Properties

Label 5225.2.a.bc.1.2
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.77451 q^{2} +2.74433 q^{3} +5.69792 q^{4} -7.61418 q^{6} +3.20844 q^{7} -10.2599 q^{8} +4.53135 q^{9} +O(q^{10})\) \(q-2.77451 q^{2} +2.74433 q^{3} +5.69792 q^{4} -7.61418 q^{6} +3.20844 q^{7} -10.2599 q^{8} +4.53135 q^{9} +1.00000 q^{11} +15.6370 q^{12} +3.87053 q^{13} -8.90186 q^{14} +17.0705 q^{16} +5.86570 q^{17} -12.5723 q^{18} +1.00000 q^{19} +8.80502 q^{21} -2.77451 q^{22} -6.11891 q^{23} -28.1566 q^{24} -10.7388 q^{26} +4.20253 q^{27} +18.2814 q^{28} +6.40440 q^{29} +1.66215 q^{31} -26.8423 q^{32} +2.74433 q^{33} -16.2745 q^{34} +25.8193 q^{36} +0.251830 q^{37} -2.77451 q^{38} +10.6220 q^{39} +10.7565 q^{41} -24.4296 q^{42} -2.17536 q^{43} +5.69792 q^{44} +16.9770 q^{46} +2.68163 q^{47} +46.8470 q^{48} +3.29408 q^{49} +16.0974 q^{51} +22.0540 q^{52} -8.89909 q^{53} -11.6600 q^{54} -32.9183 q^{56} +2.74433 q^{57} -17.7691 q^{58} -4.09447 q^{59} +4.52319 q^{61} -4.61167 q^{62} +14.5386 q^{63} +40.3335 q^{64} -7.61418 q^{66} +2.61295 q^{67} +33.4223 q^{68} -16.7923 q^{69} -5.51722 q^{71} -46.4913 q^{72} -2.73480 q^{73} -0.698705 q^{74} +5.69792 q^{76} +3.20844 q^{77} -29.4709 q^{78} +8.17104 q^{79} -2.06093 q^{81} -29.8440 q^{82} -12.2337 q^{83} +50.1703 q^{84} +6.03555 q^{86} +17.5758 q^{87} -10.2599 q^{88} -1.84048 q^{89} +12.4184 q^{91} -34.8651 q^{92} +4.56150 q^{93} -7.44022 q^{94} -73.6642 q^{96} -2.65645 q^{97} -9.13947 q^{98} +4.53135 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 42 q^{4} + 12 q^{6} + 40 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 30 q + 42 q^{4} + 12 q^{6} + 40 q^{9} + 30 q^{11} - 4 q^{14} + 66 q^{16} + 30 q^{19} + 14 q^{21} + 22 q^{24} + 30 q^{29} + 26 q^{31} + 12 q^{34} + 78 q^{36} + 64 q^{39} + 22 q^{41} + 42 q^{44} + 28 q^{46} + 60 q^{49} + 64 q^{51} + 62 q^{54} - 32 q^{56} - 14 q^{59} + 78 q^{61} + 90 q^{64} + 12 q^{66} - 28 q^{69} + 20 q^{71} + 42 q^{74} + 42 q^{76} + 102 q^{79} + 42 q^{81} + 98 q^{84} - 52 q^{86} - 8 q^{89} + 56 q^{91} + 40 q^{94} - 74 q^{96} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.77451 −1.96188 −0.980938 0.194319i \(-0.937750\pi\)
−0.980938 + 0.194319i \(0.937750\pi\)
\(3\) 2.74433 1.58444 0.792220 0.610236i \(-0.208925\pi\)
0.792220 + 0.610236i \(0.208925\pi\)
\(4\) 5.69792 2.84896
\(5\) 0 0
\(6\) −7.61418 −3.10848
\(7\) 3.20844 1.21268 0.606338 0.795207i \(-0.292638\pi\)
0.606338 + 0.795207i \(0.292638\pi\)
\(8\) −10.2599 −3.62743
\(9\) 4.53135 1.51045
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 15.6370 4.51401
\(13\) 3.87053 1.07349 0.536746 0.843744i \(-0.319653\pi\)
0.536746 + 0.843744i \(0.319653\pi\)
\(14\) −8.90186 −2.37912
\(15\) 0 0
\(16\) 17.0705 4.26761
\(17\) 5.86570 1.42264 0.711321 0.702867i \(-0.248097\pi\)
0.711321 + 0.702867i \(0.248097\pi\)
\(18\) −12.5723 −2.96332
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 8.80502 1.92141
\(22\) −2.77451 −0.591528
\(23\) −6.11891 −1.27588 −0.637940 0.770086i \(-0.720213\pi\)
−0.637940 + 0.770086i \(0.720213\pi\)
\(24\) −28.1566 −5.74745
\(25\) 0 0
\(26\) −10.7388 −2.10606
\(27\) 4.20253 0.808777
\(28\) 18.2814 3.45487
\(29\) 6.40440 1.18927 0.594634 0.803997i \(-0.297297\pi\)
0.594634 + 0.803997i \(0.297297\pi\)
\(30\) 0 0
\(31\) 1.66215 0.298532 0.149266 0.988797i \(-0.452309\pi\)
0.149266 + 0.988797i \(0.452309\pi\)
\(32\) −26.8423 −4.74510
\(33\) 2.74433 0.477727
\(34\) −16.2745 −2.79105
\(35\) 0 0
\(36\) 25.8193 4.30321
\(37\) 0.251830 0.0414006 0.0207003 0.999786i \(-0.493410\pi\)
0.0207003 + 0.999786i \(0.493410\pi\)
\(38\) −2.77451 −0.450085
\(39\) 10.6220 1.70088
\(40\) 0 0
\(41\) 10.7565 1.67988 0.839941 0.542677i \(-0.182589\pi\)
0.839941 + 0.542677i \(0.182589\pi\)
\(42\) −24.4296 −3.76957
\(43\) −2.17536 −0.331739 −0.165869 0.986148i \(-0.553043\pi\)
−0.165869 + 0.986148i \(0.553043\pi\)
\(44\) 5.69792 0.858994
\(45\) 0 0
\(46\) 16.9770 2.50312
\(47\) 2.68163 0.391156 0.195578 0.980688i \(-0.437342\pi\)
0.195578 + 0.980688i \(0.437342\pi\)
\(48\) 46.8470 6.76178
\(49\) 3.29408 0.470583
\(50\) 0 0
\(51\) 16.0974 2.25409
\(52\) 22.0540 3.05834
\(53\) −8.89909 −1.22238 −0.611192 0.791483i \(-0.709310\pi\)
−0.611192 + 0.791483i \(0.709310\pi\)
\(54\) −11.6600 −1.58672
\(55\) 0 0
\(56\) −32.9183 −4.39890
\(57\) 2.74433 0.363495
\(58\) −17.7691 −2.33320
\(59\) −4.09447 −0.533054 −0.266527 0.963827i \(-0.585876\pi\)
−0.266527 + 0.963827i \(0.585876\pi\)
\(60\) 0 0
\(61\) 4.52319 0.579135 0.289567 0.957158i \(-0.406489\pi\)
0.289567 + 0.957158i \(0.406489\pi\)
\(62\) −4.61167 −0.585682
\(63\) 14.5386 1.83169
\(64\) 40.3335 5.04169
\(65\) 0 0
\(66\) −7.61418 −0.937241
\(67\) 2.61295 0.319222 0.159611 0.987180i \(-0.448976\pi\)
