pi\)
−0.708169 + 0.706043i \(0.750478\pi\)
\(264\) 3.18770 0.196189
\(265\) 0 0
\(266\) −9.86243 −0.604705
\(267\) −17.6202 −1.07834
\(268\) 36.2562 2.21470
\(269\) −20.5868 −1.25520 −0.627600 0.778536i \(-0.715963\pi\)
−0.627600 + 0.778536i \(0.715963\pi\)
\(270\) 0 0
\(271\) −4.27052 −0.259416 −0.129708 0.991552i \(-0.541404\pi\)
−0.129708 + 0.991552i \(0.541404\pi\)
\(272\) −1.82578 −0.110704
\(273\) 25.6940 1.55507
\(274\) 8.40038 0.507485
\(275\) 0 0
\(276\) −0.496939 −0.0299122
\(277\) 14.6746 0.881712 0.440856 0.897578i \(-0.354675\pi\)
0.440856 + 0.897578i \(0.354675\pi\)
\(278\) 25.0143 1.50026
\(279\) 3.39212 0.203081
\(280\) 0 0
\(281\) −24.1329 −1.43965 −0.719824 0.694157i \(-0.755778\pi\)
−0.719824 + 0.694157i \(0.755778\pi\)
\(282\) −21.0802 −1.25531
\(283\) −0.197192 −0.0117218 −0.00586092 0.999983i \(-0.501866\pi\)
−0.00586092 + 0.999983i \(0.501866\pi\)
\(284\) 12.7112 0.754272
\(285\) 0 0
\(286\) 8.75019 0.517410
\(287\) 18.8845 1.11472
\(288\) −5.55213 −0.327163
\(289\) −14.3911 −0.846537
\(290\) 0 0
\(291\) 19.7399 1.15717
\(292\) 5.71695 0.334559
\(293\) −2.73471 −0.159763 −0.0798817 0.996804i \(-0.525454\pi\)
−0.0798817 + 0.996804i \(0.525454\pi\)
\(294\) −41.4712 −2.41865
\(295\) 0 0
\(296\) −12.4027 −0.720891
\(297\) 5.63884 0.327198
\(298\) −46.9410 −2.71922
\(299\) −0.444625 −0.0257133
\(300\) 0 0
\(301\) −16.0312 −0.924021
\(302\) −16.6431 −0.957702
\(303\) 5.50247 0.316109
\(304\) −1.13037 −0.0648313
\(305\) 0 0
\(306\) 2.92621 0.167280
\(307\) 16.7313 0.954905 0.477452 0.878658i \(-0.341560\pi\)
0.477452 + 0.878658i \(0.341560\pi\)
\(308\) −13.1301 −0.748158
\(309\) 27.7995 1.58146
\(310\) 0 0
\(311\) −14.8941 −0.844565 −0.422283 0.906464i \(-0.638771\pi\)
−0.422283 + 0.906464i \(0.638771\pi\)
\(312\) −12.5153 −0.708540
\(313\) −8.89539 −0.502797 −0.251399 0.967884i \(-0.580891\pi\)
−0.251399 + 0.967884i \(0.580891\pi\)
\(314\) −13.0247 −0.735026
\(315\) 0 0
\(316\) −23.1735 −1.30361
\(317\) −6.16319 −0.346159 −0.173079 0.984908i \(-0.555372\pi\)
−0.173079 + 0.984908i \(0.555372\pi\)
\(318\) 39.6029 2.22082
\(319\) −1.08612 −0.0608112
\(320\) 0 0
\(321\) 7.89595 0.440709
\(322\) 1.11690 0.0622423
\(323\) 1.61520 0.0898720
\(324\) −17.5078 −0.972658
\(325\) 0 0
\(326\) −45.2599 −2.50671
\(327\) 24.8131 1.37217
\(328\) −9.19846 −0.507900
\(329\) 28.3020 1.56034
\(330\) 0 0
\(331\) 17.5144 0.962681 0.481340 0.876534i \(-0.340150\pi\)
0.481340 + 0.876534i \(0.340150\pi\)
\(332\) 9.89272 0.542933
\(333\) −4.67736 −0.256318
\(334\) 23.6638 1.29483
\(335\) 0 0
\(336\) −7.39757 −0.403571
\(337\) 34.0733 1.85609 0.928045 0.372467i \(-0.121488\pi\)
0.928045 + 0.372467i \(0.121488\pi\)
\(338\) −5.38117 −0.292697
\(339\) −14.2664 −0.774845
\(340\) 0 0
\(341\) 4.17296 0.225979
\(342\) 1.81167 0.0979640
\(343\) 24.7024 1.33380
\(344\) 7.80863 0.421013
\(345\) 0 0
\(346\) 55.1255 2.96357
\(347\) −14.8065 −0.794856 −0.397428 0.917633i \(-0.630097\pi\)
−0.397428 + 0.917633i \(0.630097\pi\)
\(348\) 4.76599 0.255484
\(349\) −20.2032 −1.08145 −0.540727 0.841198i \(-0.681851\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(350\) 0 0
\(351\) −22.1388 −1.18168
\(352\) −6.83020 −0.364051
\(353\) 34.8488 1.85481 0.927407 0.374053i \(-0.122032\pi\)
