Properties

Label 5225.2.a.bc.1.10
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5225,2,Mod(1,5225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,0,42,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 5225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45151 q^{2} +0.0791235 q^{3} +0.106883 q^{4} -0.114849 q^{6} -2.96150 q^{7} +2.74788 q^{8} -2.99374 q^{9} +1.00000 q^{11} +0.00845698 q^{12} -3.94825 q^{13} +4.29865 q^{14} -4.20234 q^{16} -4.79134 q^{17} +4.34544 q^{18} +1.00000 q^{19} -0.234324 q^{21} -1.45151 q^{22} +5.69554 q^{23} +0.217422 q^{24} +5.73093 q^{26} -0.474246 q^{27} -0.316535 q^{28} +2.19295 q^{29} -8.56978 q^{31} +0.603987 q^{32} +0.0791235 q^{33} +6.95468 q^{34} -0.319981 q^{36} -6.70306 q^{37} -1.45151 q^{38} -0.312399 q^{39} +5.78933 q^{41} +0.340124 q^{42} -11.8680 q^{43} +0.106883 q^{44} -8.26713 q^{46} -3.44076 q^{47} -0.332504 q^{48} +1.77048 q^{49} -0.379107 q^{51} -0.422002 q^{52} +2.73870 q^{53} +0.688373 q^{54} -8.13784 q^{56} +0.0791235 q^{57} -3.18309 q^{58} -1.87690 q^{59} -13.7308 q^{61} +12.4391 q^{62} +8.86596 q^{63} +7.52799 q^{64} -0.114849 q^{66} -10.1502 q^{67} -0.512114 q^{68} +0.450651 q^{69} -5.59507 q^{71} -8.22643 q^{72} +3.73181 q^{73} +9.72957 q^{74} +0.106883 q^{76} -2.96150 q^{77} +0.453451 q^{78} +16.6160 q^{79} +8.94369 q^{81} -8.40327 q^{82} -9.90171 q^{83} -0.0250453 q^{84} +17.2266 q^{86} +0.173514 q^{87} +2.74788 q^{88} -1.30858 q^{89} +11.6927 q^{91} +0.608757 q^{92} -0.678071 q^{93} +4.99431 q^{94} +0.0477895 q^{96} -9.85288 q^{97} -2.56986 q^{98} -2.99374 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 42 q^{4} + 12 q^{6} + 40 q^{9} + 30 q^{11} - 4 q^{14} + 66 q^{16} + 30 q^{19} + 14 q^{21} + 22 q^{24} + 30 q^{29} + 26 q^{31} + 12 q^{34} + 78 q^{36} + 64 q^{39} + 22 q^{41} + 42 q^{44} + 28 q^{46}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45151 −1.02637 −0.513187 0.858277i \(-0.671535\pi\)
−0.513187 + 0.858277i \(0.671535\pi\)
\(3\) 0.0791235 0.0456820 0.0228410 0.999739i \(-0.492729\pi\)
0.0228410 + 0.999739i \(0.492729\pi\)
\(4\) 0.106883 0.0534416
\(5\) 0 0
\(6\) −0.114849 −0.0468868
\(7\) −2.96150 −1.11934 −0.559671 0.828715i \(-0.689072\pi\)
−0.559671 + 0.828715i \(0.689072\pi\)
\(8\) 2.74788 0.971522
\(9\) −2.99374 −0.997913
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0.00845698 0.00244132
\(13\) −3.94825 −1.09505 −0.547524 0.836790i \(-0.684429\pi\)
−0.547524 + 0.836790i \(0.684429\pi\)
\(14\) 4.29865 1.14886
\(15\) 0 0
\(16\) −4.20234 −1.05059
\(17\) −4.79134 −1.16207 −0.581035 0.813879i \(-0.697352\pi\)
−0.581035 + 0.813879i \(0.697352\pi\)
\(18\) 4.34544 1.02423
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −0.234324 −0.0511337
\(22\) −1.45151 −0.309463
\(23\) 5.69554 1.18760 0.593801 0.804612i \(-0.297627\pi\)
0.593801 + 0.804612i \(0.297627\pi\)
\(24\) 0.217422 0.0443811
\(25\) 0 0
\(26\) 5.73093 1.12393
\(27\) −0.474246 −0.0912686
\(28\) −0.316535 −0.0598194
\(29\) 2.19295 0.407221 0.203611 0.979052i \(-0.434732\pi\)
0.203611 + 0.979052i \(0.434732\pi\)
\(30\) 0 0
\(31\) −8.56978 −1.53918 −0.769589 0.638539i \(-0.779539\pi\)
−0.769589 + 0.638539i \(0.779539\pi\)
\(32\) 0.603987 0.106771
\(33\) 0.0791235 0.0137736
\(34\) 6.95468 1.19272
\(35\) 0 0
\(36\) −0.319981 −0.0533301
\(37\) −6.70306 −1.10198 −0.550988 0.834513i \(-0.685749\pi\)
−0.550988 + 0.834513i \(0.685749\pi\)
\(38\) −1.45151 −0.235466
\(39\) −0.312399 −0.0500239
\(40\) 0 0
\(41\) 5.78933 0.904141 0.452071 0.891982i \(-0.350686\pi\)
0.452071 + 0.891982i \(0.350686\pi\)
\(42\) 0.340124 0.0524823
\(43\) −11.8680 −1.80986 −0.904930 0.425560i \(-0.860077\pi\)
−0.904930 + 0.425560i \(0.860077\pi\)
\(44\) 0.106883 0.0161133
\(45\) 0 0
\(46\) −8.26713 −1.21892
\(47\) −3.44076 −0.501887 −0.250944 0.968002i \(-0.580741\pi\)
−0.250944 + 0.968002i \(0.580741\pi\)
\(48\) −0.332504 −0.0479928
\(49\) 1.77048 0.252925
\(50\) 0 0
\(51\) −0.379107 −0.0530857
\(52\) −0.422002 −0.0585211
\(53\) 2.73870 0.376190 0.188095 0.982151i \(-0.439769\pi\)
0.188095 + 0.982151i \(0.439769\pi\)