0.159611 + 0.987180i \(0.448976\pi\)
\(68\) 33.4223 4.05305
\(69\) −16.7923 −2.02156
\(70\) 0 0
\(71\) −5.51722 −0.654774 −0.327387 0.944890i \(-0.606168\pi\)
−0.327387 + 0.944890i \(0.606168\pi\)
\(72\) −46.4913 −5.47905
\(73\) −2.73480 −0.320084 −0.160042 0.987110i \(-0.551163\pi\)
−0.160042 + 0.987110i \(0.551163\pi\)
\(74\) −0.698705 −0.0812229
\(75\) 0 0
\(76\) 5.69792 0.653596
\(77\) 3.20844 0.365636
\(78\) −29.4709 −3.33692
\(79\) 8.17104 0.919313 0.459657 0.888097i \(-0.347972\pi\)
0.459657 + 0.888097i \(0.347972\pi\)
\(80\) 0 0
\(81\) −2.06093 −0.228992
\(82\) −29.8440 −3.29572
\(83\) −12.2337 −1.34283 −0.671413 0.741083i \(-0.734312\pi\)
−0.671413 + 0.741083i \(0.734312\pi\)
\(84\) 50.1703 5.47403
\(85\) 0 0
\(86\) 6.03555 0.650830
\(87\) 17.5758 1.88432
\(88\) −10.2599 −1.09371
\(89\) −1.84048 −0.195091 −0.0975454 0.995231i \(-0.531099\pi\)
−0.0975454 + 0.995231i \(0.531099\pi\)
\(90\) 0 0
\(91\) 12.4184 1.30180
\(92\) −34.8651 −3.63493
\(93\) 4.56150 0.473005
\(94\) −7.44022 −0.767400
\(95\) 0 0
\(96\) −73.6642 −7.51832
\(97\) −2.65645 −0.269722 −0.134861 0.990865i \(-0.543059\pi\)
−0.134861 + 0.990865i \(0.543059\pi\)
\(98\) −9.13947 −0.923226
\(99\) 4.53135 0.455418
\(100\) 0 0
\(101\) 3.36522 0.334852 0.167426 0.985885i \(-0.446454\pi\)
0.167426 + 0.985885i \(0.446454\pi\)
\(102\) −44.6625 −4.42225
\(103\) −19.1222 −1.88416 −0.942082 0.335381i \(-0.891135\pi\)
−0.942082 + 0.335381i \(0.891135\pi\)
\(104\) −39.7114 −3.89402
\(105\) 0 0
\(106\) 24.6906 2.39817
\(107\) −19.1096 −1.84739 −0.923697 0.383125i \(-0.874848\pi\)
−0.923697 + 0.383125i \(0.874848\pi\)
\(108\) 23.9457 2.30417
\(109\) −2.04217 −0.195605 −0.0978023 0.995206i \(-0.531181\pi\)
−0.0978023 + 0.995206i \(0.531181\pi\)
\(110\) 0 0
\(111\) 0.691105 0.0655968
\(112\) 54.7695 5.17523
\(113\) 2.01233 0.189305 0.0946523 0.995510i \(-0.469826\pi\)
0.0946523 + 0.995510i \(0.469826\pi\)
\(114\) −7.61418 −0.713133
\(115\) 0 0
\(116\) 36.4918 3.38818
\(117\) 17.5387 1.62146
\(118\) 11.3601 1.04579
\(119\) 18.8197 1.72520
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −12.5496 −1.13619
\(123\) 29.5194 2.66167
\(124\) 9.47082 0.850505
\(125\) 0 0
\(126\) −40.3374 −3.59354
\(127\) 17.6725 1.56818 0.784090 0.620648i \(-0.213130\pi\)
0.784090 + 0.620648i \(0.213130\pi\)
\(128\) −58.2211 −5.14607
\(129\) −5.96990 −0.525620
\(130\) 0 0
\(131\) −4.85389 −0.424086 −0.212043 0.977260i \(-0.568012\pi\)
−0.212043 + 0.977260i \(0.568012\pi\)
\(132\) 15.6370 1.36102
\(133\) 3.20844 0.278207
\(134\) −7.24965 −0.626274
\(135\) 0 0
\(136\) −60.1817 −5.16054
\(137\) −0.470694 −0.0402141 −0.0201071 0.999798i \(-0.506401\pi\)
−0.0201071 + 0.999798i \(0.506401\pi\)
\(138\) 46.5905 3.96604
\(139\) 10.2256 0.867325 0.433663 0.901075i \(-0.357221\pi\)
0.433663 + 0.901075i \(0.357221\pi\)
\(140\) 0 0
\(141\) 7.35929 0.619764
\(142\) 15.3076 1.28459
\(143\) 3.87053 0.323670
\(144\) 77.3522 6.44601
\(145\) 0 0
\(146\) 7.58774 0.627965
\(147\) 9.04005 0.745611
\(148\) 1.43491 0.117949
\(149\) −19.2747 −1.57905 −0.789523 0.613721i \(-0.789672\pi\)
−0.789523 + 0.613721i \(0.789672\pi\)
\(150\) 0 0
\(151\) −9.24566 −0.752401 −0.376200 0.926538i \(-0.622770\pi\)
−0.376200 + 0.926538i \(0.622770\pi\)
\(152\) −10.2599 −0.832190
\(153\) 26.5795 2.14883
\(154\) −8.90186 −0.717332
\(155\) 0 0
\(156\) 60.5234 4.84575
\(157\) 9.10320 0.726514 0.363257 0.931689i \(-0.381665\pi\)
0.363257 + 0.931689i \(0.381665\pi\)
\(158\) −22.6706 −1.80358
\(159\) −24.4220 −1.93679
\(160\) 0 0
\(161\) −19.6321 −1.54723
\(162\) 5.71806 0.449253
\(163\) 13.1874 1.03292 0.516458 0.856313i \(-0.327250\pi\)
0.516458 + 0.856313i \(0.327250\pi\)
\(164\) 61.2897 4.78592
\(165\) 0 0
\(166\) 33.9426 2.63446
\(167\) −7.56734 −0.585578 −0.292789 0.956177i \(-0.594583\pi\)
−0.292789 + 0.956177i \(0.594583\pi\)
\(168\) −90.3388 −6.96979
\(169\) 1.98102 0.152386
\(170\) 0 0
\(171\) 4.53135 0.346521
\(172\) −12.3950 −0.945110
\(173\) −12.3483 −0.938825 −0.469412 0.882979i \(-0.655534\pi\)
−0.469412 + 0.882979i \(0.655534\pi\)
\(174\) −48.7643 −3.69681
\(175\) 0 0
\(176\) 17.0705 1.28673
\(177\) −11.2366 −0.844592
\(178\) 5.10644 0.382744
\(179\) 9.75082 0.728810 0.364405 0.931241i \(-0.381272\pi\)
0.364405 + 0.931241i \(0.381272\pi\)
\(180\) 0 0
\(181\) −3.06931 −0.228140 −0.114070 0.993473i \(-0.536389\pi\)
−0.114070 + 0.993473i \(0.536389\pi\)
\(182\) −34.4549 −2.55397
\(183\) 12.4131 0.917604
\(184\) 62.7796 4.62817
\(185\) 0 0
\(186\) −12.6559 −0.927978
\(187\) 5.86570 0.428943
\(188\) 15.2797 1.11439
\(189\) 13.4836 0.980784
\(190\) 0 0
\(191\) 11.5267 0.834040 0.417020 0.908897i \(-0.363075\pi\)
0.417020 + 0.908897i \(0.363075\pi\)
\(192\) 110.688 7.98825