0.927407 + 0.374053i \(0.122032\pi\)
\(354\) −2.91338 −0.154845
\(355\) 0 0
\(356\) −35.3519 −1.87365
\(357\) 10.5704 0.559447
\(358\) 33.3708 1.76370
\(359\) −25.8010 −1.36173 −0.680863 0.732410i \(-0.738395\pi\)
−0.680863 + 0.732410i \(0.738395\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 25.1357 1.32110
\(363\) 1.47889 0.0776217
\(364\) 51.5505 2.70198
\(365\) 0 0
\(366\) −12.4494 −0.650743
\(367\) −12.6344 −0.659510 −0.329755 0.944066i \(-0.606966\pi\)
−0.329755 + 0.944066i \(0.606966\pi\)
\(368\) 0.128012 0.00667310
\(369\) −3.46897 −0.180587
\(370\) 0 0
\(371\) −53.1702 −2.76046
\(372\) −18.3113 −0.949395
\(373\) −31.3623 −1.62388 −0.811940 0.583741i \(-0.801588\pi\)
−0.811940 + 0.583741i \(0.801588\pi\)
\(374\) 3.59980 0.186141
\(375\) 0 0
\(376\) −13.7856 −0.710940
\(377\) 4.26426 0.219620
\(378\) 55.6126 2.86041
\(379\) −17.2730 −0.887256 −0.443628 0.896211i \(-0.646309\pi\)
−0.443628 + 0.896211i \(0.646309\pi\)
\(380\) 0 0
\(381\) −0.762901 −0.0390846
\(382\) −49.7086 −2.54332
\(383\) −1.96340 −0.100325 −0.0501625 0.998741i \(-0.515974\pi\)
−0.0501625 + 0.998741i \(0.515974\pi\)
\(384\) 22.5200 1.14922
\(385\) 0 0
\(386\) 56.1290 2.85689
\(387\) 2.94483 0.149694
\(388\) 39.6047 2.01062
\(389\) 27.2460 1.38143 0.690714 0.723128i \(-0.257296\pi\)
0.690714 + 0.723128i \(0.257296\pi\)
\(390\) 0 0
\(391\) −0.182917 −0.00925054
\(392\) −27.1206 −1.36979
\(393\) −3.14646 −0.158718
\(394\) −23.2863 −1.17315
\(395\) 0 0
\(396\) 2.41193 0.121204
\(397\) −24.1194 −1.21052 −0.605258 0.796029i \(-0.706930\pi\)
−0.605258 + 0.796029i \(0.706930\pi\)
\(398\) 14.2797 0.715776
\(399\) 6.54436 0.327628
\(400\) 0 0
\(401\) −18.6773 −0.932699 −0.466349 0.884601i \(-0.654431\pi\)
−0.466349 + 0.884601i \(0.654431\pi\)
\(402\) −40.2748 −2.00873
\(403\) −16.3836 −0.816125
\(404\) 11.0397 0.549248
\(405\) 0 0
\(406\) −10.7118 −0.531619
\(407\) −5.75406 −0.285218
\(408\) −5.14876 −0.254902
\(409\) −19.9442 −0.986176 −0.493088 0.869979i \(-0.664132\pi\)
−0.493088 + 0.869979i \(0.664132\pi\)
\(410\) 0 0
\(411\) −5.57419 −0.274955
\(412\) 55.7748 2.74783
\(413\) 3.91146 0.192471
\(414\) −0.205168 −0.0100834
\(415\) 0 0
\(416\) 26.8162 1.31477
\(417\) −16.5986 −0.812838
\(418\) 2.22871 0.109010
\(419\) 22.0961 1.07946 0.539731 0.841837i \(-0.318526\pi\)
0.539731 + 0.841837i \(0.318526\pi\)
\(420\) 0 0
\(421\) −25.4045 −1.23814 −0.619070 0.785336i \(-0.712490\pi\)
−0.619070 + 0.785336i \(0.712490\pi\)
\(422\) −17.7604 −0.864563
\(423\) −5.19891 −0.252780
\(424\) 25.8987 1.25775
\(425\) 0 0
\(426\) −14.1201 −0.684123
\(427\) 16.7144 0.808868
\(428\) 15.8418 0.765744
\(429\) −5.80632 −0.280332
\(430\) 0 0
\(431\) −3.51614 −0.169367 −0.0846833 0.996408i \(-0.526988\pi\)
−0.0846833 + 0.996408i \(0.526988\pi\)
\(432\) 6.37399 0.306669
\(433\) 9.71737 0.466987 0.233493 0.972358i \(-0.424984\pi\)
0.233493 + 0.972358i \(0.424984\pi\)
\(434\) 41.1556 1.97553
\(435\) 0 0
\(436\) 49.7831 2.38418
\(437\) −0.113248 −0.00541737
\(438\) −6.35062 −0.303445
\(439\) 0.888955 0.0424275 0.0212138 0.999775i \(-0.493247\pi\)
0.0212138 + 0.999775i \(0.493247\pi\)
\(440\) 0 0
\(441\) −10.2278 −0.487040
\(442\) −14.1333 −0.672252
\(443\) −5.44113 −0.258516 −0.129258 0.991611i \(-0.541260\pi\)