\(54\) 0.688373 0.0936757
\(55\) 0 0
\(56\) −8.13784 −1.08746
\(57\) 0.0791235 0.0104802
\(58\) −3.18309 −0.417961
\(59\) −1.87690 −0.244351 −0.122176 0.992508i \(-0.538987\pi\)
−0.122176 + 0.992508i \(0.538987\pi\)
\(60\) 0 0
\(61\) −13.7308 −1.75804 −0.879021 0.476782i \(-0.841803\pi\)
−0.879021 + 0.476782i \(0.841803\pi\)
\(62\) 12.4391 1.57977
\(63\) 8.86596 1.11701
\(64\) 7.52799 0.940999
\(65\) 0 0
\(66\) −0.114849 −0.0141369
\(67\) −10.1502 −1.24005 −0.620025 0.784582i \(-0.712877\pi\)
−0.620025 + 0.784582i \(0.712877\pi\)
\(68\) −0.512114 −0.0621029
\(69\) 0.450651 0.0542520
\(70\) 0 0
\(71\) −5.59507 −0.664013 −0.332006 0.943277i \(-0.607726\pi\)
−0.332006 + 0.943277i \(0.607726\pi\)
\(72\) −8.22643 −0.969495
\(73\) 3.73181 0.436775 0.218388 0.975862i \(-0.429920\pi\)
0.218388 + 0.975862i \(0.429920\pi\)
\(74\) 9.72957 1.13104
\(75\) 0 0
\(76\) 0.106883 0.0122603
\(77\) −2.96150 −0.337494
\(78\) 0.453451 0.0513432
\(79\) 16.6160 1.86944 0.934722 0.355379i \(-0.115648\pi\)
0.934722 + 0.355379i \(0.115648\pi\)
\(80\) 0 0
\(81\) 8.94369 0.993744
\(82\) −8.40327 −0.927986
\(83\) −9.90171 −1.08685 −0.543427 0.839456i \(-0.682874\pi\)
−0.543427 + 0.839456i \(0.682874\pi\)
\(84\) −0.0250453 −0.00273267
\(85\) 0 0
\(86\) 17.2266 1.85759
\(87\) 0.173514 0.0186027
\(88\) 2.74788 0.292925
\(89\) −1.30858 −0.138709 −0.0693546 0.997592i \(-0.522094\pi\)
−0.0693546 + 0.997592i \(0.522094\pi\)
\(90\) 0 0
\(91\) 11.6927 1.22573
\(92\) 0.608757 0.0634674
\(93\) −0.678071 −0.0703127
\(94\) 4.99431 0.515123
\(95\) 0 0
\(96\) 0.0477895 0.00487750
\(97\) −9.85288 −1.00041 −0.500204 0.865908i \(-0.666742\pi\)
−0.500204 + 0.865908i \(0.666742\pi\)
\(98\) −2.56986 −0.259595
\(99\) −2.99374 −0.300882
\(100\) 0 0
\(101\) 18.1171 1.80272 0.901358 0.433076i \(-0.142572\pi\)
0.901358 + 0.433076i \(0.142572\pi\)
\(102\) 0.550279 0.0544857
\(103\) −14.2177 −1.40091 −0.700455 0.713696i \(-0.747020\pi\)
−0.700455 + 0.713696i \(0.747020\pi\)
\(104\) −10.8493 −1.06386
\(105\) 0 0
\(106\) −3.97526 −0.386111
\(107\) 1.93848 0.187400 0.0937001 0.995600i \(-0.470131\pi\)
0.0937001 + 0.995600i \(0.470131\pi\)
\(108\) −0.0506889 −0.00487754
\(109\) −10.8606 −1.04026 −0.520130 0.854087i \(-0.674117\pi\)
−0.520130 + 0.854087i \(0.674117\pi\)
\(110\) 0 0
\(111\) −0.530370 −0.0503405
\(112\) 12.4452 1.17596
\(113\) 16.1744 1.52156 0.760782 0.649008i \(-0.224816\pi\)
0.760782 + 0.649008i \(0.224816\pi\)
\(114\) −0.114849 −0.0107566
\(115\) 0 0
\(116\) 0.234390 0.0217626
\(117\) 11.8200 1.09276
\(118\) 2.72434 0.250796
\(119\) 14.1895 1.30075
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 19.9303 1.80441
\(123\) 0.458072 0.0413030
\(124\) −0.915966 −0.0822562
\(125\) 0 0
\(126\) −12.8690 −1.14646
\(127\) 13.0331 1.15650 0.578251 0.815859i \(-0.303736\pi\)
0.578251 + 0.815859i \(0.303736\pi\)
\(128\) −12.1349 −1.07259
\(129\) −0.939042 −0.0826780
\(130\) 0 0
\(131\) 13.8516 1.21022 0.605111 0.796141i \(-0.293129\pi\)
0.605111 + 0.796141i \(0.293129\pi\)
\(132\) 0.00845698 0.000736085 0
\(133\) −2.96150 −0.256795
\(134\) 14.7332 1.27275
\(135\) 0 0
\(136\) −13.1660 −1.12898
\(137\) −7.87545 −0.672845 −0.336422 0.941711i \(-0.609217\pi\)
−0.336422 + 0.941711i \(0.609217\pi\)
\(138\) −0.654125 −0.0556828
\(139\) −18.7282 −1.58850 −0.794251 0.607590i \(-0.792136\pi\)
−0.794251 + 0.607590i \(0.792136\pi\)
\(140\) 0 0
\(141\) −0.272245 −0.0229272
\(142\) 8.12131 0.681525
\(143\) −3.94825 −0.330169
\(144\) 12.5807 1.04839
\(145\) 0 0
\(146\) −5.41676 −0.448294
\(147\) 0.140086 0.0115541
\(148\) −0.716445 −0.0588914
\(149\) −5.28231 −0.432744 −0.216372 0.976311i \(-0.569422\pi\)
−0.216372 + 0.976311i \(0.569422\pi\)
\(150\) 0 0
\(151\) 15.4741 1.25926 0.629631 0.776895i \(-0.283206\pi\)
0.629631 + 0.776895i \(0.283206\pi\)
\(152\) 2.74788 0.222882
\(153\) 14.3440 1.15964
\(154\) 4.29865 0.346395
\(155\) 0 0
\(156\) −0.0333903 −0.00267336
\(157\) −19.8551 −1.58461 −0.792303 0.610128i \(-0.791118\pi\)
−0.792303 + 0.610128i \(0.791118\pi\)
\(158\) −24.1183 −1.91875
\(159\) 0.216696 0.0171851
\(160\) 0 0