\(193\) 6.25518 0.450258 0.225129 0.974329i \(-0.427720\pi\)
0.225129 + 0.974329i \(0.427720\pi\)
\(194\) 7.37036 0.529161
\(195\) 0 0
\(196\) 18.7694 1.34067
\(197\) −6.53160 −0.465357 −0.232678 0.972554i \(-0.574749\pi\)
−0.232678 + 0.972554i \(0.574749\pi\)
\(198\) −12.5723 −0.893473
\(199\) 11.4237 0.809808 0.404904 0.914359i \(-0.367305\pi\)
0.404904 + 0.914359i \(0.367305\pi\)
\(200\) 0 0
\(201\) 7.17079 0.505788
\(202\) −9.33686 −0.656939
\(203\) 20.5481 1.44220
\(204\) 91.7218 6.42181
\(205\) 0 0
\(206\) 53.0547 3.69650
\(207\) −27.7269 −1.92715
\(208\) 66.0717 4.58125
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −0.159122 −0.0109544 −0.00547722 0.999985i \(-0.501743\pi\)
−0.00547722 + 0.999985i \(0.501743\pi\)
\(212\) −50.7063 −3.48252
\(213\) −15.1411 −1.03745
\(214\) 53.0198 3.62436
\(215\) 0 0
\(216\) −43.1176 −2.93378
\(217\) 5.33292 0.362022
\(218\) 5.66603 0.383752
\(219\) −7.50519 −0.507154
\(220\) 0 0
\(221\) 22.7034 1.52720
\(222\) −1.91748 −0.128693
\(223\) −0.537456 −0.0359907 −0.0179954 0.999838i \(-0.505728\pi\)
−0.0179954 + 0.999838i \(0.505728\pi\)
\(224\) −86.1220 −5.75427
\(225\) 0 0
\(226\) −5.58325 −0.371392
\(227\) −13.5232 −0.897565 −0.448783 0.893641i \(-0.648142\pi\)
−0.448783 + 0.893641i \(0.648142\pi\)
\(228\) 15.6370 1.03558
\(229\) −10.6187 −0.701704 −0.350852 0.936431i \(-0.614108\pi\)
−0.350852 + 0.936431i \(0.614108\pi\)
\(230\) 0 0
\(231\) 8.80502 0.579328
\(232\) −65.7087 −4.31399
\(233\) −7.83409 −0.513228 −0.256614 0.966514i \(-0.582607\pi\)
−0.256614 + 0.966514i \(0.582607\pi\)
\(234\) −48.6614 −3.18110
\(235\) 0 0
\(236\) −23.3299 −1.51865
\(237\) 22.4240 1.45660
\(238\) −52.2156 −3.38464
\(239\) 25.3402 1.63912 0.819560 0.572994i \(-0.194218\pi\)
0.819560 + 0.572994i \(0.194218\pi\)
\(240\) 0 0
\(241\) −30.0559 −1.93607 −0.968035 0.250814i \(-0.919302\pi\)
−0.968035 + 0.250814i \(0.919302\pi\)
\(242\) −2.77451 −0.178352
\(243\) −18.2634 −1.17160
\(244\) 25.7728 1.64993
\(245\) 0 0
\(246\) −81.9019 −5.22188
\(247\) 3.87053 0.246276
\(248\) −17.0536 −1.08290
\(249\) −33.5734 −2.12763
\(250\) 0 0
\(251\) 24.0428 1.51757 0.758783 0.651344i \(-0.225794\pi\)
0.758783 + 0.651344i \(0.225794\pi\)
\(252\) 82.8395 5.21840
\(253\) −6.11891 −0.384693
\(254\) −49.0325 −3.07657
\(255\) 0 0
\(256\) 80.8682 5.05426
\(257\) 6.58227 0.410591 0.205295 0.978700i \(-0.434185\pi\)
0.205295 + 0.978700i \(0.434185\pi\)
\(258\) 16.5635 1.03120
\(259\) 0.807981 0.0502055
\(260\) 0 0
\(261\) 29.0206 1.79633
\(262\) 13.4672 0.832005
\(263\) 16.0460 0.989442 0.494721 0.869052i \(-0.335270\pi\)
0.494721 + 0.869052i \(0.335270\pi\)
\(264\) −28.1566 −1.73292
\(265\) 0 0
\(266\) −8.90186 −0.545808
\(267\) −5.05089 −0.309110
\(268\) 14.8884 0.909451
\(269\) −17.0574 −1.04001 −0.520005 0.854163i \(-0.674070\pi\)
−0.520005 + 0.854163i \(0.674070\pi\)
\(270\) 0 0
\(271\) 14.8456 0.901807 0.450904 0.892573i \(-0.351102\pi\)
0.450904 + 0.892573i \(0.351102\pi\)
\(272\) 100.130 6.07128
\(273\) 34.0801 2.06262
\(274\) 1.30595 0.0788951
\(275\) 0 0
\(276\) −95.6812 −5.75933
\(277\) 8.59398 0.516362 0.258181 0.966097i \(-0.416877\pi\)
0.258181 + 0.966097i \(0.416877\pi\)
\(278\) −28.3711 −1.70158
\(279\) 7.53180 0.450917
\(280\) 0 0
\(281\) −13.4669 −0.803368 −0.401684 0.915778i \(-0.631575\pi\)
−0.401684 + 0.915778i \(0.631575\pi\)
\(282\) −20.4184 −1.21590
\(283\) 14.2887 0.849374 0.424687 0.905340i \(-0.360384\pi\)
0.424687 + 0.905340i \(0.360384\pi\)
\(284\) −31.4367 −1.86542
\(285\) 0 0
\(286\) −10.7388 −0.635001
\(287\) 34.5116 2.03715
\(288\) −121.632 −7.16723
\(289\) 17.4065 1.02391
\(290\) 0 0
\(291\) −7.29019 −0.427358
\(292\) −15.5827 −0.911907
\(293\) −29.5456 −1.72607 −0.863036 0.505143i \(-0.831440\pi\)
−0.863036 + 0.505143i \(0.831440\pi\)
\(294\) −25.0817 −1.46280
\(295\) 0 0
\(296\) −2.58376 −0.150178
\(297\) 4.20253 0.243855
\(298\) 53.4779 3.09789
\(299\) −23.6834 −1.36965
\(300\) 0 0
\(301\) −6.97950 −0.402292
\(302\) 25.6522 1.47612
\(303\) 9.23529 0.530553
\(304\) 17.0705 0.979058
\(305\) 0 0
\(306\) −73.7453 −4.21574
\(307\) −21.6031 −1.23295 −0.616477 0.787373i \(-0.711441\pi\)
−0.616477 + 0.787373i \(0.711441\pi\)
\(308\) 18.2814 1.04168
\(309\) −52.4776 −2.98535
\(310\) 0 0
\(311\) 21.4045 1.21374 0.606870 0.794801i \(-0.292425\pi\)
0.606870 + 0.794801i \(0.292425\pi\)
\(312\) −108.981 −6.16984
\(313\) −22.7332 −1.28496 −0.642478 0.766304i \(-0.722094\pi\)
−0.642478 + 0.766304i \(0.722094\pi\)
\(314\) −25.2569 −1.42533
\(315\) 0 0
\(316\) 46.5579 2.61909
\(317\) −1.29414 −0.0726859 −0.0363430 0.999339i \(-0.511571\pi\)
−0.0363430 + 0.999339i \(0.511571\pi\)
\(318\) 67.7592 3.79975
\(319\) 6.40440 0.358578
\(320\) 0 0
\(321\) −52.4430 −2.92708
\(322\) 54.4696 3.03547
