Properties

Label 5225.2.a.c.1.1
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.00000 q^{3} -1.00000 q^{4} +2.00000 q^{6} +2.00000 q^{7} -3.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +2.00000 q^{3} -1.00000 q^{4} +2.00000 q^{6} +2.00000 q^{7} -3.00000 q^{8} +1.00000 q^{9} -1.00000 q^{11} -2.00000 q^{12} -6.00000 q^{13} +2.00000 q^{14} -1.00000 q^{16} +1.00000 q^{18} -1.00000 q^{19} +4.00000 q^{21} -1.00000 q^{22} -6.00000 q^{24} -6.00000 q^{26} -4.00000 q^{27} -2.00000 q^{28} +6.00000 q^{29} +4.00000 q^{31} +5.00000 q^{32} -2.00000 q^{33} -1.00000 q^{36} -1.00000 q^{38} -12.0000 q^{39} -6.00000 q^{41} +4.00000 q^{42} +6.00000 q^{43} +1.00000 q^{44} +4.00000 q^{47} -2.00000 q^{48} -3.00000 q^{49} +6.00000 q^{52} -12.0000 q^{53} -4.00000 q^{54} -6.00000 q^{56} -2.00000 q^{57} +6.00000 q^{58} -8.00000 q^{59} -14.0000 q^{61} +4.00000 q^{62} +2.00000 q^{63} +7.00000 q^{64} -2.00000 q^{66} -6.00000 q^{67} -8.00000 q^{71} -3.00000 q^{72} -16.0000 q^{73} +1.00000 q^{76} -2.00000 q^{77} -12.0000 q^{78} -8.00000 q^{79} -11.0000 q^{81} -6.00000 q^{82} -6.00000 q^{83} -4.00000 q^{84} +6.00000 q^{86} +12.0000 q^{87} +3.00000 q^{88} -2.00000 q^{89} -12.0000 q^{91} +8.00000 q^{93} +4.00000 q^{94} +10.0000 q^{96} -4.00000 q^{97} -3.00000 q^{98} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.00000 0.816497
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −3.00000 −1.06066
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) −2.00000 −0.577350
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) −1.00000 −0.213201
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −6.00000 −1.22474
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) −4.00000 −0.769800
\(28\) −2.00000 −0.377964
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.00000 0.883883
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −1.00000 −0.162221
\(39\) −12.0000 −1.92154
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 4.00000 0.617213
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) −2.00000 −0.288675
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 6.00000 0.832050
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) −6.00000 −0.801784
\(57\) −2.00000 −0.264906
\(58\) 6.00000 0.787839
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 4.00000 0.508001
\(63\) 2.00000 0.251976
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −3.00000 −0.353553
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −2.00000 −0.227921
\(78\) −12.0000 −1.35873
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) −6.00000 −0.662589
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) 6.00000 0.646997
\(87\) 12.0000 1.28654
\(88\) 3.00000 0.319801
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) 10.0000 1.02062
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) −3.00000 −0.303046
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 18.0000 1.76505
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) 20.0000 1.93347 0.966736 0.255774i \(-0.0823304\pi\)
0.966736 + 0.255774i \(0.0823304\pi\)
\(108\) 4.00000 0.384900
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) −2.00000 −0.187317
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) −6.00000 −0.554700
\(118\) −8.00000 −0.736460
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −14.0000 −1.26750
\(123\) −12.0000 −1.08200
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) −3.00000 −0.265165
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 2.00000 0.174078
\(133\) −2.00000 −0.173422
\(134\) −6.00000 −0.518321
\(135\) 0 0
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) −8.00000 −0.671345
\(143\) 6.00000 0.501745
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −16.0000 −1.32417
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 3.00000 0.243332
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) 0 0
\(156\) 12.0000 0.960769
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) −8.00000 −0.636446
\(159\) −24.0000 −1.90332
\(160\) 0 0
\(161\) 0 0
\(162\) −11.0000 −0.864242
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) −6.00000 −0.465690
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) −12.0000 −0.925820