\(161\) −16.8673 −1.32933
\(162\) −12.9819 −1.01995
\(163\) −0.0217138 −0.00170076 −0.000850380 1.00000i \(-0.500271\pi\)
−0.000850380 1.00000i \(0.500271\pi\)
\(164\) 0.618782 0.0483188
\(165\) 0 0
\(166\) 14.3724 1.11552
\(167\) 1.69054 0.130818 0.0654088 0.997859i \(-0.479165\pi\)
0.0654088 + 0.997859i \(0.479165\pi\)
\(168\) −0.643895 −0.0496775
\(169\) 2.58868 0.199129
\(170\) 0 0
\(171\) −2.99374 −0.228937
\(172\) −1.26850 −0.0967219
\(173\) −24.1483 −1.83596 −0.917982 0.396623i \(-0.870182\pi\)
−0.917982 + 0.396623i \(0.870182\pi\)
\(174\) −0.251858 −0.0190933
\(175\) 0 0
\(176\) −4.20234 −0.316763
\(177\) −0.148507 −0.0111625
\(178\) 1.89942 0.142367
\(179\) 4.79370 0.358298 0.179149 0.983822i \(-0.442666\pi\)
0.179149 + 0.983822i \(0.442666\pi\)
\(180\) 0 0
\(181\) 14.6891 1.09183 0.545917 0.837839i \(-0.316181\pi\)
0.545917 + 0.837839i \(0.316181\pi\)
\(182\) −16.9721 −1.25806
\(183\) −1.08643 −0.0803109
\(184\) 15.6506 1.15378
\(185\) 0 0
\(186\) 0.984228 0.0721671
\(187\) −4.79134 −0.350377
\(188\) −0.367760 −0.0268217
\(189\) 1.40448 0.102161
\(190\) 0 0
\(191\) 25.2511 1.82711 0.913553 0.406719i \(-0.133327\pi\)
0.913553 + 0.406719i \(0.133327\pi\)
\(192\) 0.595641 0.0429867
\(193\) 3.62179 0.260702 0.130351 0.991468i \(-0.458390\pi\)
0.130351 + 0.991468i \(0.458390\pi\)
\(194\) 14.3016 1.02679
\(195\) 0 0
\(196\) 0.189234 0.0135167
\(197\) −7.51197 −0.535206 −0.267603 0.963529i \(-0.586232\pi\)
−0.267603 + 0.963529i \(0.586232\pi\)
\(198\) 4.34544 0.308817
\(199\) 3.89016 0.275766 0.137883 0.990448i \(-0.455970\pi\)
0.137883 + 0.990448i \(0.455970\pi\)
\(200\) 0 0
\(201\) −0.803123 −0.0566479
\(202\) −26.2971 −1.85026
\(203\) −6.49443 −0.455819
\(204\) −0.0405202 −0.00283698
\(205\) 0 0
\(206\) 20.6371 1.43786
\(207\) −17.0510 −1.18512
\(208\) 16.5919 1.15044
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 3.21646 0.221430 0.110715 0.993852i \(-0.464686\pi\)
0.110715 + 0.993852i \(0.464686\pi\)
\(212\) 0.292722 0.0201042
\(213\) −0.442702 −0.0303334
\(214\) −2.81373 −0.192343
\(215\) 0 0
\(216\) −1.30317 −0.0886695
\(217\) 25.3794 1.72287
\(218\) 15.7643 1.06770
\(219\) 0.295274 0.0199528
\(220\) 0 0
\(221\) 18.9174 1.27252
\(222\) 0.769838 0.0516681
\(223\) −10.4914 −0.702553 −0.351277 0.936272i \(-0.614252\pi\)
−0.351277 + 0.936272i \(0.614252\pi\)
\(224\) −1.78871 −0.119513
\(225\) 0 0
\(226\) −23.4774 −1.56169
\(227\) 0.798523 0.0529999 0.0264999 0.999649i \(-0.491564\pi\)
0.0264999 + 0.999649i \(0.491564\pi\)
\(228\) 0.00845698 0.000560077 0
\(229\) −16.3354 −1.07947 −0.539735 0.841835i \(-0.681476\pi\)
−0.539735 + 0.841835i \(0.681476\pi\)
\(230\) 0 0
\(231\) −0.234324 −0.0154174
\(232\) 6.02597 0.395624
\(233\) 14.9185 0.977340 0.488670 0.872469i \(-0.337482\pi\)
0.488670 + 0.872469i \(0.337482\pi\)
\(234\) −17.1569 −1.12158
\(235\) 0 0
\(236\) −0.200609 −0.0130585
\(237\) 1.31472 0.0853999
\(238\) −20.5963 −1.33506
\(239\) −23.5350 −1.52235 −0.761177 0.648544i \(-0.775378\pi\)
−0.761177 + 0.648544i \(0.775378\pi\)
\(240\) 0 0
\(241\) 24.7890 1.59680 0.798399 0.602129i \(-0.205681\pi\)
0.798399 + 0.602129i \(0.205681\pi\)
\(242\) −1.45151 −0.0933066
\(243\) 2.13039 0.136665
\(244\) −1.46759 −0.0939527
\(245\) 0 0
\(246\) −0.664896 −0.0423922
\(247\) −3.94825 −0.251221
\(248\) −23.5487 −1.49535
\(249\) −0.783458 −0.0496497
\(250\) 0 0
\(251\) −5.81152 −0.366820 −0.183410 0.983036i \(-0.558714\pi\)
−0.183410 + 0.983036i \(0.558714\pi\)
\(252\) 0.947622 0.0596946
\(253\) 5.69554 0.358075
\(254\) −18.9177 −1.18700
\(255\) 0 0
\(256\) 2.55800 0.159875
\(257\) 26.8322 1.67375 0.836873 0.547397i \(-0.184381\pi\)
0.836873 + 0.547397i \(0.184381\pi\)
\(258\) 1.36303 0.0848585
\(259\) 19.8511 1.23349
\(260\) 0 0
\(261\) −6.56513 −0.406371
\(262\) −20.1058 −1.24214
\(263\) 24.5162 1.51173 0.755865 0.654727i \(-0.227216\pi\)
0.755865 + 0.654727i \(0.227216\pi\)
\(264\) 0.217422 0.0133814
\(265\) 0 0
\(266\) 4.29865 0.263567
\(267\) −0.103539 −0.00633651
\(268\) −1.08489 −0.0662702
\(269\) 15.0720 0.918956 0.459478 0.888189i \(-0.348037\pi\)