\(323\) 5.86570 0.326376
\(324\) −11.7430 −0.652388
\(325\) 0 0
\(326\) −36.5885 −2.02645
\(327\) −5.60440 −0.309924
\(328\) −110.361 −6.09366
\(329\) 8.60386 0.474346
\(330\) 0 0
\(331\) −22.3804 −1.23014 −0.615068 0.788474i \(-0.710872\pi\)
−0.615068 + 0.788474i \(0.710872\pi\)
\(332\) −69.7068 −3.82566
\(333\) 1.14113 0.0625335
\(334\) 20.9957 1.14883
\(335\) 0 0
\(336\) 150.306 8.19984
\(337\) −19.7453 −1.07560 −0.537798 0.843074i \(-0.680744\pi\)
−0.537798 + 0.843074i \(0.680744\pi\)
\(338\) −5.49636 −0.298962
\(339\) 5.52251 0.299942
\(340\) 0 0
\(341\) 1.66215 0.0900107
\(342\) −12.5723 −0.679831
\(343\) −11.8902 −0.642011
\(344\) 22.3190 1.20336
\(345\) 0 0
\(346\) 34.2605 1.84186
\(347\) 21.6561 1.16256 0.581279 0.813704i \(-0.302552\pi\)
0.581279 + 0.813704i \(0.302552\pi\)
\(348\) 100.145 5.36836
\(349\) 4.59915 0.246187 0.123093 0.992395i \(-0.460719\pi\)
0.123093 + 0.992395i \(0.460719\pi\)
\(350\) 0 0
\(351\) 16.2660 0.868216
\(352\) −26.8423 −1.43070
\(353\) 0.690423 0.0367475 0.0183737 0.999831i \(-0.494151\pi\)
0.0183737 + 0.999831i \(0.494151\pi\)
\(354\) 31.1760 1.65699
\(355\) 0 0
\(356\) −10.4869 −0.555806
\(357\) 51.6476 2.73348
\(358\) −27.0538 −1.42984
\(359\) 0.484355 0.0255633 0.0127816 0.999918i \(-0.495931\pi\)
0.0127816 + 0.999918i \(0.495931\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 8.51583 0.447582
\(363\) 2.74433 0.144040
\(364\) 70.7589 3.70877
\(365\) 0 0
\(366\) −34.4403 −1.80023
\(367\) −10.4333 −0.544614 −0.272307 0.962210i \(-0.587787\pi\)
−0.272307 + 0.962210i \(0.587787\pi\)
\(368\) −104.453 −5.44497
\(369\) 48.7414 2.53738
\(370\) 0 0
\(371\) −28.5522 −1.48236
\(372\) 25.9911 1.34757
\(373\) 12.4034 0.642226 0.321113 0.947041i \(-0.395943\pi\)
0.321113 + 0.947041i \(0.395943\pi\)
\(374\) −16.2745 −0.841533
\(375\) 0 0
\(376\) −27.5134 −1.41889
\(377\) 24.7884 1.27667
\(378\) −37.4103 −1.92418
\(379\) −17.1068 −0.878719 −0.439359 0.898311i \(-0.644795\pi\)
−0.439359 + 0.898311i \(0.644795\pi\)
\(380\) 0 0
\(381\) 48.4991 2.48469
\(382\) −31.9809 −1.63628
\(383\) 27.5259 1.40651 0.703253 0.710939i \(-0.251730\pi\)
0.703253 + 0.710939i \(0.251730\pi\)
\(384\) −159.778 −8.15363
\(385\) 0 0
\(386\) −17.3551 −0.883350
\(387\) −9.85730 −0.501075
\(388\) −15.1363 −0.768427
\(389\) −29.4568 −1.49352 −0.746760 0.665094i \(-0.768391\pi\)
−0.746760 + 0.665094i \(0.768391\pi\)
\(390\) 0 0
\(391\) −35.8917 −1.81512
\(392\) −33.7970 −1.70701
\(393\) −13.3207 −0.671939
\(394\) 18.1220 0.912973
\(395\) 0 0
\(396\) 25.8193 1.29747
\(397\) 0.725541 0.0364138 0.0182069 0.999834i \(-0.494204\pi\)
0.0182069 + 0.999834i \(0.494204\pi\)
\(398\) −31.6953 −1.58874
\(399\) 8.80502 0.440802
\(400\) 0 0
\(401\) 25.0438 1.25063 0.625314 0.780373i \(-0.284971\pi\)
0.625314 + 0.780373i \(0.284971\pi\)
\(402\) −19.8954 −0.992294
\(403\) 6.43342 0.320471
\(404\) 19.1748 0.953981
\(405\) 0 0
\(406\) −57.0111 −2.82941
\(407\) 0.251830 0.0124827
\(408\) −165.158 −8.17656
\(409\) −38.9407 −1.92550 −0.962748 0.270401i \(-0.912844\pi\)
−0.962748 + 0.270401i \(0.912844\pi\)
\(410\) 0 0
\(411\) −1.29174 −0.0637168
\(412\) −108.957 −5.36791
\(413\) −13.1368 −0.646422
\(414\) 76.9287 3.78084
\(415\) 0 0
\(416\) −103.894 −5.09383
\(417\) 28.0625 1.37422
\(418\) −2.77451 −0.135706
\(419\) 35.0064 1.71018 0.855088 0.518482i \(-0.173503\pi\)
0.855088 + 0.518482i \(0.173503\pi\)
\(420\) 0 0
\(421\) −6.05787 −0.295242 −0.147621 0.989044i \(-0.547162\pi\)
−0.147621 + 0.989044i \(0.547162\pi\)
\(422\) 0.441487 0.0214913
\(423\) 12.1514 0.590822
\(424\) 91.3040 4.43411
\(425\) 0 0
\(426\) 42.0091 2.03535
\(427\) 14.5124 0.702303
\(428\) −108.885 −5.26315
\(429\) 10.6220 0.512836
\(430\) 0 0
\(431\) −9.48475 −0.456864 −0.228432 0.973560i \(-0.573360\pi\)
−0.228432 + 0.973560i \(0.573360\pi\)
\(432\) 71.7390 3.45155
\(433\) −25.8710 −1.24328 −0.621641 0.783302i \(-0.713534\pi\)
−0.621641 + 0.783302i \(0.713534\pi\)
\(434\) −14.7963 −0.710243
\(435\) 0 0
\(436\) −11.6361 −0.557270
\(437\) −6.11891 −0.292707
\(438\) 20.8233 0.994974
\(439\) −1.01956 −0.0486612 −0.0243306 0.999704i \(-0.507745\pi\)
−0.0243306 + 0.999704i \(0.507745\pi\)
\(440\) 0 0
\(441\) 14.9266 0.710792
\(442\) −62.9908 −2.99617
\(443\) −17.3007 −0.821982 −0.410991 0.911639i \(-0.634817\pi\)
−0.410991 + 0.911639i \(0.634817\pi\)
\(444\) 3.93786 0.186883
\(445\) 0 0
\(446\) 1.49118 0.0706094
\(447\) −52.8962 −2.50190
\(448\) 129.408 6.11393
\(449\) −30.9651 −1.46133 −0.730667 0.682734i \(-0.760791\pi\)
−0.730667 + 0.682734i \(0.760791\pi\)
\(450\) 0 0
\(451\) 10.7565 0.506504
\(452\) 11.4661 0.539321
\(453\) −25.3731 −1.19213
\(454\) 37.5202 1.76091
\(455\) 0 0
\(456\) −28.1566 −1.31855
\(457\) 38.9037 1.81984 0.909920 0.414784i \(-0.136143\pi\)