−0.129258 + 0.991611i \(0.541260\pi\)
\(444\) 25.2492 1.19828
\(445\) 0 0
\(446\) −53.2875 −2.52324
\(447\) 31.1484 1.47327
\(448\) −57.3582 −2.70992
\(449\) 21.6076 1.01972 0.509862 0.860256i \(-0.329697\pi\)
0.509862 + 0.860256i \(0.329697\pi\)
\(450\) 0 0
\(451\) −4.26750 −0.200949
\(452\) −28.6231 −1.34632
\(453\) 11.0438 0.518881
\(454\) −22.3157 −1.04733
\(455\) 0 0
\(456\) −3.18770 −0.149278
\(457\) 29.1996 1.36590 0.682950 0.730465i \(-0.260697\pi\)
0.682950 + 0.730465i \(0.260697\pi\)
\(458\) −23.2925 −1.08839
\(459\) −9.10784 −0.425117
\(460\) 0 0
\(461\) −32.2335 −1.50126 −0.750631 0.660722i \(-0.770250\pi\)
−0.750631 + 0.660722i \(0.770250\pi\)
\(462\) 14.5855 0.678577
\(463\) 11.8543 0.550917 0.275459 0.961313i \(-0.411170\pi\)
0.275459 + 0.961313i \(0.411170\pi\)
\(464\) −1.22772 −0.0569957
\(465\) 0 0
\(466\) −10.1742 −0.471309
\(467\) 31.4900 1.45718 0.728592 0.684948i \(-0.240175\pi\)
0.728592 + 0.684948i \(0.240175\pi\)
\(468\) −9.46953 −0.437729
\(469\) 54.0724 2.49683
\(470\) 0 0
\(471\) 8.64272 0.398236
\(472\) −1.90524 −0.0876957
\(473\) 3.62271 0.166573
\(474\) 25.7420 1.18237
\(475\) 0 0
\(476\) 21.2077 0.972055
\(477\) 9.76706 0.447203
\(478\) 34.2761 1.56775
\(479\) 15.1565 0.692519 0.346259 0.938139i \(-0.387452\pi\)
0.346259 + 0.938139i \(0.387452\pi\)
\(480\) 0 0
\(481\) 22.5912 1.03007
\(482\) −39.8353 −1.81445
\(483\) −0.741134 −0.0337228
\(484\) 2.96714 0.134870
\(485\) 0 0
\(486\) −18.2535 −0.827996
\(487\) −28.0154 −1.26950 −0.634749 0.772718i \(-0.718897\pi\)
−0.634749 + 0.772718i \(0.718897\pi\)
\(488\) −8.14145 −0.368546
\(489\) 30.0329 1.35813
\(490\) 0 0
\(491\) −1.56411 −0.0705873 −0.0352937 0.999377i \(-0.511237\pi\)
−0.0352937 + 0.999377i \(0.511237\pi\)
\(492\) 18.7261 0.844239
\(493\) 1.75430 0.0790099
\(494\) −8.75019 −0.393690
\(495\) 0 0
\(496\) 4.71701 0.211800
\(497\) 18.9575 0.850359
\(498\) −10.9892 −0.492439
\(499\) 15.4416 0.691263 0.345631 0.938370i \(-0.387665\pi\)
0.345631 + 0.938370i \(0.387665\pi\)
\(500\) 0 0
\(501\) −15.7025 −0.701535
\(502\) 22.3818 0.998950
\(503\) 23.3185 1.03972 0.519861 0.854251i \(-0.325984\pi\)
0.519861 + 0.854251i \(0.325984\pi\)
\(504\) 7.75351 0.345369
\(505\) 0 0
\(506\) −0.252396 −0.0112204
\(507\) 3.57075 0.158583
\(508\) −1.53063 −0.0679106
\(509\) 32.7538 1.45178 0.725892 0.687808i \(-0.241427\pi\)
0.725892 + 0.687808i \(0.241427\pi\)
\(510\) 0 0
\(511\) 8.52625 0.377179
\(512\) −12.5936 −0.556565
\(513\) −5.63884 −0.248961
\(514\) −23.9889 −1.05811
\(515\) 0 0
\(516\) −15.8967 −0.699815
\(517\) −6.39567 −0.281281
\(518\) −56.7490 −2.49341
\(519\) −36.5793 −1.60565
\(520\) 0 0
\(521\) 38.5714 1.68984 0.844922 0.534889i \(-0.179647\pi\)
0.844922 + 0.534889i \(0.179647\pi\)
\(522\) 1.96770 0.0861238
\(523\) −34.9926 −1.53012 −0.765060 0.643959i \(-0.777291\pi\)
−0.765060 + 0.643959i \(0.777291\pi\)
\(524\) −6.31283 −0.275777
\(525\) 0 0
\(526\) 51.1915 2.23205
\(527\) −6.74016 −0.293606
\(528\) 1.67170 0.0727514
\(529\) −22.9872 −0.999442
\(530\) 0 0
\(531\) −0.718513 −0.0311808
\(532\) 13.1301 0.569263
\(533\) 16.7548 0.725730
\(534\) 39.2703 1.69939
\(535\) 0 0
\(536\) −26.3382 −1.13764
\(537\) −22.1437 −0.955571
\(538\) 45.8820 1.97811