0.459478 + 0.888189i \(0.348037\pi\)
\(270\) 0 0
\(271\) −18.3558 −1.11503 −0.557517 0.830165i \(-0.688246\pi\)
−0.557517 + 0.830165i \(0.688246\pi\)
\(272\) 20.1348 1.22085
\(273\) 0.925171 0.0559939
\(274\) 11.4313 0.690590
\(275\) 0 0
\(276\) 0.0481670 0.00289931
\(277\) 11.1338 0.668964 0.334482 0.942402i \(-0.391439\pi\)
0.334482 + 0.942402i \(0.391439\pi\)
\(278\) 27.1841 1.63040
\(279\) 25.6557 1.53597
\(280\) 0 0
\(281\) 3.26607 0.194837 0.0974187 0.995243i \(-0.468941\pi\)
0.0974187 + 0.995243i \(0.468941\pi\)
\(282\) 0.395167 0.0235319
\(283\) −25.0622 −1.48979 −0.744897 0.667180i \(-0.767501\pi\)
−0.744897 + 0.667180i \(0.767501\pi\)
\(284\) −0.598020 −0.0354859
\(285\) 0 0
\(286\) 5.73093 0.338877
\(287\) −17.1451 −1.01204
\(288\) −1.80818 −0.106548
\(289\) 5.95691 0.350407
\(290\) 0 0
\(291\) −0.779594 −0.0457006
\(292\) 0.398868 0.0233420
\(293\) 21.9171 1.28041 0.640205 0.768204i \(-0.278849\pi\)
0.640205 + 0.768204i \(0.278849\pi\)
\(294\) −0.203337 −0.0118588
\(295\) 0 0
\(296\) −18.4192 −1.07059
\(297\) −0.474246 −0.0275185
\(298\) 7.66733 0.444157
\(299\) −22.4874 −1.30048
\(300\) 0 0
\(301\) 35.1472 2.02585
\(302\) −22.4608 −1.29247
\(303\) 1.43349 0.0823516
\(304\) −4.20234 −0.241021
\(305\) 0 0
\(306\) −20.8205 −1.19023
\(307\) 16.0425 0.915593 0.457796 0.889057i \(-0.348639\pi\)
0.457796 + 0.889057i \(0.348639\pi\)
\(308\) −0.316535 −0.0180362
\(309\) −1.12495 −0.0639964
\(310\) 0 0
\(311\) 14.9546 0.847999 0.424000 0.905662i \(-0.360626\pi\)
0.424000 + 0.905662i \(0.360626\pi\)
\(312\) −0.858436 −0.0485994
\(313\) −34.3903 −1.94385 −0.971927 0.235282i \(-0.924399\pi\)
−0.971927 + 0.235282i \(0.924399\pi\)
\(314\) 28.8198 1.62640
\(315\) 0 0
\(316\) 1.77597 0.0999061
\(317\) 7.59079 0.426341 0.213171 0.977015i \(-0.431621\pi\)
0.213171 + 0.977015i \(0.431621\pi\)
\(318\) −0.314536 −0.0176383
\(319\) 2.19295 0.122782
\(320\) 0 0
\(321\) 0.153380 0.00856081
\(322\) 24.4831 1.36439
\(323\) −4.79134 −0.266597
\(324\) 0.955931 0.0531073
\(325\) 0 0
\(326\) 0.0315179 0.00174561
\(327\) −0.859332 −0.0475212
\(328\) 15.9084 0.878393
\(329\) 10.1898 0.561783
\(330\) 0 0
\(331\) −28.0896 −1.54395 −0.771973 0.635655i \(-0.780730\pi\)
−0.771973 + 0.635655i \(0.780730\pi\)
\(332\) −1.05833 −0.0580832
\(333\) 20.0672 1.09968
\(334\) −2.45383 −0.134268
\(335\) 0 0
\(336\) 0.984711 0.0537204
\(337\) 20.8306 1.13472 0.567358 0.823472i \(-0.307966\pi\)
0.567358 + 0.823472i \(0.307966\pi\)
\(338\) −3.75750 −0.204381
\(339\) 1.27978 0.0695081
\(340\) 0 0
\(341\) −8.56978 −0.464080
\(342\) 4.34544 0.234975
\(343\) 15.4872 0.836232
\(344\) −32.6120 −1.75832
\(345\) 0 0
\(346\) 35.0516 1.88438
\(347\) −14.9351 −0.801760 −0.400880 0.916130i \(-0.631296\pi\)
−0.400880 + 0.916130i \(0.631296\pi\)
\(348\) 0.0185458 0.000994157 0
\(349\) 36.0679 1.93067 0.965335 0.261013i \(-0.0840567\pi\)
0.965335 + 0.261013i \(0.0840567\pi\)
\(350\) 0 0
\(351\) 1.87244 0.0999435
\(352\) 0.603987 0.0321926
\(353\) 28.0400 1.49242 0.746208 0.665713i \(-0.231872\pi\)
0.746208 + 0.665713i \(0.231872\pi\)
\(354\) 0.215559 0.0114568
\(355\) 0 0
\(356\) −0.139865 −0.00741284
\(357\) 1.12273 0.0594210
\(358\) −6.95811 −0.367747
\(359\) 1.28132 0.0676256 0.0338128 0.999428i \(-0.489235\pi\)
0.0338128 + 0.999428i \(0.489235\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −21.3214 −1.12063
\(363\) 0.0791235 0.00415291
\(364\) 1.24976 0.0655051
\(365\) 0 0
\(366\) 1.57696 0.0824289
\(367\) 2.01037 0.104940 0.0524702 0.998622i \(-0.483291\pi\)
0.0524702 + 0.998622i \(0.483291\pi\)
\(368\) −23.9346 −1.24768
\(369\) −17.3317 −0.902254
\(370\) 0 0
\(371\) −8.11067 −0.421085
\(372\) −0.0724745 −0.00375763
\(373\) −2.59241 −0.134230 −0.0671150 0.997745i \(-0.521379\pi\)
−0.0671150 + 0.997745i \(0.521379\pi\)
\(374\) 6.95468 0.359618
\(375\) 0 0
\(376\) −9.45480 −0.487594
\(377\) −8.65833 −0.445926
\(378\) −2.03862 −0.104855
\(379\) 14.3543 0.737330 0.368665 0.929562i \(-0.379815\pi\)
0.368665 + 0.929562i \(0.379815\pi\)
\(380\) 0 0
\(381\) 1.03123 0.0528313
\(382\) −36.6523 −1.87529