0.909920 + 0.414784i \(0.136143\pi\)
\(458\) 29.4618 1.37666
\(459\) 24.6508 1.15060
\(460\) 0 0
\(461\) −24.5284 −1.14240 −0.571200 0.820811i \(-0.693522\pi\)
−0.571200 + 0.820811i \(0.693522\pi\)
\(462\) −24.4296 −1.13657
\(463\) −5.44017 −0.252826 −0.126413 0.991978i \(-0.540346\pi\)
−0.126413 + 0.991978i \(0.540346\pi\)
\(464\) 109.326 5.07533
\(465\) 0 0
\(466\) 21.7358 1.00689
\(467\) 14.4461 0.668487 0.334243 0.942487i \(-0.391519\pi\)
0.334243 + 0.942487i \(0.391519\pi\)
\(468\) 99.9343 4.61946
\(469\) 8.38348 0.387113
\(470\) 0 0
\(471\) 24.9822 1.15112
\(472\) 42.0089 1.93362
\(473\) −2.17536 −0.100023
\(474\) −62.2157 −2.85766
\(475\) 0 0
\(476\) 107.233 4.91504
\(477\) −40.3249 −1.84635
\(478\) −70.3066 −3.21575
\(479\) 25.0982 1.14677 0.573383 0.819288i \(-0.305631\pi\)
0.573383 + 0.819288i \(0.305631\pi\)
\(480\) 0 0
\(481\) 0.974716 0.0444432
\(482\) 83.3905 3.79833
\(483\) −53.8771 −2.45149
\(484\) 5.69792 0.258996
\(485\) 0 0
\(486\) 50.6721 2.29854
\(487\) 27.8647 1.26267 0.631336 0.775510i \(-0.282507\pi\)
0.631336 + 0.775510i \(0.282507\pi\)
\(488\) −46.4075 −2.10077
\(489\) 36.1905 1.63659
\(490\) 0 0
\(491\) −5.39887 −0.243648 −0.121824 0.992552i \(-0.538874\pi\)
−0.121824 + 0.992552i \(0.538874\pi\)
\(492\) 168.199 7.58300
\(493\) 37.5663 1.69190
\(494\) −10.7388 −0.483163
\(495\) 0 0
\(496\) 28.3737 1.27402
\(497\) −17.7017 −0.794028
\(498\) 93.1498 4.17414
\(499\) −40.0954 −1.79492 −0.897458 0.441100i \(-0.854589\pi\)
−0.897458 + 0.441100i \(0.854589\pi\)
\(500\) 0 0
\(501\) −20.7673 −0.927813
\(502\) −66.7069 −2.97728
\(503\) 19.3594 0.863193 0.431596 0.902067i \(-0.357950\pi\)
0.431596 + 0.902067i \(0.357950\pi\)
\(504\) −149.165 −6.64432
\(505\) 0 0
\(506\) 16.9770 0.754719
\(507\) 5.43657 0.241446
\(508\) 100.696 4.46768
\(509\) −29.1426 −1.29172 −0.645862 0.763454i \(-0.723502\pi\)
−0.645862 + 0.763454i \(0.723502\pi\)
\(510\) 0 0
\(511\) −8.77444 −0.388158
\(512\) −107.928 −4.76977
\(513\) 4.20253 0.185546
\(514\) −18.2626 −0.805528
\(515\) 0 0
\(516\) −34.0160 −1.49747
\(517\) 2.68163 0.117938
\(518\) −2.24175 −0.0984970
\(519\) −33.8878 −1.48751
\(520\) 0 0
\(521\) 36.9334 1.61808 0.809042 0.587751i \(-0.199987\pi\)
0.809042 + 0.587751i \(0.199987\pi\)
\(522\) −80.5180 −3.52418
\(523\) 43.8433 1.91713 0.958567 0.284867i \(-0.0919495\pi\)
0.958567 + 0.284867i \(0.0919495\pi\)
\(524\) −27.6571 −1.20820
\(525\) 0 0
\(526\) −44.5200 −1.94116
\(527\) 9.74970 0.424704
\(528\) 46.8470 2.03875
\(529\) 14.4410 0.627872
\(530\) 0 0
\(531\) −18.5535 −0.805151
\(532\) 18.2814 0.792601
\(533\) 41.6334 1.80334
\(534\) 14.0138 0.606435
\(535\) 0 0
\(536\) −26.8086 −1.15796
\(537\) 26.7595 1.15476
\(538\) 47.3260 2.04037
\(539\) 3.29408 0.141886
\(540\) 0 0
\(541\) 26.3462 1.13271 0.566355 0.824161i \(-0.308353\pi\)
0.566355 + 0.824161i \(0.308353\pi\)
\(542\) −41.1894 −1.76923
\(543\) −8.42319 −0.361474
\(544\) −157.449 −6.75058
\(545\) 0 0
\(546\) −94.5557 −4.04661
\(547\) −13.6728 −0.584609 −0.292304 0.956325i \(-0.594422\pi\)
−0.292304 + 0.956325i \(0.594422\pi\)
\(548\) −2.68198 −0.114568
\(549\) 20.4961 0.874754
\(550\) 0 0
\(551\) 6.40440 0.272837
\(552\) 172.288 7.33306
\(553\) 26.2163 1.11483
\(554\) −23.8441 −1.01304
\(555\) 0 0
\(556\) 58.2647 2.47097
\(557\) 13.0278 0.552007 0.276004 0.961157i \(-0.410990\pi\)
0.276004 + 0.961157i \(0.410990\pi\)
\(558\) −20.8971 −0.884644
\(559\) −8.41978 −0.356119
\(560\) 0 0
\(561\) 16.0974 0.679634
\(562\) 37.3641 1.57611
\(563\) 26.1689 1.10289 0.551445 0.834211i \(-0.314077\pi\)
0.551445 + 0.834211i \(0.314077\pi\)
\(564\) 41.9326 1.76568
\(565\) 0 0
\(566\) −39.6441 −1.66637
\(567\) −6.61235 −0.277693
\(568\) 56.6063 2.37515
\(569\) 24.2618 1.01711 0.508554 0.861030i \(-0.330180\pi\)
0.508554 + 0.861030i \(0.330180\pi\)
\(570\) 0 0
\(571\) 6.25197 0.261637 0.130818 0.991406i \(-0.458240\pi\)
0.130818 + 0.991406i \(0.458240\pi\)
\(572\) 22.0540 0.922123
\(573\) 31.6330 1.32149
\(574\) −95.7528 −3.99664
\(575\) 0 0
\(576\) 182.765 7.61521
\(577\) −5.41416 −0.225395 −0.112697 0.993629i \(-0.535949\pi\)
−0.112697 + 0.993629i \(0.535949\pi\)
\(578\) −48.2944 −2.00878
\(579\) 17.1663 0.713406
\(580\) 0 0
\(581\) −39.2512 −1.62841
\(582\) 20.2267 0.838424
\(583\) −8.89909 −0.368562
\(584\) 28.0588 1.16108
\(585\) 0 0
\(586\) 81.9746 3.38634
\(587\) −29.2069 −1.20550 −0.602749 0.797931i \(-0.705928\pi\)
−0.602749 + 0.797931i \(0.705928\pi\)
\(588\) 51.5095 2.12422
\(589\) 1.66215 0.0684879
\(590\) 0 0
\(591\) −17.9249 −0.737330
\(592\) 4.29885 0.176682
\(593\) 13.3606 0.548653 0.274326 0.961637i \(-0.411545\pi\)
0.274326 + 0.961637i \(0.411545\pi\)
\(594\) −11.6600 −0.478414
\(595\) 0 0
\(596\) −109.826 −4.49864