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) −6.00000 −0.457496
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) −16.0000 −1.20263
\(178\) −2.00000 −0.149906
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) −12.0000 −0.889499
\(183\) −28.0000 −2.06982
\(184\) 0 0
\(185\) 0 0
\(186\) 8.00000 0.586588
\(187\) 0 0
\(188\) −4.00000 −0.291730
\(189\) −8.00000 −0.581914
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 14.0000 1.01036
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) −4.00000 −0.287183
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) −1.00000 −0.0710669
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) −18.0000 −1.26648
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) 10.0000 0.696733
\(207\) 0 0
\(208\) 6.00000 0.416025
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 28.0000 1.92760 0.963800 0.266627i \(-0.0859092\pi\)
0.963800 + 0.266627i \(0.0859092\pi\)
\(212\) 12.0000 0.824163
\(213\) −16.0000 −1.09630
\(214\) 20.0000 1.36717
\(215\) 0 0
\(216\) 12.0000 0.816497
\(217\) 8.00000 0.543075
\(218\) −2.00000 −0.135457
\(219\) −32.0000 −2.16236
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.0000 1.47323 0.736614 0.676313i \(-0.236423\pi\)
0.736614 + 0.676313i \(0.236423\pi\)
\(224\) 10.0000 0.668153
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) 8.00000 0.530979 0.265489 0.964114i \(-0.414466\pi\)
0.265489 + 0.964114i \(0.414466\pi\)
\(228\) 2.00000 0.132453
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) −18.0000 −1.18176
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 1.00000 0.0642824
\(243\) −10.0000 −0.641500
\(244\) 14.0000 0.896258
\(245\) 0 0
\(246\) −12.0000 −0.765092
\(247\) 6.00000 0.381771
\(248\) −12.0000 −0.762001
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) −2.00000 −0.125988
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −20.0000 −1.24757 −0.623783 0.781598i \(-0.714405\pi\)
−0.623783 + 0.781598i \(0.714405\pi\)
\(258\) 12.0000 0.747087
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 4.00000 0.247121
\(263\) −10.0000 −0.616626 −0.308313 0.951285i \(-0.599764\pi\)
−0.308313 + 0.951285i \(0.599764\pi\)
\(264\) 6.00000 0.369274
\(265\) 0 0
\(266\) −2.00000 −0.122628
\(267\) −4.00000 −0.244796
\(268\) 6.00000 0.366508
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) −24.0000 −1.45255
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) 0 0
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 12.0000 0.719712
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 8.00000 0.476393
\(283\) −6.00000 −0.356663 −0.178331 0.983970i \(-0.557070\pi\)
−0.178331 + 0.983970i \(0.557070\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) −12.0000 −0.708338
\(288\) 5.00000 0.294628
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) −8.00000 −0.468968
\(292\) 16.0000 0.936329
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) −6.00000 −0.349927
\(295\) 0 0
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) −8.00000 −0.460348
\(303\) −36.0000 −2.06815
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 2.00000 0.113961
\(309\) 20.0000 1.13776
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 36.0000 2.03810
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 20.0000 1.12331 0.561656 0.827371i \(-0.310164\pi\)
0.561656 + 0.827371i \(0.310164\pi\)
\(318\) −24.0000 −1.34585
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) 40.0000 2.23258
\(322\) 0 0
\(323\) 0 0
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) −4.00000 −0.221201
\(328\) 18.0000 0.993884
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) 6.00000 0.329293
\(333\) 0 0
\(334\) 8.00000 0.437741
\(335\) 0 0
\(336\) −4.00000 −0.218218
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 23.0000 1.25104
\(339\) −8.00000 −0.434500
\(340\) 0 0
\(341\) −4.00000 −0.216612
\(342\) −1.00000 −0.0540738
\(343\) −20.0000 −1.07990
\(344\) −18.0000 −0.970495
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 26.0000 1.39575 0.697877 0.716218i \(-0.254128\pi\)
0.697877 + 0.716218i \(0.254128\pi\)
\(348\) −12.0000 −0.643268
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 24.0000 1.28103