\(539\) −12.5822 −0.541955
\(540\) 0 0
\(541\) 35.1455 1.51102 0.755511 0.655136i \(-0.227389\pi\)
0.755511 + 0.655136i \(0.227389\pi\)
\(542\) 9.51774 0.408822
\(543\) −16.6792 −0.715771
\(544\) 11.0321 0.472999
\(545\) 0 0
\(546\) −57.2644 −2.45069
\(547\) −2.79933 −0.119691 −0.0598454 0.998208i \(-0.519061\pi\)
−0.0598454 + 0.998208i \(0.519061\pi\)
\(548\) −11.1836 −0.477741
\(549\) −3.07035 −0.131039
\(550\) 0 0
\(551\) 1.08612 0.0462704
\(552\) 0.361000 0.0153652
\(553\) −34.5608 −1.46968
\(554\) −32.7054 −1.38952
\(555\) 0 0
\(556\) −33.3022 −1.41233
\(557\) 27.8118 1.17843 0.589213 0.807978i \(-0.299438\pi\)
0.589213 + 0.807978i \(0.299438\pi\)
\(558\) −7.56004 −0.320042
\(559\) −14.2232 −0.601579
\(560\) 0 0
\(561\) −2.38870 −0.100851
\(562\) 53.7852 2.26879
\(563\) −26.4265 −1.11374 −0.556872 0.830598i \(-0.687999\pi\)
−0.556872 + 0.830598i \(0.687999\pi\)
\(564\) 28.0646 1.18173
\(565\) 0 0
\(566\) 0.439483 0.0184728
\(567\) −26.1112 −1.09657
\(568\) −9.23401 −0.387451
\(569\) 15.1625 0.635643 0.317822 0.948151i \(-0.397049\pi\)
0.317822 + 0.948151i \(0.397049\pi\)
\(570\) 0 0
\(571\) −11.4144 −0.477677 −0.238838 0.971059i \(-0.576767\pi\)
−0.238838 + 0.971059i \(0.576767\pi\)
\(572\) −11.6494 −0.487084
\(573\) 32.9849 1.37796
\(574\) −42.0880 −1.75672
\(575\) 0 0
\(576\) 10.5364 0.439015
\(577\) 9.33855 0.388769 0.194385 0.980925i \(-0.437729\pi\)
0.194385 + 0.980925i \(0.437729\pi\)
\(578\) 32.0736 1.33409
\(579\) −37.2452 −1.54786
\(580\) 0 0
\(581\) 14.7540 0.612098
\(582\) −43.9945 −1.82363
\(583\) 12.0154 0.497626
\(584\) −4.15306 −0.171855
\(585\) 0 0
\(586\) 6.09486 0.251776
\(587\) −9.38542 −0.387378 −0.193689 0.981063i \(-0.562045\pi\)
−0.193689 + 0.981063i \(0.562045\pi\)
\(588\) 55.2117 2.27689
\(589\) −4.17296 −0.171944
\(590\) 0 0
\(591\) 15.4520 0.635609
\(592\) −6.50424 −0.267322
\(593\) 35.6523 1.46406 0.732032 0.681270i \(-0.238572\pi\)
0.732032 + 0.681270i \(0.238572\pi\)
\(594\) −12.5673 −0.515643
\(595\) 0 0
\(596\) 62.4937 2.55984
\(597\) −9.47549 −0.387806
\(598\) 0.990939 0.0405225
\(599\) 37.1404 1.51751 0.758757 0.651373i \(-0.225807\pi\)
0.758757 + 0.651373i \(0.225807\pi\)
\(600\) 0 0
\(601\) 12.2448 0.499474 0.249737 0.968314i \(-0.419656\pi\)
0.249737 + 0.968314i \(0.419656\pi\)
\(602\) 35.7288 1.45620
\(603\) −9.93278 −0.404494
\(604\) 22.1574 0.901571
\(605\) 0 0
\(606\) −12.2634 −0.498167
\(607\) −31.3652 −1.27307 −0.636536 0.771247i \(-0.719634\pi\)
−0.636536 + 0.771247i \(0.719634\pi\)
\(608\) 6.83020 0.277001
\(609\) 7.10798 0.288030
\(610\) 0 0
\(611\) 25.1102 1.01585
\(612\) −3.89574 −0.157476
\(613\) 5.48484 0.221531 0.110765 0.993847i \(-0.464670\pi\)
0.110765 + 0.993847i \(0.464670\pi\)
\(614\) −37.2891 −1.50487
\(615\) 0 0
\(616\) 9.53832 0.384310
\(617\) 32.6913 1.31610 0.658052 0.752973i \(-0.271381\pi\)
0.658052 + 0.752973i \(0.271381\pi\)
\(618\) −61.9570 −2.49227
\(619\) 1.71800 0.0690522 0.0345261 0.999404i \(-0.489008\pi\)
0.0345261 + 0.999404i \(0.489008\pi\)
\(620\) 0 0
\(621\) 0.638585 0.0256255
\(622\) 33.1945 1.33098
\(623\) −52.7238 −2.11233
\(624\) −6.56330 −0.262742
\(625\) 0 0
\(626\) 19.8252 0.792375
\(627\) −1.47889 −0.0590612
\(628\) 17.3401 0.691946
\(629\) 9.29395 0.370574