\(597\) 31.3505 1.28309
\(598\) 65.7100 2.68708
\(599\) 7.63307 0.311879 0.155939 0.987767i \(-0.450160\pi\)
0.155939 + 0.987767i \(0.450160\pi\)
\(600\) 0 0
\(601\) −33.4520 −1.36454 −0.682269 0.731102i \(-0.739006\pi\)
−0.682269 + 0.731102i \(0.739006\pi\)
\(602\) 19.3647 0.789246
\(603\) 11.8402 0.482169
\(604\) −52.6810 −2.14356
\(605\) 0 0
\(606\) −25.6234 −1.04088
\(607\) 1.87063 0.0759265 0.0379633 0.999279i \(-0.487913\pi\)
0.0379633 + 0.999279i \(0.487913\pi\)
\(608\) −26.8423 −1.08860
\(609\) 56.3909 2.28507
\(610\) 0 0
\(611\) 10.3793 0.419903
\(612\) 151.448 6.12193
\(613\) 30.9265 1.24911 0.624556 0.780980i \(-0.285280\pi\)
0.624556 + 0.780980i \(0.285280\pi\)
\(614\) 59.9381 2.41890
\(615\) 0 0
\(616\) −32.9183 −1.32632
\(617\) −1.25799 −0.0506447 −0.0253224 0.999679i \(-0.508061\pi\)
−0.0253224 + 0.999679i \(0.508061\pi\)
\(618\) 145.600 5.85688
\(619\) 15.5642 0.625578 0.312789 0.949823i \(-0.398737\pi\)
0.312789 + 0.949823i \(0.398737\pi\)
\(620\) 0 0
\(621\) −25.7149 −1.03190
\(622\) −59.3871 −2.38121
\(623\) −5.90508 −0.236582
\(624\) 181.323 7.25872
\(625\) 0 0
\(626\) 63.0736 2.52093
\(627\) 2.74433 0.109598
\(628\) 51.8693 2.06981
\(629\) 1.47716 0.0588982
\(630\) 0 0
\(631\) −33.5188 −1.33436 −0.667182 0.744895i \(-0.732500\pi\)
−0.667182 + 0.744895i \(0.732500\pi\)
\(632\) −83.8342 −3.33475
\(633\) −0.436685 −0.0173567
\(634\) 3.59060 0.142601
\(635\) 0 0
\(636\) −139.155 −5.51785
\(637\) 12.7499 0.505168
\(638\) −17.7691 −0.703485
\(639\) −25.0005 −0.989003
\(640\) 0 0
\(641\) 1.89938 0.0750211 0.0375106 0.999296i \(-0.488057\pi\)
0.0375106 + 0.999296i \(0.488057\pi\)
\(642\) 145.504 5.74258
\(643\) 19.4308 0.766277 0.383138 0.923691i \(-0.374843\pi\)
0.383138 + 0.923691i \(0.374843\pi\)
\(644\) −111.862 −4.40800
\(645\) 0 0
\(646\) −16.2745 −0.640310
\(647\) 7.80761 0.306949 0.153474 0.988153i \(-0.450954\pi\)
0.153474 + 0.988153i \(0.450954\pi\)
\(648\) 21.1449 0.830652
\(649\) −4.09447 −0.160722
\(650\) 0 0
\(651\) 14.6353 0.573602
\(652\) 75.1406 2.94273
\(653\) 21.0194 0.822553 0.411277 0.911511i \(-0.365083\pi\)
0.411277 + 0.911511i \(0.365083\pi\)
\(654\) 15.5495 0.608032
\(655\) 0 0
\(656\) 183.618 7.16909
\(657\) −12.3923 −0.483471
\(658\) −23.8715 −0.930608
\(659\) 32.1192 1.25119 0.625594 0.780149i \(-0.284857\pi\)
0.625594 + 0.780149i \(0.284857\pi\)
\(660\) 0 0
\(661\) −26.8022 −1.04248 −0.521242 0.853409i \(-0.674531\pi\)
−0.521242 + 0.853409i \(0.674531\pi\)
\(662\) 62.0946 2.41338
\(663\) 62.3056 2.41975
\(664\) 125.517 4.87101
\(665\) 0 0
\(666\) −3.16608 −0.122683
\(667\) −39.1880 −1.51736
\(668\) −43.1181 −1.66829
\(669\) −1.47496 −0.0570252
\(670\) 0 0
\(671\) 4.52319 0.174616
\(672\) −236.347 −9.11729
\(673\) 13.3416 0.514281 0.257140 0.966374i \(-0.417220\pi\)
0.257140 + 0.966374i \(0.417220\pi\)
\(674\) 54.7837 2.11019
\(675\) 0 0
\(676\) 11.2877 0.434142
\(677\) −35.2641 −1.35531 −0.677654 0.735381i \(-0.737003\pi\)
−0.677654 + 0.735381i \(0.737003\pi\)
\(678\) −15.3223 −0.588449
\(679\) −8.52307 −0.327085
\(680\) 0 0
\(681\) −37.1121 −1.42214
\(682\) −4.61167 −0.176590
\(683\) −22.6519 −0.866753 −0.433376 0.901213i \(-0.642678\pi\)
−0.433376 + 0.901213i \(0.642678\pi\)
\(684\) 25.8193 0.987224
\(685\) 0 0
\(686\) 32.9895 1.25955
\(687\) −29.1413 −1.11181
\(688\) −37.1343 −1.41573
\(689\) −34.4442 −1.31222
\(690\) 0 0
\(691\) 13.6411 0.518930 0.259465 0.965752i \(-0.416454\pi\)
0.259465 + 0.965752i \(0.416454\pi\)
\(692\) −70.3597 −2.67467
\(693\) 14.5386 0.552274
\(694\) −60.0850 −2.28080
\(695\) 0 0
\(696\) −180.326 −6.83525
\(697\) 63.0944 2.38987
\(698\) −12.7604 −0.482988
\(699\) −21.4993 −0.813179
\(700\) 0 0
\(701\) 5.88833 0.222399 0.111200 0.993798i \(-0.464531\pi\)
0.111200 + 0.993798i \(0.464531\pi\)
\(702\) −45.1303 −1.70333
\(703\) 0.251830 0.00949795
\(704\) 40.3335 1.52013
\(705\) 0 0
\(706\) −1.91559 −0.0720940
\(707\) 10.7971 0.406067
\(708\) −64.0251 −2.40621
\(709\) −20.0746 −0.753919 −0.376960 0.926230i \(-0.623030\pi\)
−0.376960 + 0.926230i \(0.623030\pi\)
\(710\) 0 0
\(711\) 37.0258 1.38858
\(712\) 18.8832 0.707678
\(713\) −10.1706 −0.380891
\(714\) −143.297 −5.36275
\(715\) 0 0
\(716\) 55.5594 2.07635
\(717\) 69.5418 2.59709
\(718\) −1.34385 −0.0501520
\(719\) −19.9007 −0.742171 −0.371086 0.928599i \(-0.621014\pi\)
−0.371086 + 0.928599i \(0.621014\pi\)
\(720\) 0 0
\(721\) −61.3524 −2.28488
\(722\) −2.77451 −0.103257
\(723\) −82.4833 −3.06759
\(724\) −17.4887 −0.649961
\(725\) 0 0
\(726\) −7.61418 −0.282589
\(727\) 2.48983 0.0923426 0.0461713 0.998934i \(-0.485298\pi\)
0.0461713 + 0.998934i \(0.485298\pi\)
\(728\) −127.412 −4.72219
\(729\) −43.9381 −1.62734
\(730\) 0 0
\(731\) −12.7600 −0.471945
\(732\) 70.7289 2.61422