\(383\) −8.17879 −0.417917 −0.208958 0.977925i \(-0.567007\pi\)
−0.208958 + 0.977925i \(0.567007\pi\)
\(384\) −0.960159 −0.0489979
\(385\) 0 0
\(386\) −5.25706 −0.267577
\(387\) 35.5298 1.80608
\(388\) −1.05311 −0.0534634
\(389\) −19.7560 −1.00167 −0.500833 0.865544i \(-0.666973\pi\)
−0.500833 + 0.865544i \(0.666973\pi\)
\(390\) 0 0
\(391\) −27.2892 −1.38008
\(392\) 4.86505 0.245722
\(393\) 1.09599 0.0552854
\(394\) 10.9037 0.549321
\(395\) 0 0
\(396\) −0.319981 −0.0160796
\(397\) −12.6658 −0.635678 −0.317839 0.948145i \(-0.602957\pi\)
−0.317839 + 0.948145i \(0.602957\pi\)
\(398\) −5.64661 −0.283039
\(399\) −0.234324 −0.0117309
\(400\) 0 0
\(401\) −36.6271 −1.82907 −0.914534 0.404509i \(-0.867442\pi\)
−0.914534 + 0.404509i \(0.867442\pi\)
\(402\) 1.16574 0.0581419
\(403\) 33.8357 1.68547
\(404\) 1.93641 0.0963400
\(405\) 0 0
\(406\) 9.42673 0.467841
\(407\) −6.70306 −0.332258
\(408\) −1.04174 −0.0515739
\(409\) −8.99494 −0.444771 −0.222386 0.974959i \(-0.571384\pi\)
−0.222386 + 0.974959i \(0.571384\pi\)
\(410\) 0 0
\(411\) −0.623133 −0.0307369
\(412\) −1.51963 −0.0748669
\(413\) 5.55843 0.273513
\(414\) 24.7496 1.21638
\(415\) 0 0
\(416\) −2.38469 −0.116919
\(417\) −1.48184 −0.0725659
\(418\) −1.45151 −0.0709957
\(419\) 27.2758 1.33251 0.666254 0.745725i \(-0.267897\pi\)
0.666254 + 0.745725i \(0.267897\pi\)
\(420\) 0 0
\(421\) 33.0585 1.61117 0.805587 0.592477i \(-0.201850\pi\)
0.805587 + 0.592477i \(0.201850\pi\)
\(422\) −4.66873 −0.227270
\(423\) 10.3008 0.500840
\(424\) 7.52563 0.365477
\(425\) 0 0
\(426\) 0.642586 0.0311334
\(427\) 40.6636 1.96785
\(428\) 0.207191 0.0100150
\(429\) −0.312399 −0.0150828
\(430\) 0 0
\(431\) −13.7567 −0.662635 −0.331317 0.943519i \(-0.607493\pi\)
−0.331317 + 0.943519i \(0.607493\pi\)
\(432\) 1.99294 0.0958855
\(433\) 16.8098 0.807828 0.403914 0.914797i \(-0.367650\pi\)
0.403914 + 0.914797i \(0.367650\pi\)
\(434\) −36.8385 −1.76830
\(435\) 0 0
\(436\) −1.16082 −0.0555932
\(437\) 5.69554 0.272454
\(438\) −0.428593 −0.0204790
\(439\) −6.24019 −0.297828 −0.148914 0.988850i \(-0.547578\pi\)
−0.148914 + 0.988850i \(0.547578\pi\)
\(440\) 0 0
\(441\) −5.30034 −0.252397
\(442\) −27.4588 −1.30608
\(443\) 24.8505 1.18068 0.590341 0.807154i \(-0.298993\pi\)
0.590341 + 0.807154i \(0.298993\pi\)
\(444\) −0.0566877 −0.00269028
\(445\) 0 0
\(446\) 15.2283 0.721081
\(447\) −0.417955 −0.0197686
\(448\) −22.2941 −1.05330
\(449\) −0.426567 −0.0201309 −0.0100655 0.999949i \(-0.503204\pi\)
−0.0100655 + 0.999949i \(0.503204\pi\)
\(450\) 0 0
\(451\) 5.78933 0.272609
\(452\) 1.72878 0.0813148
\(453\) 1.22436 0.0575255
\(454\) −1.15907 −0.0543976
\(455\) 0 0
\(456\) 0.217422 0.0101817
\(457\) 17.3831 0.813146 0.406573 0.913618i \(-0.366724\pi\)
0.406573 + 0.913618i \(0.366724\pi\)
\(458\) 23.7109 1.10794
\(459\) 2.27227 0.106061
\(460\) 0 0
\(461\) −24.8094 −1.15549 −0.577745 0.816218i \(-0.696067\pi\)
−0.577745 + 0.816218i \(0.696067\pi\)
\(462\) 0.340124 0.0158240
\(463\) −7.55986 −0.351337 −0.175668 0.984449i \(-0.556209\pi\)
−0.175668 + 0.984449i \(0.556209\pi\)
\(464\) −9.21554 −0.427821
\(465\) 0 0
\(466\) −21.6543 −1.00312
\(467\) 11.6238 0.537884 0.268942 0.963156i \(-0.413326\pi\)
0.268942 + 0.963156i \(0.413326\pi\)
\(468\) 1.26336 0.0583990
\(469\) 30.0599 1.38804
\(470\) 0 0
\(471\) −1.57100 −0.0723879
\(472\) −5.15749 −0.237393
\(473\) −11.8680 −0.545694
\(474\) −1.90832 −0.0876522
\(475\) 0 0
\(476\) 1.51662 0.0695143
\(477\) −8.19897 −0.375405
\(478\) 34.1614 1.56250
\(479\) 25.9454 1.18548 0.592739 0.805395i \(-0.298047\pi\)
0.592739 + 0.805395i \(0.298047\pi\)
\(480\) 0 0
\(481\) 26.4654 1.20672
\(482\) −35.9815 −1.63891
\(483\) −1.33460 −0.0607265
\(484\) 0.106883 0.00485833
\(485\) 0 0
\(486\) −3.09229 −0.140269
\(487\) 8.22122 0.372539 0.186270 0.982499i \(-0.440360\pi\)
0.186270 + 0.982499i \(0.440360\pi\)
\(488\) −37.7305 −1.70798
\(489\) −0.00171808 −7.76941e−5 0
\(490\) 0 0
\(491\) 8.68356 0.391884 0.195942 0.980616i \(-0.437224\pi\)
0.195942 + 0.980616i \(0.437224\pi\)
\(492\) 0.0489602 0.00220730
\(493\) −10.5072 −0.473219
\(494\) 5.73093 0.257847