\(630\) 0 0
\(631\) 39.9355 1.58981 0.794903 0.606737i \(-0.207522\pi\)
0.794903 + 0.606737i \(0.207522\pi\)
\(632\) 16.8343 0.669631
\(633\) 11.7852 0.468419
\(634\) 13.7359 0.545524
\(635\) 0 0
\(636\) −52.7243 −2.09066
\(637\) 49.3994 1.95728
\(638\) 2.42065 0.0958345
\(639\) −3.48238 −0.137761
\(640\) 0 0
\(641\) −3.50123 −0.138290 −0.0691452 0.997607i \(-0.522027\pi\)
−0.0691452 + 0.997607i \(0.522027\pi\)
\(642\) −17.5978 −0.694528
\(643\) −6.59740 −0.260176 −0.130088 0.991502i \(-0.541526\pi\)
−0.130088 + 0.991502i \(0.541526\pi\)
\(644\) −1.48696 −0.0585943
\(645\) 0 0
\(646\) −3.59980 −0.141632
\(647\) 24.8389 0.976518 0.488259 0.872699i \(-0.337632\pi\)
0.488259 + 0.872699i \(0.337632\pi\)
\(648\) 12.7185 0.499630
\(649\) −0.883911 −0.0346965
\(650\) 0 0
\(651\) −27.3094 −1.07034
\(652\) 60.2557 2.35980
\(653\) 17.5186 0.685555 0.342778 0.939417i \(-0.388632\pi\)
0.342778 + 0.939417i \(0.388632\pi\)
\(654\) −55.3011 −2.16244
\(655\) 0 0
\(656\) −4.82387 −0.188341
\(657\) −1.56622 −0.0611042
\(658\) −63.0768 −2.45899
\(659\) 3.56748 0.138969 0.0694846 0.997583i \(-0.477865\pi\)
0.0694846 + 0.997583i \(0.477865\pi\)
\(660\) 0 0
\(661\) −48.5242 −1.88737 −0.943687 0.330841i \(-0.892668\pi\)
−0.943687 + 0.330841i \(0.892668\pi\)
\(662\) −39.0346 −1.51712
\(663\) 9.37835 0.364225
\(664\) −7.18652 −0.278891
\(665\) 0 0
\(666\) 10.4245 0.403940
\(667\) −0.123001 −0.00476262
\(668\) −31.5043 −1.21894
\(669\) 35.3597 1.36709
\(670\) 0 0
\(671\) −3.77712 −0.145814
\(672\) 44.6993 1.72431
\(673\) 0.476829 0.0183804 0.00919020 0.999958i \(-0.497075\pi\)
0.00919020 + 0.999958i \(0.497075\pi\)
\(674\) −75.9394 −2.92508
\(675\) 0 0
\(676\) 7.16409 0.275542
\(677\) −3.68052 −0.141454 −0.0707269 0.997496i \(-0.522532\pi\)
−0.0707269 + 0.997496i \(0.522532\pi\)
\(678\) 31.7957 1.22111
\(679\) 59.0664 2.26676
\(680\) 0 0
\(681\) 14.8079 0.567439
\(682\) −9.30032 −0.356128
\(683\) −0.701724 −0.0268507 −0.0134254 0.999910i \(-0.504274\pi\)
−0.0134254 + 0.999910i \(0.504274\pi\)
\(684\) −2.41193 −0.0922223
\(685\) 0 0
\(686\) −55.0544 −2.10199
\(687\) 15.4561 0.589685
\(688\) 4.09502 0.156121
\(689\) −47.1739 −1.79718
\(690\) 0 0
\(691\) 3.65425 0.139014 0.0695071 0.997581i \(-0.477857\pi\)
0.0695071 + 0.997581i \(0.477857\pi\)
\(692\) −73.3900 −2.78987
\(693\) 3.59714 0.136644
\(694\) 32.9994 1.25264
\(695\) 0 0
\(696\) −3.46223 −0.131236
\(697\) 6.89287 0.261086
\(698\) 45.0271 1.70430
\(699\) 6.75121 0.255354
\(700\) 0 0
\(701\) −45.3852 −1.71417 −0.857087 0.515171i \(-0.827728\pi\)
−0.857087 + 0.515171i \(0.827728\pi\)
\(702\) 49.3409 1.86225
\(703\) 5.75406 0.217019
\(704\) 12.9618 0.488515
\(705\) 0 0
\(706\) −77.6678 −2.92307
\(707\) 16.4647 0.619217
\(708\) 3.87866 0.145769
\(709\) 16.6965 0.627051 0.313525 0.949580i \(-0.398490\pi\)
0.313525 + 0.949580i \(0.398490\pi\)
\(710\) 0 0
\(711\) 6.34862 0.238092
\(712\) 25.6813 0.962446
\(713\) 0.472579 0.0176982
\(714\) −23.5584 −0.881652
\(715\) 0 0
\(716\) −44.4274 −1.66033
\(717\) −22.7444 −0.849405
\(718\) 57.5030 2.14599
\(719\) 16.1346 0.601718 0.300859 0.953669i \(-0.402727\pi\)
0.300859 + 0.953669i \(0.402727\pi\)
\(720\) 0 0
\(721\) 83.1825 3.09788
\(722\) −2.22871 −0.0829439
\(723\) 26.4333 0.983064