\(733\) −1.67302 −0.0617945 −0.0308973 0.999523i \(-0.509836\pi\)
−0.0308973 + 0.999523i \(0.509836\pi\)
\(734\) 28.9473 1.06847
\(735\) 0 0
\(736\) 164.246 6.05418
\(737\) 2.61295 0.0962491
\(738\) −135.234 −4.97802
\(739\) 12.3807 0.455432 0.227716 0.973728i \(-0.426874\pi\)
0.227716 + 0.973728i \(0.426874\pi\)
\(740\) 0 0
\(741\) 10.6220 0.390210
\(742\) 79.2184 2.90820
\(743\) 2.41474 0.0885881 0.0442940 0.999019i \(-0.485896\pi\)
0.0442940 + 0.999019i \(0.485896\pi\)
\(744\) −46.8006 −1.71579
\(745\) 0 0
\(746\) −34.4135 −1.25997
\(747\) −55.4353 −2.02827
\(748\) 33.4223 1.22204
\(749\) −61.3119 −2.24029
\(750\) 0 0
\(751\) 7.67280 0.279984 0.139992 0.990153i \(-0.455292\pi\)
0.139992 + 0.990153i \(0.455292\pi\)
\(752\) 45.7767 1.66930
\(753\) 65.9813 2.40449
\(754\) −68.7759 −2.50467
\(755\) 0 0
\(756\) 76.8282 2.79421
\(757\) −7.03423 −0.255663 −0.127832 0.991796i \(-0.540802\pi\)
−0.127832 + 0.991796i \(0.540802\pi\)
\(758\) 47.4631 1.72394
\(759\) −16.7923 −0.609522
\(760\) 0 0
\(761\) 8.98118 0.325567 0.162784 0.986662i \(-0.447953\pi\)
0.162784 + 0.986662i \(0.447953\pi\)
\(762\) −134.561 −4.87465
\(763\) −6.55219 −0.237205
\(764\) 65.6780 2.37615
\(765\) 0 0
\(766\) −76.3709 −2.75939
\(767\) −15.8478 −0.572230
\(768\) 221.929 8.00817
\(769\) 47.2240 1.70294 0.851470 0.524404i \(-0.175712\pi\)
0.851470 + 0.524404i \(0.175712\pi\)
\(770\) 0 0
\(771\) 18.0639 0.650556
\(772\) 35.6415 1.28277
\(773\) 30.3348 1.09107 0.545533 0.838089i \(-0.316327\pi\)
0.545533 + 0.838089i \(0.316327\pi\)
\(774\) 27.3492 0.983046
\(775\) 0 0
\(776\) 27.2550 0.978398
\(777\) 2.21737 0.0795476
\(778\) 81.7283 2.93010
\(779\) 10.7565 0.385392
\(780\) 0 0
\(781\) −5.51722 −0.197422
\(782\) 99.5820 3.56104
\(783\) 26.9147 0.961852
\(784\) 56.2315 2.00827
\(785\) 0 0
\(786\) 36.9584 1.31826
\(787\) 3.82340 0.136289 0.0681447 0.997675i \(-0.478292\pi\)
0.0681447 + 0.997675i \(0.478292\pi\)
\(788\) −37.2165 −1.32578
\(789\) 44.0356 1.56771
\(790\) 0 0
\(791\) 6.45645 0.229565
\(792\) −46.4913 −1.65200
\(793\) 17.5071 0.621697
\(794\) −2.01302 −0.0714395
\(795\) 0 0
\(796\) 65.0916 2.30711
\(797\) 32.7856 1.16133 0.580663 0.814144i \(-0.302793\pi\)
0.580663 + 0.814144i \(0.302793\pi\)
\(798\) −24.4296 −0.864800
\(799\) 15.7297 0.556475
\(800\) 0 0
\(801\) −8.33987 −0.294675
\(802\) −69.4844 −2.45358
\(803\) −2.73480 −0.0965090
\(804\) 40.8586 1.44097
\(805\) 0 0
\(806\) −17.8496 −0.628725
\(807\) −46.8112 −1.64783
\(808\) −34.5270 −1.21465
\(809\) 24.8694 0.874361 0.437181 0.899374i \(-0.355977\pi\)
0.437181 + 0.899374i \(0.355977\pi\)
\(810\) 0 0
\(811\) −20.4421 −0.717821 −0.358910 0.933372i \(-0.616852\pi\)
−0.358910 + 0.933372i \(0.616852\pi\)
\(812\) 117.082 4.10876
\(813\) 40.7413 1.42886
\(814\) −0.698705 −0.0244896
\(815\) 0 0
\(816\) 274.790 9.61958
\(817\) −2.17536 −0.0761061
\(818\) 108.042 3.77758
\(819\) 56.2719 1.96630
\(820\) 0 0
\(821\) 53.8539 1.87951 0.939757 0.341843i \(-0.111051\pi\)
0.939757 + 0.341843i \(0.111051\pi\)
\(822\) 3.58395 0.125005
\(823\) −40.2952 −1.40460 −0.702301 0.711880i \(-0.747844\pi\)
−0.702301 + 0.711880i \(0.747844\pi\)
\(824\) 196.192 6.83468
\(825\) 0 0
\(826\) 36.4484 1.26820
\(827\) 33.1923 1.15421 0.577105 0.816670i \(-0.304182\pi\)
0.577105 + 0.816670i \(0.304182\pi\)
\(828\) −157.986 −5.49038
\(829\) 28.6178 0.993937 0.496969 0.867769i \(-0.334446\pi\)
0.496969 + 0.867769i \(0.334446\pi\)
\(830\) 0 0
\(831\) 23.5847 0.818145
\(832\) 156.112 5.41221
\(833\) 19.3221 0.669471
\(834\) −77.8596 −2.69606
\(835\) 0 0
\(836\) 5.69792 0.197067
\(837\) 6.98525 0.241445
\(838\) −97.1258 −3.35516
\(839\) −5.00397 −0.172756 −0.0863781 0.996262i \(-0.527529\pi\)
−0.0863781 + 0.996262i \(0.527529\pi\)
\(840\) 0 0
\(841\) 12.0164 0.414358
\(842\) 16.8076 0.579229
\(843\) −36.9576 −1.27289
\(844\) −0.906667 −0.0312088
\(845\) 0 0
\(846\) −33.7142 −1.15912
\(847\) 3.20844 0.110243
\(848\) −151.911 −5.21666
\(849\) 39.2129 1.34578
\(850\) 0 0
\(851\) −1.54092 −0.0528222
\(852\) −86.2726 −2.95565
\(853\) −14.8401 −0.508117 −0.254058 0.967189i \(-0.581766\pi\)
−0.254058 + 0.967189i \(0.581766\pi\)
\(854\) −40.2647 −1.37783
\(855\) 0 0
\(856\) 196.063 6.70129
\(857\) 9.89677 0.338067 0.169034 0.985610i \(-0.445935\pi\)
0.169034 + 0.985610i \(0.445935\pi\)
\(858\) −29.4709 −1.00612
\(859\) −21.7867 −0.743352 −0.371676 0.928363i \(-0.621217\pi\)
−0.371676 + 0.928363i \(0.621217\pi\)
\(860\) 0 0
\(861\) 94.7112 3.22775
\(862\) 26.3155 0.896311
\(863\) 24.4284 0.831553 0.415776 0.909467i \(-0.363510\pi\)
0.415776 + 0.909467i \(0.363510\pi\)
\(864\) −112.806 −3.83772
\(865\) 0 0
\(866\) 71.7795 2.43917
\(867\) 47.7691 1.62232
\(868\) 30.3865 1.03139
\(869\) 8.17104 0.277183