\(352\) −5.00000 −0.266501
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) −16.0000 −0.850390
\(355\) 0 0
\(356\) 2.00000 0.106000
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 14.0000 0.735824
\(363\) 2.00000 0.104973
\(364\) 12.0000 0.628971
\(365\) 0 0
\(366\) −28.0000 −1.46358
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) −8.00000 −0.414781
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) −36.0000 −1.85409
\(378\) −8.00000 −0.411476
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) −8.00000 −0.409316
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) −6.00000 −0.306186
\(385\) 0 0
\(386\) 6.00000 0.305392
\(387\) 6.00000 0.304997
\(388\) 4.00000 0.203069
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 8.00000 0.403547
\(394\) 24.0000 1.20910
\(395\) 0 0
\(396\) 1.00000 0.0502519
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 16.0000 0.802008
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) −12.0000 −0.598506
\(403\) −24.0000 −1.19553
\(404\) 18.0000 0.895533
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 0 0
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) −10.0000 −0.492665
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) 0 0
\(416\) −30.0000 −1.47087
\(417\) 24.0000 1.17529
\(418\) 1.00000 0.0489116
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 28.0000 1.36302
\(423\) 4.00000 0.194487
\(424\) 36.0000 1.74831
\(425\) 0 0
\(426\) −16.0000 −0.775203
\(427\) −28.0000 −1.35501
\(428\) −20.0000 −0.966736
\(429\) 12.0000 0.579365
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 4.00000 0.192450
\(433\) 4.00000 0.192228 0.0961139 0.995370i \(-0.469359\pi\)
0.0961139 + 0.995370i \(0.469359\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) −32.0000 −1.52902
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −8.00000 −0.380091 −0.190046 0.981775i \(-0.560864\pi\)
−0.190046 + 0.981775i \(0.560864\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 22.0000 1.04173
\(447\) 12.0000 0.567581
\(448\) 14.0000 0.661438
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) 0 0
\(451\) 6.00000 0.282529
\(452\) 4.00000 0.188144
\(453\) −16.0000 −0.751746
\(454\) 8.00000 0.375459
\(455\) 0 0
\(456\) 6.00000 0.280976
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) −6.00000 −0.280362
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) −4.00000 −0.186097
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 24.0000 1.11178
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 6.00000 0.277350
\(469\) −12.0000 −0.554109
\(470\) 0 0
\(471\) 20.0000 0.921551
\(472\) 24.0000 1.10469
\(473\) −6.00000 −0.275880
\(474\) −16.0000 −0.734904
\(475\) 0 0
\(476\) 0 0
\(477\) −12.0000 −0.549442
\(478\) −24.0000 −1.09773
\(479\) 28.0000 1.27935 0.639676 0.768644i \(-0.279068\pi\)
0.639676 + 0.768644i \(0.279068\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 14.0000 0.637683
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 42.0000 1.90125
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −16.0000 −0.722070 −0.361035 0.932552i \(-0.617576\pi\)
−0.361035 + 0.932552i \(0.617576\pi\)
\(492\) 12.0000 0.541002
\(493\) 0 0
\(494\) 6.00000 0.269953
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −16.0000 −0.717698
\(498\) −12.0000 −0.537733
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) −4.00000 −0.178529
\(503\) 10.0000 0.445878 0.222939 0.974832i \(-0.428435\pi\)
0.222939 + 0.974832i \(0.428435\pi\)
\(504\) −6.00000 −0.267261
\(505\) 0 0
\(506\) 0 0
\(507\) 46.0000 2.04293
\(508\) 4.00000 0.177471
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) −32.0000 −1.41560
\(512\) −11.0000 −0.486136
\(513\) 4.00000 0.176604
\(514\) −20.0000 −0.882162
\(515\) 0 0
\(516\) −12.0000 −0.528271
\(517\) −4.00000 −0.175920
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 6.00000 0.262613
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −10.0000 −0.436021
\(527\) 0 0
\(528\) 2.00000 0.0870388
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 2.00000 0.0867110
\(533\) 36.0000 1.55933
\(534\) −4.00000 −0.173097
\(535\) 0 0
\(536\) 18.0000 0.777482
\(537\) −24.0000 −1.03568