\(724\) −33.4638 −1.24367
\(725\) 0 0
\(726\) −3.29602 −0.122327
\(727\) 21.9546 0.814251 0.407126 0.913372i \(-0.366531\pi\)
0.407126 + 0.913372i \(0.366531\pi\)
\(728\) −37.4487 −1.38794
\(729\) 29.8141 1.10423
\(730\) 0 0
\(731\) −5.85140 −0.216422
\(732\) 16.5743 0.612603
\(733\) 47.5004 1.75447 0.877234 0.480063i \(-0.159386\pi\)
0.877234 + 0.480063i \(0.159386\pi\)
\(734\) 28.1584 1.03935
\(735\) 0 0
\(736\) −0.773505 −0.0285118
\(737\) −12.2192 −0.450102
\(738\) 7.73132 0.284594
\(739\) 29.9890 1.10316 0.551581 0.834122i \(-0.314025\pi\)
0.551581 + 0.834122i \(0.314025\pi\)
\(740\) 0 0
\(741\) 5.80632 0.213300
\(742\) 118.501 4.35030
\(743\) −2.24383 −0.0823181 −0.0411590 0.999153i \(-0.513105\pi\)
−0.0411590 + 0.999153i \(0.513105\pi\)
\(744\) 13.3022 0.487681
\(745\) 0 0
\(746\) 69.8974 2.55913
\(747\) −2.71022 −0.0991618
\(748\) −4.79251 −0.175232
\(749\) 23.6265 0.863293
\(750\) 0 0
\(751\) 29.0275 1.05923 0.529614 0.848239i \(-0.322337\pi\)
0.529614 + 0.848239i \(0.322337\pi\)
\(752\) −7.22949 −0.263632
\(753\) −14.8518 −0.541229
\(754\) −9.50378 −0.346107
\(755\) 0 0
\(756\) −74.0386 −2.69276
\(757\) −47.0009 −1.70828 −0.854138 0.520046i \(-0.825915\pi\)
−0.854138 + 0.520046i \(0.825915\pi\)
\(758\) 38.4965 1.39826
\(759\) 0.167481 0.00607918
\(760\) 0 0
\(761\) 46.6332 1.69045 0.845226 0.534409i \(-0.179466\pi\)
0.845226 + 0.534409i \(0.179466\pi\)
\(762\) 1.70028 0.0615948
\(763\) 74.2463 2.68790
\(764\) 66.1784 2.39425
\(765\) 0 0
\(766\) 4.37584 0.158106
\(767\) 3.47035 0.125307
\(768\) −11.8523 −0.427683
\(769\) −22.6169 −0.815585 −0.407793 0.913075i \(-0.633701\pi\)
−0.407793 + 0.913075i \(0.633701\pi\)
\(770\) 0 0
\(771\) 15.9182 0.573280
\(772\) −74.7260 −2.68945
\(773\) −16.1951 −0.582499 −0.291249 0.956647i \(-0.594071\pi\)
−0.291249 + 0.956647i \(0.594071\pi\)
\(774\) −6.56317 −0.235908
\(775\) 0 0
\(776\) −28.7707 −1.03281
\(777\) 37.6567 1.35093
\(778\) −60.7234 −2.17704
\(779\) 4.26750 0.152899
\(780\) 0 0
\(781\) −4.28400 −0.153294
\(782\) 0.407670 0.0145782
\(783\) −6.12447 −0.218871
\(784\) −14.2226 −0.507950
\(785\) 0 0
\(786\) 7.01255 0.250129
\(787\) 27.6814 0.986736 0.493368 0.869821i \(-0.335766\pi\)
0.493368 + 0.869821i \(0.335766\pi\)
\(788\) 31.0016 1.10439
\(789\) −33.9689 −1.20932
\(790\) 0 0
\(791\) −42.6884 −1.51782
\(792\) −1.75213 −0.0622594
\(793\) 14.8295 0.526609
\(794\) 53.7550 1.90769
\(795\) 0 0
\(796\) −19.0109 −0.673824
\(797\) 4.49477 0.159213 0.0796065 0.996826i \(-0.474634\pi\)
0.0796065 + 0.996826i \(0.474634\pi\)
\(798\) −14.5855 −0.516320
\(799\) 10.3303 0.365459
\(800\) 0 0
\(801\) 9.68505 0.342204
\(802\) 41.6262 1.46987
\(803\) −1.92676 −0.0679938
\(804\) 53.6189 1.89099
\(805\) 0 0
\(806\) 36.5142 1.28616
\(807\) −30.4456 −1.07174
\(808\) −8.01978 −0.282135
\(809\) 48.0468 1.68924 0.844618 0.535369i \(-0.179828\pi\)
0.844618 + 0.535369i \(0.179828\pi\)
\(810\) 0 0
\(811\) 20.9156 0.734448 0.367224 0.930133i \(-0.380308\pi\)
0.367224 + 0.930133i \(0.380308\pi\)
\(812\) 14.2609 0.500460
\(813\) −6.31564 −0.221499
\(814\) 12.8241 0.449485
\(815\) 0 0
\(816\) −2.70013 −0.0945233
\(817\) −3.62271 −0.126743
\(818\) 44.4497 1.55415
\(819\) −14.1228 −0.493492
\(820\) 0 0