\(870\) 0 0
\(871\) 10.1135 0.342682
\(872\) 20.9525 0.709542
\(873\) −12.0373 −0.407401
\(874\) 16.9770 0.574255
\(875\) 0 0
\(876\) −42.7640 −1.44486
\(877\) −24.9962 −0.844062 −0.422031 0.906581i \(-0.638683\pi\)
−0.422031 + 0.906581i \(0.638683\pi\)
\(878\) 2.82879 0.0954672
\(879\) −81.0828 −2.73486
\(880\) 0 0
\(881\) −25.3991 −0.855719 −0.427859 0.903845i \(-0.640732\pi\)
−0.427859 + 0.903845i \(0.640732\pi\)
\(882\) −41.4141 −1.39449
\(883\) −48.3559 −1.62731 −0.813653 0.581351i \(-0.802524\pi\)
−0.813653 + 0.581351i \(0.802524\pi\)
\(884\) 129.362 4.35092
\(885\) 0 0
\(886\) 48.0010 1.61263
\(887\) 22.8073 0.765793 0.382897 0.923791i \(-0.374927\pi\)
0.382897 + 0.923791i \(0.374927\pi\)
\(888\) −7.09068 −0.237948
\(889\) 56.7011 1.90169
\(890\) 0 0
\(891\) −2.06093 −0.0690436
\(892\) −3.06238 −0.102536
\(893\) 2.68163 0.0897374
\(894\) 146.761 4.90843
\(895\) 0 0
\(896\) −186.799 −6.24051
\(897\) −64.9952 −2.17013
\(898\) 85.9131 2.86696
\(899\) 10.6451 0.355034
\(900\) 0 0
\(901\) −52.1994 −1.73901
\(902\) −29.8440 −0.993698
\(903\) −19.1540 −0.637407
\(904\) −20.6464 −0.686689
\(905\) 0 0
\(906\) 70.3981 2.33882
\(907\) 4.89927 0.162678 0.0813388 0.996687i \(-0.474080\pi\)
0.0813388 + 0.996687i \(0.474080\pi\)
\(908\) −77.0540 −2.55713
\(909\) 15.2490 0.505778
\(910\) 0 0
\(911\) 14.2078 0.470727 0.235364 0.971907i \(-0.424372\pi\)
0.235364 + 0.971907i \(0.424372\pi\)
\(912\) 46.8470 1.55126
\(913\) −12.2337 −0.404877
\(914\) −107.939 −3.57030
\(915\) 0 0
\(916\) −60.5046 −1.99913
\(917\) −15.5734 −0.514279
\(918\) −68.3939 −2.25733
\(919\) 37.3984 1.23366 0.616830 0.787096i \(-0.288417\pi\)
0.616830 + 0.787096i \(0.288417\pi\)
\(920\) 0 0
\(921\) −59.2861 −1.95354
\(922\) 68.0542 2.24125
\(923\) −21.3546 −0.702895
\(924\) 50.1703 1.65048
\(925\) 0 0
\(926\) 15.0938 0.496013
\(927\) −86.6493 −2.84594
\(928\) −171.909 −5.64319
\(929\) 18.4186 0.604294 0.302147 0.953261i \(-0.402297\pi\)
0.302147 + 0.953261i \(0.402297\pi\)
\(930\) 0 0
\(931\) 3.29408 0.107959
\(932\) −44.6380 −1.46217
\(933\) 58.7411 1.92310
\(934\) −40.0810 −1.31149
\(935\) 0 0
\(936\) −179.946 −5.88172
\(937\) −59.8435 −1.95500 −0.977501 0.210930i \(-0.932351\pi\)
−0.977501 + 0.210930i \(0.932351\pi\)
\(938\) −23.2601 −0.759468
\(939\) −62.3874 −2.03594
\(940\) 0 0
\(941\) 14.5570 0.474545 0.237272 0.971443i \(-0.423747\pi\)
0.237272 + 0.971443i \(0.423747\pi\)
\(942\) −69.3134 −2.25835
\(943\) −65.8180 −2.14333
\(944\) −69.8944 −2.27487
\(945\) 0 0
\(946\) 6.03555 0.196233
\(947\) −15.6623 −0.508955 −0.254478 0.967079i \(-0.581903\pi\)
−0.254478 + 0.967079i \(0.581903\pi\)
\(948\) 127.770 4.14979
\(949\) −10.5851 −0.343608
\(950\) 0 0
\(951\) −3.55154 −0.115166
\(952\) −193.089 −6.25806
\(953\) 27.6656 0.896176 0.448088 0.893990i \(-0.352105\pi\)
0.448088 + 0.893990i \(0.352105\pi\)
\(954\) 111.882 3.62231
\(955\) 0 0
\(956\) 144.386 4.66979
\(957\) 17.5758 0.568145
\(958\) −69.6352 −2.24981
\(959\) −1.51019 −0.0487667
\(960\) 0 0
\(961\) −28.2372 −0.910879
\(962\) −2.70436 −0.0871921
\(963\) −86.5922 −2.79039
\(964\) −171.256 −5.51579
\(965\) 0 0
\(966\) 149.483 4.80953
\(967\) 2.39400 0.0769857 0.0384929 0.999259i \(-0.487744\pi\)
0.0384929 + 0.999259i \(0.487744\pi\)
\(968\) −10.2599 −0.329766
\(969\) 16.0974 0.517124
\(970\) 0 0
\(971\) 9.52917 0.305806 0.152903 0.988241i \(-0.451138\pi\)
0.152903 + 0.988241i \(0.451138\pi\)
\(972\) −104.064 −3.33784
\(973\) 32.8083 1.05178
\(974\) −77.3111 −2.47721
\(975\) 0 0
\(976\) 77.2128 2.47152
\(977\) −17.6663 −0.565194 −0.282597 0.959239i \(-0.591196\pi\)
−0.282597 + 0.959239i \(0.591196\pi\)
\(978\) −100.411 −3.21079
\(979\) −1.84048 −0.0588221
\(980\) 0 0
\(981\) −9.25380 −0.295451
\(982\) 14.9792 0.478007
\(983\) −3.24817 −0.103601 −0.0518003 0.998657i \(-0.516496\pi\)
−0.0518003 + 0.998657i \(0.516496\pi\)
\(984\) −302.867 −9.65504
\(985\) 0 0
\(986\) −104.228 −3.31930
\(987\) 23.6118 0.751573
\(988\) 22.0540 0.701631
\(989\) 13.3108 0.423259
\(990\) 0 0
\(991\) −15.8274 −0.502774 −0.251387 0.967887i \(-0.580887\pi\)
−0.251387 + 0.967887i \(0.580887\pi\)
\(992\) −44.6161 −1.41656
\(993\) −61.4191 −1.94908
\(994\) 49.1135 1.55779
\(995\) 0 0
\(996\) −191.298 −6.06152
\(997\) 47.5564 1.50613 0.753063 0.657948i \(-0.228575\pi\)
0.753063 + 0.657948i \(0.228575\pi\)
\(998\) 111.245 3.52140
\(999\) 1.05832 0.0334838
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.bc.1.2 30
5.2 odd 4 1045.2.b.e.419.2 30
5.3 odd 4 1045.2.b.e.419.29 yes 30
5.4 even 2 inner 5225.2.a.bc.1.29 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.b.e.419.2 30 5.2 odd 4
1045.2.b.e.419.29 yes 30 5.3 odd 4
5225.2.a.bc.1.2 30 1.1 even 1 trivial
5225.2.a.bc.1.29 30 5.4 even 2 inner