\(538\) −10.0000 −0.431131
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) 20.0000 0.859074
\(543\) 28.0000 1.20160
\(544\) 0 0
\(545\) 0 0
\(546\) −24.0000 −1.02711
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 2.00000 0.0854358
\(549\) −14.0000 −0.597505
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) −8.00000 −0.339887
\(555\) 0 0
\(556\) −12.0000 −0.508913
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 4.00000 0.169334
\(559\) −36.0000 −1.52264
\(560\) 0 0
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) −8.00000 −0.336861
\(565\) 0 0
\(566\) −6.00000 −0.252199
\(567\) −22.0000 −0.923913
\(568\) 24.0000 1.00702
\(569\) 46.0000 1.92842 0.964210 0.265139i \(-0.0854179\pi\)
0.964210 + 0.265139i \(0.0854179\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) −6.00000 −0.250873
\(573\) −16.0000 −0.668410
\(574\) −12.0000 −0.500870
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) −17.0000 −0.707107
\(579\) 12.0000 0.498703
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) −8.00000 −0.331611
\(583\) 12.0000 0.496989
\(584\) 48.0000 1.98625
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) 36.0000 1.48588 0.742940 0.669359i \(-0.233431\pi\)
0.742940 + 0.669359i \(0.233431\pi\)
\(588\) 6.00000 0.247436
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 48.0000 1.97446
\(592\) 0 0
\(593\) 4.00000 0.164260 0.0821302 0.996622i \(-0.473828\pi\)
0.0821302 + 0.996622i \(0.473828\pi\)
\(594\) 4.00000 0.164122
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 32.0000 1.30967
\(598\) 0 0
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) −46.0000 −1.87638 −0.938190 0.346122i \(-0.887498\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) 12.0000 0.489083
\(603\) −6.00000 −0.244339
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) −36.0000 −1.46240
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) −5.00000 −0.202777
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) −24.0000 −0.970936
\(612\) 0 0
\(613\) 36.0000 1.45403 0.727013 0.686624i \(-0.240908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 12.0000 0.484281
\(615\) 0 0
\(616\) 6.00000 0.241747
\(617\) −26.0000 −1.04672 −0.523360 0.852111i \(-0.675322\pi\)
−0.523360 + 0.852111i \(0.675322\pi\)
\(618\) 20.0000 0.804518
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.00000 −0.160257
\(624\) 12.0000 0.480384
\(625\) 0 0
\(626\) −26.0000 −1.03917
\(627\) 2.00000 0.0798723
\(628\) −10.0000 −0.399043
\(629\) 0 0
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 24.0000 0.954669
\(633\) 56.0000 2.22580
\(634\) 20.0000 0.794301
\(635\) 0 0
\(636\) 24.0000 0.951662
\(637\) 18.0000 0.713186
\(638\) −6.00000 −0.237542
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) −26.0000 −1.02694 −0.513469 0.858108i \(-0.671640\pi\)
−0.513469 + 0.858108i \(0.671640\pi\)
\(642\) 40.0000 1.57867
\(643\) 40.0000 1.57745 0.788723 0.614749i \(-0.210743\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 33.0000 1.29636
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 4.00000 0.156652
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) −16.0000 −0.624219
\(658\) 8.00000 0.311872
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) 18.0000 0.698535
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −8.00000 −0.309529
\(669\) 44.0000 1.70114
\(670\) 0 0
\(671\) 14.0000 0.540464
\(672\) 20.0000 0.771517
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) −10.0000 −0.385186
\(675\) 0 0
\(676\) −23.0000 −0.884615
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −8.00000 −0.307238
\(679\) −8.00000 −0.307012
\(680\) 0 0
\(681\) 16.0000 0.613121
\(682\) −4.00000 −0.153168
\(683\) 18.0000 0.688751 0.344375 0.938832i \(-0.388091\pi\)
0.344375 + 0.938832i \(0.388091\pi\)
\(684\) 1.00000 0.0382360
\(685\) 0 0
\(686\) −20.0000 −0.763604
\(687\) −12.0000 −0.457829
\(688\) −6.00000 −0.228748
\(689\) 72.0000 2.74298
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 6.00000 0.228086
\(693\) −2.00000 −0.0759737
\(694\) 26.0000 0.986947
\(695\) 0 0
\(696\) −36.0000 −1.36458
\(697\) 0 0
\(698\) −30.0000 −1.13552
\(699\) 48.0000 1.81553