\(821\) 10.7228 0.374227 0.187114 0.982338i \(-0.440087\pi\)
0.187114 + 0.982338i \(0.440087\pi\)
\(822\) 12.4232 0.433310
\(823\) −42.5971 −1.48484 −0.742420 0.669935i \(-0.766322\pi\)
−0.742420 + 0.669935i \(0.766322\pi\)
\(824\) −40.5174 −1.41149
\(825\) 0 0
\(826\) −8.71751 −0.303321
\(827\) 15.3377 0.533343 0.266672 0.963787i \(-0.414076\pi\)
0.266672 + 0.963787i \(0.414076\pi\)
\(828\) 0.273145 0.00949245
\(829\) −9.78901 −0.339986 −0.169993 0.985445i \(-0.554375\pi\)
−0.169993 + 0.985445i \(0.554375\pi\)
\(830\) 0 0
\(831\) 21.7022 0.752840
\(832\) −50.8896 −1.76428
\(833\) 20.3228 0.704143
\(834\) 36.9935 1.28098
\(835\) 0 0
\(836\) −2.96714 −0.102621
\(837\) 23.5307 0.813339
\(838\) −49.2456 −1.70116
\(839\) −48.1417 −1.66204 −0.831019 0.556244i \(-0.812242\pi\)
−0.831019 + 0.556244i \(0.812242\pi\)
\(840\) 0 0
\(841\) −27.8203 −0.959322
\(842\) 56.6192 1.95123
\(843\) −35.6899 −1.22923
\(844\) 23.6449 0.813891
\(845\) 0 0
\(846\) 11.5868 0.398364
\(847\) 4.42518 0.152051
\(848\) 13.5819 0.466403
\(849\) −0.291625 −0.0100086
\(850\) 0 0
\(851\) −0.651634 −0.0223377
\(852\) 18.7985 0.644026
\(853\) 41.0884 1.40684 0.703420 0.710775i \(-0.251655\pi\)
0.703420 + 0.710775i \(0.251655\pi\)
\(854\) −37.2516 −1.27472
\(855\) 0 0
\(856\) −11.5082 −0.393343
\(857\) 30.0628 1.02693 0.513464 0.858111i \(-0.328362\pi\)
0.513464 + 0.858111i \(0.328362\pi\)
\(858\) 12.9406 0.441784
\(859\) 9.99982 0.341190 0.170595 0.985341i \(-0.445431\pi\)
0.170595 + 0.985341i \(0.445431\pi\)
\(860\) 0 0
\(861\) 27.9281 0.951787
\(862\) 7.83646 0.266911
\(863\) −18.3253 −0.623800 −0.311900 0.950115i \(-0.600965\pi\)
−0.311900 + 0.950115i \(0.600965\pi\)
\(864\) −38.5144 −1.31029
\(865\) 0 0
\(866\) −21.6572 −0.735940
\(867\) −21.2829 −0.722806
\(868\) −54.7915 −1.85975
\(869\) 7.81004 0.264937
\(870\) 0 0
\(871\) 47.9743 1.62555
\(872\) −36.1647 −1.22469
\(873\) −10.8501 −0.367222
\(874\) 0.252396 0.00853742
\(875\) 0 0
\(876\) 8.45475 0.285660
\(877\) −54.2556 −1.83208 −0.916040 0.401086i \(-0.868633\pi\)
−0.916040 + 0.401086i \(0.868633\pi\)
\(878\) −1.98122 −0.0668629
\(879\) −4.04434 −0.136412
\(880\) 0 0
\(881\) −20.9741 −0.706636 −0.353318 0.935503i \(-0.614947\pi\)
−0.353318 + 0.935503i \(0.614947\pi\)
\(882\) 22.7949 0.767543
\(883\) 16.2916 0.548256 0.274128 0.961693i \(-0.411611\pi\)
0.274128 + 0.961693i \(0.411611\pi\)
\(884\) 18.8160 0.632851
\(885\) 0 0
\(886\) 12.1267 0.407404
\(887\) −41.2926 −1.38647 −0.693234 0.720712i \(-0.743815\pi\)
−0.693234 + 0.720712i \(0.743815\pi\)
\(888\) −18.3422 −0.615524
\(889\) −2.28277 −0.0765618
\(890\) 0 0
\(891\) 5.90059 0.197677
\(892\) 70.9431 2.37535
\(893\) 6.39567 0.214023
\(894\) −69.4206 −2.32177
\(895\) 0 0
\(896\) 67.3849 2.25117
\(897\) −0.657552 −0.0219550
\(898\) −48.1569 −1.60702
\(899\) −4.53235 −0.151162
\(900\) 0 0
\(901\) −19.4072 −0.646548
\(902\) 9.51102 0.316682
\(903\) −23.7084 −0.788965
\(904\) 20.7931 0.691569
\(905\) 0 0
\(906\) −24.6133 −0.817722
\(907\) −35.5669 −1.18098 −0.590490 0.807045i \(-0.701065\pi\)
−0.590490 + 0.807045i \(0.701065\pi\)
\(908\) 29.7094 0.985942
\(909\) −3.02446 −0.100315
\(910\) 0 0
\(911\) 26.1812 0.867422 0.433711 0.901052i \(-0.357204\pi\)
0.433711 + 0.901052i \(0.357204\pi\)