\(495\) 0 0
\(496\) 36.0132 1.61704
\(497\) 16.5698 0.743257
\(498\) 1.13720 0.0509591
\(499\) −22.3175 −0.999068 −0.499534 0.866294i \(-0.666495\pi\)
−0.499534 + 0.866294i \(0.666495\pi\)
\(500\) 0 0
\(501\) 0.133761 0.00597601
\(502\) 8.43549 0.376494
\(503\) 18.6767 0.832754 0.416377 0.909192i \(-0.363300\pi\)
0.416377 + 0.909192i \(0.363300\pi\)
\(504\) 24.3626 1.08520
\(505\) 0 0
\(506\) −8.26713 −0.367519
\(507\) 0.204826 0.00909662
\(508\) 1.39302 0.0618053
\(509\) −27.7521 −1.23009 −0.615045 0.788492i \(-0.710862\pi\)
−0.615045 + 0.788492i \(0.710862\pi\)
\(510\) 0 0
\(511\) −11.0518 −0.488901
\(512\) 20.5569 0.908495
\(513\) −0.474246 −0.0209385
\(514\) −38.9472 −1.71789
\(515\) 0 0
\(516\) −0.100368 −0.00441845
\(517\) −3.44076 −0.151325
\(518\) −28.8141 −1.26602
\(519\) −1.91070 −0.0838704
\(520\) 0 0
\(521\) −10.3834 −0.454905 −0.227452 0.973789i \(-0.573040\pi\)
−0.227452 + 0.973789i \(0.573040\pi\)
\(522\) 9.52936 0.417089
\(523\) −22.1998 −0.970729 −0.485365 0.874312i \(-0.661313\pi\)
−0.485365 + 0.874312i \(0.661313\pi\)
\(524\) 1.48051 0.0646763
\(525\) 0 0
\(526\) −35.5855 −1.55160
\(527\) 41.0607 1.78863
\(528\) −0.332504 −0.0144704
\(529\) 9.43914 0.410398
\(530\) 0 0
\(531\) 5.61895 0.243842
\(532\) −0.316535 −0.0137235
\(533\) −22.8577 −0.990078
\(534\) 0.150289 0.00650362
\(535\) 0 0
\(536\) −27.8916 −1.20474
\(537\) 0.379294 0.0163678
\(538\) −21.8772 −0.943191
\(539\) 1.77048 0.0762598
\(540\) 0 0
\(541\) 37.8116 1.62565 0.812824 0.582510i \(-0.197929\pi\)
0.812824 + 0.582510i \(0.197929\pi\)
\(542\) 26.6436 1.14444
\(543\) 1.16226 0.0498772
\(544\) −2.89390 −0.124075
\(545\) 0 0
\(546\) −1.34290 −0.0574706
\(547\) −11.2780 −0.482212 −0.241106 0.970499i \(-0.577510\pi\)
−0.241106 + 0.970499i \(0.577510\pi\)
\(548\) −0.841753 −0.0359579
\(549\) 41.1063 1.75437
\(550\) 0 0
\(551\) 2.19295 0.0934229
\(552\) 1.23833 0.0527070
\(553\) −49.2082 −2.09255
\(554\) −16.1608 −0.686606
\(555\) 0 0
\(556\) −2.00173 −0.0848921
\(557\) 7.20468 0.305272 0.152636 0.988282i \(-0.451224\pi\)
0.152636 + 0.988282i \(0.451224\pi\)
\(558\) −37.2395 −1.57647
\(559\) 46.8580 1.98188
\(560\) 0 0
\(561\) −0.379107 −0.0160059
\(562\) −4.74073 −0.199976
\(563\) −1.81101 −0.0763248 −0.0381624 0.999272i \(-0.512150\pi\)
−0.0381624 + 0.999272i \(0.512150\pi\)
\(564\) −0.0290985 −0.00122527
\(565\) 0 0
\(566\) 36.3781 1.52908
\(567\) −26.4867 −1.11234
\(568\) −15.3746 −0.645103
\(569\) 12.4854 0.523415 0.261707 0.965147i \(-0.415714\pi\)
0.261707 + 0.965147i \(0.415714\pi\)
\(570\) 0 0
\(571\) −37.5830 −1.57280 −0.786400 0.617718i \(-0.788057\pi\)
−0.786400 + 0.617718i \(0.788057\pi\)
\(572\) −0.422002 −0.0176448
\(573\) 1.99796 0.0834659
\(574\) 24.8863 1.03873
\(575\) 0 0
\(576\) −22.5368 −0.939035
\(577\) 7.68994 0.320136 0.160068 0.987106i \(-0.448829\pi\)
0.160068 + 0.987106i \(0.448829\pi\)
\(578\) −8.64652 −0.359648
\(579\) 0.286568 0.0119094
\(580\) 0 0
\(581\) 29.3239 1.21656
\(582\) 1.13159 0.0469059
\(583\) 2.73870 0.113426
\(584\) 10.2546 0.424337
\(585\) 0 0
\(586\) −31.8129 −1.31418
\(587\) 8.55695 0.353183 0.176592 0.984284i \(-0.443493\pi\)
0.176592 + 0.984284i \(0.443493\pi\)
\(588\) 0.0149729 0.000617471 0
\(589\) −8.56978 −0.353112
\(590\) 0 0
\(591\) −0.594374 −0.0244493
\(592\) 28.1686 1.15772
\(593\) 17.3812 0.713761 0.356881 0.934150i \(-0.383840\pi\)
0.356881 + 0.934150i \(0.383840\pi\)
\(594\) 0.688373 0.0282443
\(595\) 0 0
\(596\) −0.564591 −0.0231265
\(597\) 0.307803 0.0125976
\(598\) 32.6407 1.33478
\(599\) −15.2377 −0.622594 −0.311297 0.950313i \(-0.600763\pi\)
−0.311297 + 0.950313i \(0.600763\pi\)
\(600\) 0 0
\(601\) 7.32582 0.298826 0.149413 0.988775i \(-0.452262\pi\)
0.149413 + 0.988775i \(0.452262\pi\)
\(602\) −51.0166 −2.07928
\(603\) 30.3872 1.23746
\(604\) 1.65392 0.0672970
\(605\) 0 0
\(606\) −2.08072 −0.0845235
\(607\) 46.8213 1.90042 0.950208 0.311615i \(-0.100870\pi\)
0.950208 + 0.311615i \(0.100870\pi\)
\(608\) 0.603987 0.0244949
\(609\) −0.513862 −0.0208227
\(610\) 0 0
\(611\) 13.5850 0.549590
\(612\) 1.53313 0.0619733