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 24.0000 0.905822
\(703\) 0 0
\(704\) −7.00000 −0.263822
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −36.0000 −1.35392
\(708\) 16.0000 0.601317
\(709\) −38.0000 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 6.00000 0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) −48.0000 −1.79259
\(718\) 12.0000 0.447836
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 1.00000 0.0372161
\(723\) 28.0000 1.04133
\(724\) −14.0000 −0.520306
\(725\) 0 0
\(726\) 2.00000 0.0742270
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 36.0000 1.33425
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 28.0000 1.03491
\(733\) −24.0000 −0.886460 −0.443230 0.896408i \(-0.646168\pi\)
−0.443230 + 0.896408i \(0.646168\pi\)
\(734\) 28.0000 1.03350
\(735\) 0 0
\(736\) 0 0
\(737\) 6.00000 0.221013
\(738\) −6.00000 −0.220863
\(739\) 24.0000 0.882854 0.441427 0.897297i \(-0.354472\pi\)
0.441427 + 0.897297i \(0.354472\pi\)
\(740\) 0 0
\(741\) 12.0000 0.440831
\(742\) −24.0000 −0.881068
\(743\) −40.0000 −1.46746 −0.733729 0.679442i \(-0.762222\pi\)
−0.733729 + 0.679442i \(0.762222\pi\)
\(744\) −24.0000 −0.879883
\(745\) 0 0
\(746\) −14.0000 −0.512576
\(747\) −6.00000 −0.219529
\(748\) 0 0
\(749\) 40.0000 1.46157
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) −4.00000 −0.145865
\(753\) −8.00000 −0.291536
\(754\) −36.0000 −1.31104
\(755\) 0 0
\(756\) 8.00000 0.290957
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 4.00000 0.145287
\(759\) 0 0
\(760\) 0 0
\(761\) −14.0000 −0.507500 −0.253750 0.967270i \(-0.581664\pi\)
−0.253750 + 0.967270i \(0.581664\pi\)
\(762\) −8.00000 −0.289809
\(763\) −4.00000 −0.144810
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 30.0000 1.08394
\(767\) 48.0000 1.73318
\(768\) −34.0000 −1.22687
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) −40.0000 −1.44056
\(772\) −6.00000 −0.215945
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 6.00000 0.215666
\(775\) 0 0
\(776\) 12.0000 0.430775
\(777\) 0 0
\(778\) −26.0000 −0.932145
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) 0 0
\(783\) −24.0000 −0.857690
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 8.00000 0.285351
\(787\) 20.0000 0.712923 0.356462 0.934310i \(-0.383983\pi\)
0.356462 + 0.934310i \(0.383983\pi\)
\(788\) −24.0000 −0.854965
\(789\) −20.0000 −0.712019
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 3.00000 0.106600
\(793\) 84.0000 2.98293
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) −48.0000 −1.70025 −0.850124 0.526583i \(-0.823473\pi\)
−0.850124 + 0.526583i \(0.823473\pi\)
\(798\) −4.00000 −0.141598
\(799\) 0 0
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) −22.0000 −0.776847
\(803\) 16.0000 0.564628
\(804\) 12.0000 0.423207
\(805\) 0 0
\(806\) −24.0000 −0.845364
\(807\) −20.0000 −0.704033
\(808\) 54.0000 1.89971
\(809\) 46.0000 1.61727 0.808637 0.588308i \(-0.200206\pi\)
0.808637 + 0.588308i \(0.200206\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) −12.0000 −0.421117
\(813\) 40.0000 1.40286
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.00000 −0.209913
\(818\) −22.0000 −0.769212
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) 2.00000 0.0698005 0.0349002 0.999391i \(-0.488889\pi\)
0.0349002 + 0.999391i \(0.488889\pi\)
\(822\) −4.00000 −0.139516
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) −30.0000 −1.04510
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) −50.0000 −1.73657 −0.868286 0.496064i \(-0.834778\pi\)
−0.868286 + 0.496064i \(0.834778\pi\)
\(830\) 0 0
\(831\) −16.0000 −0.555034
\(832\) −42.0000 −1.45609
\(833\) 0 0
\(834\) 24.0000 0.831052
\(835\) 0 0
\(836\) −1.00000 −0.0345857
\(837\) −16.0000 −0.553041
\(838\) −20.0000 −0.690889
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −14.0000 −0.482472
\(843\) 12.0000 0.413302
\(844\) −28.0000 −0.963800
\(845\) 0 0
\(846\) 4.00000 0.137523
\(847\) 2.00000 0.0687208
\(848\) 12.0000 0.412082
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 0 0
\(852\) 16.0000 0.548151
\(853\) 24.0000 0.821744 0.410872 0.911693i \(-0.365224\pi\)
0.410872 + 0.911693i \(0.365224\pi\)
\(854\) −28.0000 −0.958140
\(855\) 0 0
\(856\) −60.0000 −2.05076