\(912\) −1.67170 −0.0553555
\(913\) −3.33410 −0.110342
\(914\) −65.0774 −2.15257
\(915\) 0 0
\(916\) 31.0099 1.02459
\(917\) −9.41494 −0.310909
\(918\) 20.2987 0.669957
\(919\) 0.328420 0.0108336 0.00541678 0.999985i \(-0.498276\pi\)
0.00541678 + 0.999985i \(0.498276\pi\)
\(920\) 0 0
\(921\) 24.7438 0.815334
\(922\) 71.8390 2.36589
\(923\) 16.8195 0.553622
\(924\) −19.4180 −0.638806
\(925\) 0 0
\(926\) −26.4198 −0.868210
\(927\) −15.2801 −0.501866
\(928\) 7.41844 0.243522
\(929\) 0.642511 0.0210801 0.0105401 0.999944i \(-0.496645\pi\)
0.0105401 + 0.999944i \(0.496645\pi\)
\(930\) 0 0
\(931\) 12.5822 0.412366
\(932\) 13.5451 0.443685
\(933\) −22.0267 −0.721122
\(934\) −70.1820 −2.29643
\(935\) 0 0
\(936\) 6.87910 0.224851
\(937\) −19.2863 −0.630055 −0.315027 0.949083i \(-0.602014\pi\)
−0.315027 + 0.949083i \(0.602014\pi\)
\(938\) −120.512 −3.93484
\(939\) −13.1553 −0.429308
\(940\) 0 0
\(941\) 19.4348 0.633556 0.316778 0.948500i \(-0.397399\pi\)
0.316778 + 0.948500i \(0.397399\pi\)
\(942\) −19.2621 −0.627593
\(943\) −0.483285 −0.0157379
\(944\) −0.999149 −0.0325195
\(945\) 0 0
\(946\) −8.07397 −0.262507
\(947\) 61.1924 1.98849 0.994243 0.107147i \(-0.0341716\pi\)
0.994243 + 0.107147i \(0.0341716\pi\)
\(948\) −34.2710 −1.11307
\(949\) 7.56470 0.245560
\(950\) 0 0
\(951\) −9.11468 −0.295564
\(952\) −15.4063 −0.499320
\(953\) −3.19828 −0.103602 −0.0518012 0.998657i \(-0.516496\pi\)
−0.0518012 + 0.998657i \(0.516496\pi\)
\(954\) −21.7679 −0.704762
\(955\) 0 0
\(956\) −45.6327 −1.47587
\(957\) −1.60626 −0.0519230
\(958\) −33.7794 −1.09136
\(959\) −16.6793 −0.538601
\(960\) 0 0
\(961\) −13.5864 −0.438270
\(962\) −50.3491 −1.62332
\(963\) −4.34005 −0.139856
\(964\) 53.0337 1.70810
\(965\) 0 0
\(966\) 1.65177 0.0531449
\(967\) −45.2536 −1.45526 −0.727629 0.685970i \(-0.759378\pi\)
−0.727629 + 0.685970i \(0.759378\pi\)
\(968\) −2.15546 −0.0692793
\(969\) 2.38870 0.0767362
\(970\) 0 0
\(971\) −49.4103 −1.58565 −0.792826 0.609448i \(-0.791391\pi\)
−0.792826 + 0.609448i \(0.791391\pi\)
\(972\) 24.3014 0.779467
\(973\) −49.6668 −1.59225
\(974\) 62.4381 2.00065
\(975\) 0 0
\(976\) −4.26955 −0.136665
\(977\) −48.8753 −1.56366 −0.781830 0.623492i \(-0.785714\pi\)
−0.781830 + 0.623492i \(0.785714\pi\)
\(978\) −66.9345 −2.14033
\(979\) 11.9145 0.380789
\(980\) 0 0
\(981\) −13.6386 −0.435448
\(982\) 3.48594 0.111241
\(983\) −16.7325 −0.533684 −0.266842 0.963740i \(-0.585980\pi\)
−0.266842 + 0.963740i \(0.585980\pi\)
\(984\) −13.6035 −0.433664
\(985\) 0 0
\(986\) −3.90983 −0.124514
\(987\) 41.8556 1.33228
\(988\) 11.6494 0.370615
\(989\) 0.410264 0.0130456
\(990\) 0 0
\(991\) −46.6422 −1.48164 −0.740820 0.671704i \(-0.765563\pi\)
−0.740820 + 0.671704i \(0.765563\pi\)
\(992\) −28.5022 −0.904945
\(993\) 25.9020 0.821974
\(994\) −42.2507 −1.34011
\(995\) 0 0
\(996\) 14.6303 0.463577
\(997\) −30.3768 −0.962043 −0.481021 0.876709i \(-0.659734\pi\)
−0.481021 + 0.876709i \(0.659734\pi\)
\(998\) −34.4149 −1.08938
\(999\) −32.4462 −1.02655
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.j.1.1 5
5.4 even 2 1045.2.a.d.1.5 5
15.14 odd 2 9405.2.a.v.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.d.1.5 5 5.4 even 2
5225.2.a.j.1.1 5 1.1 even 1 trivial
9405.2.a.v.1.1 5 15.14 odd 2