\(613\) −0.581511 −0.0234870 −0.0117435 0.999931i \(-0.503738\pi\)
−0.0117435 + 0.999931i \(0.503738\pi\)
\(614\) −23.2858 −0.939740
\(615\) 0 0
\(616\) −8.13784 −0.327883
\(617\) 31.3211 1.26094 0.630470 0.776214i \(-0.282862\pi\)
0.630470 + 0.776214i \(0.282862\pi\)
\(618\) 1.63288 0.0656841
\(619\) 4.35588 0.175078 0.0875388 0.996161i \(-0.472100\pi\)
0.0875388 + 0.996161i \(0.472100\pi\)
\(620\) 0 0
\(621\) −2.70108 −0.108391
\(622\) −21.7068 −0.870364
\(623\) 3.87536 0.155263
\(624\) 1.31281 0.0525544
\(625\) 0 0
\(626\) 49.9179 1.99512
\(627\) 0.0791235 0.00315989
\(628\) −2.12217 −0.0846839
\(629\) 32.1166 1.28057
\(630\) 0 0
\(631\) 9.65769 0.384467 0.192233 0.981349i \(-0.438427\pi\)
0.192233 + 0.981349i \(0.438427\pi\)
\(632\) 45.6587 1.81621
\(633\) 0.254498 0.0101154
\(634\) −11.0181 −0.437585
\(635\) 0 0
\(636\) 0.0231612 0.000918400 0
\(637\) −6.99028 −0.276965
\(638\) −3.18309 −0.126020
\(639\) 16.7502 0.662627
\(640\) 0 0
\(641\) 33.4025 1.31932 0.659661 0.751564i \(-0.270700\pi\)
0.659661 + 0.751564i \(0.270700\pi\)
\(642\) −0.222632 −0.00878659
\(643\) 23.3959 0.922646 0.461323 0.887232i \(-0.347375\pi\)
0.461323 + 0.887232i \(0.347375\pi\)
\(644\) −1.80283 −0.0710416
\(645\) 0 0
\(646\) 6.95468 0.273628
\(647\) −25.8707 −1.01708 −0.508540 0.861038i \(-0.669815\pi\)
−0.508540 + 0.861038i \(0.669815\pi\)
\(648\) 24.5762 0.965444
\(649\) −1.87690 −0.0736747
\(650\) 0 0
\(651\) 2.00811 0.0787039
\(652\) −0.00232085 −9.08914e−5 0
\(653\) 9.99941 0.391307 0.195654 0.980673i \(-0.437317\pi\)
0.195654 + 0.980673i \(0.437317\pi\)
\(654\) 1.24733 0.0487744
\(655\) 0 0
\(656\) −24.3287 −0.949878
\(657\) −11.1721 −0.435864
\(658\) −14.7906 −0.576599
\(659\) 15.8834 0.618729 0.309365 0.950944i \(-0.399884\pi\)
0.309365 + 0.950944i \(0.399884\pi\)
\(660\) 0 0
\(661\) 20.4289 0.794590 0.397295 0.917691i \(-0.369949\pi\)
0.397295 + 0.917691i \(0.369949\pi\)
\(662\) 40.7724 1.58466
\(663\) 1.49681 0.0581313
\(664\) −27.2087 −1.05590
\(665\) 0 0
\(666\) −29.1278 −1.12868
\(667\) 12.4900 0.483616
\(668\) 0.180690 0.00699111
\(669\) −0.830113 −0.0320940
\(670\) 0 0
\(671\) −13.7308 −0.530070
\(672\) −0.141529 −0.00545959
\(673\) 8.43312 0.325073 0.162536 0.986703i \(-0.448032\pi\)
0.162536 + 0.986703i \(0.448032\pi\)
\(674\) −30.2358 −1.16464
\(675\) 0 0
\(676\) 0.276687 0.0106418
\(677\) −0.570325 −0.0219194 −0.0109597 0.999940i \(-0.503489\pi\)
−0.0109597 + 0.999940i \(0.503489\pi\)
\(678\) −1.85761 −0.0713412
\(679\) 29.1793 1.11980
\(680\) 0 0
\(681\) 0.0631820 0.00242114
\(682\) 12.4391 0.476319
\(683\) −15.1949 −0.581415 −0.290708 0.956812i \(-0.593891\pi\)
−0.290708 + 0.956812i \(0.593891\pi\)
\(684\) −0.319981 −0.0122348
\(685\) 0 0
\(686\) −22.4799 −0.858286
\(687\) −1.29251 −0.0493123
\(688\) 49.8736 1.90141
\(689\) −10.8131 −0.411946
\(690\) 0 0
\(691\) 3.49109 0.132807 0.0664036 0.997793i \(-0.478848\pi\)
0.0664036 + 0.997793i \(0.478848\pi\)
\(692\) −2.58105 −0.0981169
\(693\) 8.86596 0.336790
\(694\) 21.6785 0.822905
\(695\) 0 0
\(696\) 0.476796 0.0180729
\(697\) −27.7386 −1.05068
\(698\) −52.3529 −1.98159
\(699\) 1.18040 0.0446468
\(700\) 0 0
\(701\) 2.17137 0.0820116 0.0410058 0.999159i \(-0.486944\pi\)
0.0410058 + 0.999159i \(0.486944\pi\)
\(702\) −2.71787 −0.102579
\(703\) −6.70306 −0.252811
\(704\) 7.52799 0.283722
\(705\) 0 0
\(706\) −40.7003 −1.53178
\(707\) −53.6537 −2.01785
\(708\) −0.0158729 −0.000596540 0
\(709\) −3.77213 −0.141665 −0.0708326 0.997488i \(-0.522566\pi\)
−0.0708326 + 0.997488i \(0.522566\pi\)
\(710\) 0 0
\(711\) −49.7439 −1.86554
\(712\) −3.59582 −0.134759
\(713\) −48.8095 −1.82793
\(714\) −1.62965 −0.0609881
\(715\) 0 0
\(716\) 0.512366 0.0191480
\(717\) −1.86217 −0.0695442
\(718\) −1.85985 −0.0694091
\(719\) −13.6203 −0.507952 −0.253976 0.967211i \(-0.581738\pi\)
−0.253976 + 0.967211i \(0.581738\pi\)
\(720\) 0 0
\(721\) 42.1057 1.56810
\(722\) −1.45151 −0.0540196
\(723\) 1.96139 0.0729449
\(724\) 1.57002 0.0583494
\(725\) 0 0
\(726\) −0.114849 −0.00426243
\(727\) 1.60527 0.0595361 0.0297681 0.999557i \(-0.490523\pi\)