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 12.0000 0.409673
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) −8.00000 −0.272481
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) −20.0000 −0.680414
\(865\) 0 0
\(866\) 4.00000 0.135926
\(867\) −34.0000 −1.15470
\(868\) −8.00000 −0.271538
\(869\) 8.00000 0.271381
\(870\) 0 0
\(871\) 36.0000 1.21981
\(872\) 6.00000 0.203186
\(873\) −4.00000 −0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 32.0000 1.08118
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) −16.0000 −0.539974
\(879\) 28.0000 0.944417
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) −3.00000 −0.101015
\(883\) 12.0000 0.403832 0.201916 0.979403i \(-0.435283\pi\)
0.201916 + 0.979403i \(0.435283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −8.00000 −0.268765
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 11.0000 0.368514
\(892\) −22.0000 −0.736614
\(893\) −4.00000 −0.133855
\(894\) 12.0000 0.401340
\(895\) 0 0
\(896\) −6.00000 −0.200446
\(897\) 0 0
\(898\) −14.0000 −0.467186
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) 6.00000 0.199778
\(903\) 24.0000 0.798670
\(904\) 12.0000 0.399114
\(905\) 0 0
\(906\) −16.0000 −0.531564
\(907\) −50.0000 −1.66022 −0.830111 0.557598i \(-0.811723\pi\)
−0.830111 + 0.557598i \(0.811723\pi\)
\(908\) −8.00000 −0.265489
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 32.0000 1.06021 0.530104 0.847933i \(-0.322153\pi\)
0.530104 + 0.847933i \(0.322153\pi\)
\(912\) 2.00000 0.0662266
\(913\) 6.00000 0.198571
\(914\) −32.0000 −1.05847
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 8.00000 0.264183
\(918\) 0 0
\(919\) 36.0000 1.18753 0.593765 0.804638i \(-0.297641\pi\)
0.593765 + 0.804638i \(0.297641\pi\)
\(920\) 0 0
\(921\) 24.0000 0.790827
\(922\) 30.0000 0.987997
\(923\) 48.0000 1.57994
\(924\) 4.00000 0.131590
\(925\) 0 0
\(926\) −8.00000 −0.262896
\(927\) 10.0000 0.328443
\(928\) 30.0000 0.984798
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 3.00000 0.0983210
\(932\) −24.0000 −0.786146
\(933\) 0 0
\(934\) 36.0000 1.17796
\(935\) 0 0
\(936\) 18.0000 0.588348
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) −12.0000 −0.391814
\(939\) −52.0000 −1.69696
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 20.0000 0.651635
\(943\) 0 0
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −6.00000 −0.195077
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 16.0000 0.519656
\(949\) 96.0000 3.11629
\(950\) 0 0
\(951\) 40.0000 1.29709
\(952\) 0 0
\(953\) −10.0000 −0.323932 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(954\) −12.0000 −0.388514
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) −12.0000 −0.387905
\(958\) 28.0000 0.904639
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 20.0000 0.644491
\(964\) −14.0000 −0.450910
\(965\) 0 0
\(966\) 0 0
\(967\) −14.0000 −0.450210 −0.225105 0.974335i \(-0.572272\pi\)
−0.225105 + 0.974335i \(0.572272\pi\)
\(968\) −3.00000 −0.0964237
\(969\) 0 0
\(970\) 0 0
\(971\) 40.0000 1.28366 0.641831 0.766846i \(-0.278175\pi\)
0.641831 + 0.766846i \(0.278175\pi\)
\(972\) 10.0000 0.320750
\(973\) 24.0000 0.769405
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −32.0000 −1.02377 −0.511885 0.859054i \(-0.671053\pi\)
−0.511885 + 0.859054i \(0.671053\pi\)
\(978\) −8.00000 −0.255812
\(979\) 2.00000 0.0639203
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −16.0000 −0.510581
\(983\) 38.0000 1.21201 0.606006 0.795460i \(-0.292771\pi\)
0.606006 + 0.795460i \(0.292771\pi\)
\(984\) 36.0000 1.14764
\(985\) 0 0
\(986\) 0 0
\(987\) 16.0000 0.509286
\(988\) −6.00000 −0.190885
\(989\) 0 0
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 20.0000 0.635001
\(993\) −56.0000 −1.77711
\(994\) −16.0000 −0.507489
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) −12.0000 −0.380044 −0.190022 0.981780i \(-0.560856\pi\)
−0.190022 + 0.981780i \(0.560856\pi\)
\(998\) 4.00000 0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.c.1.1 1
5.4 even 2 1045.2.a.a.1.1 1
15.14 odd 2 9405.2.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.a.1.1 1 5.4 even 2
5225.2.a.c.1.1 1 1.1 even 1 trivial
9405.2.a.j.1.1 1 15.14 odd 2