0.0297681 + 0.999557i \(0.490523\pi\)
\(728\) 32.1302 1.19083
\(729\) −26.6625 −0.987501
\(730\) 0 0
\(731\) 56.8638 2.10318
\(732\) −0.116121 −0.00429194
\(733\) 21.6583 0.799968 0.399984 0.916522i \(-0.369016\pi\)
0.399984 + 0.916522i \(0.369016\pi\)
\(734\) −2.91807 −0.107708
\(735\) 0 0
\(736\) 3.44003 0.126801
\(737\) −10.1502 −0.373889
\(738\) 25.1572 0.926050
\(739\) −6.77955 −0.249390 −0.124695 0.992195i \(-0.539795\pi\)
−0.124695 + 0.992195i \(0.539795\pi\)
\(740\) 0 0
\(741\) −0.312399 −0.0114763
\(742\) 11.7727 0.432190
\(743\) 26.6272 0.976857 0.488429 0.872604i \(-0.337570\pi\)
0.488429 + 0.872604i \(0.337570\pi\)
\(744\) −1.86326 −0.0683104
\(745\) 0 0
\(746\) 3.76291 0.137770
\(747\) 29.6431 1.08459
\(748\) −0.512114 −0.0187247
\(749\) −5.74082 −0.209765
\(750\) 0 0
\(751\) 32.6441 1.19120 0.595600 0.803281i \(-0.296914\pi\)
0.595600 + 0.803281i \(0.296914\pi\)
\(752\) 14.4593 0.527275
\(753\) −0.459828 −0.0167571
\(754\) 12.5677 0.457687
\(755\) 0 0
\(756\) 0.150115 0.00545964
\(757\) −0.751499 −0.0273137 −0.0136569 0.999907i \(-0.504347\pi\)
−0.0136569 + 0.999907i \(0.504347\pi\)
\(758\) −20.8354 −0.756775
\(759\) 0.450651 0.0163576
\(760\) 0 0
\(761\) −17.5654 −0.636746 −0.318373 0.947966i \(-0.603136\pi\)
−0.318373 + 0.947966i \(0.603136\pi\)
\(762\) −1.49683 −0.0542246
\(763\) 32.1638 1.16441
\(764\) 2.69892 0.0976435
\(765\) 0 0
\(766\) 11.8716 0.428938
\(767\) 7.41047 0.267576
\(768\) 0.202398 0.00730341
\(769\) −35.7457 −1.28902 −0.644512 0.764595i \(-0.722939\pi\)
−0.644512 + 0.764595i \(0.722939\pi\)
\(770\) 0 0
\(771\) 2.12306 0.0764600
\(772\) 0.387108 0.0139323
\(773\) −14.7295 −0.529783 −0.264891 0.964278i \(-0.585336\pi\)
−0.264891 + 0.964278i \(0.585336\pi\)
\(774\) −51.5720 −1.85372
\(775\) 0 0
\(776\) −27.0745 −0.971919
\(777\) 1.57069 0.0563482
\(778\) 28.6760 1.02808
\(779\) 5.78933 0.207424
\(780\) 0 0
\(781\) −5.59507 −0.200207
\(782\) 39.6106 1.41647
\(783\) −1.04000 −0.0371665
\(784\) −7.44014 −0.265719
\(785\) 0 0
\(786\) −1.59084 −0.0567434
\(787\) −40.2297 −1.43403 −0.717016 0.697056i \(-0.754493\pi\)
−0.717016 + 0.697056i \(0.754493\pi\)
\(788\) −0.802904 −0.0286023
\(789\) 1.93980 0.0690589
\(790\) 0 0
\(791\) −47.9006 −1.70315
\(792\) −8.22643 −0.292314
\(793\) 54.2125 1.92514
\(794\) 18.3845 0.652442
\(795\) 0 0
\(796\) 0.415793 0.0147374
\(797\) 4.53756 0.160729 0.0803643 0.996766i \(-0.474392\pi\)
0.0803643 + 0.996766i \(0.474392\pi\)
\(798\) 0.340124 0.0120403
\(799\) 16.4859 0.583228
\(800\) 0 0
\(801\) 3.91755 0.138420
\(802\) 53.1646 1.87731
\(803\) 3.73181 0.131693
\(804\) −0.0858404 −0.00302736
\(805\) 0 0
\(806\) −49.1128 −1.72992
\(807\) 1.19255 0.0419797
\(808\) 49.7835 1.75138
\(809\) 1.86885 0.0657052 0.0328526 0.999460i \(-0.489541\pi\)
0.0328526 + 0.999460i \(0.489541\pi\)
\(810\) 0 0
\(811\) 26.5983 0.933994 0.466997 0.884259i \(-0.345336\pi\)
0.466997 + 0.884259i \(0.345336\pi\)
\(812\) −0.694145 −0.0243597
\(813\) −1.45237 −0.0509370
\(814\) 9.72957 0.341021
\(815\) 0 0
\(816\) 1.59314 0.0557710
\(817\) −11.8680 −0.415211
\(818\) 13.0563 0.456501
\(819\) −35.0050 −1.22317
\(820\) 0 0
\(821\) 11.4661 0.400171 0.200086 0.979778i \(-0.435878\pi\)
0.200086 + 0.979778i \(0.435878\pi\)
\(822\) 0.904484 0.0315475
\(823\) 13.8917 0.484233 0.242117 0.970247i \(-0.422158\pi\)
0.242117 + 0.970247i \(0.422158\pi\)
\(824\) −39.0685 −1.36102
\(825\) 0 0
\(826\) −8.06813 −0.280726
\(827\) 53.0943 1.84627 0.923134 0.384478i \(-0.125618\pi\)
0.923134 + 0.384478i \(0.125618\pi\)
\(828\) −1.82246 −0.0633349
\(829\) −0.910926 −0.0316378 −0.0158189 0.999875i \(-0.505036\pi\)
−0.0158189 + 0.999875i \(0.505036\pi\)
\(830\) 0 0
\(831\) 0.880944 0.0305596
\(832\) −29.7224 −1.03044
\(833\) −8.48294 −0.293917
\(834\) 2.15090 0.0744797
\(835\) 0 0
\(836\) 0.106883 0.00369663
\(837\) 4.06418 0.140479
\(838\) −39.5911 −1.36765
\(839\) −45.6602 −1.57636 −0.788182 0.615442i \(-0.788977\pi\)
−0.788182 + 0.615442i \(0.788977\pi\)
\(840\) 0 0
\(841\) −24.1910 −0.834171
\(842\) −47.9848 −1.65367
\(843\) 0.258423 0.00890056
\(844\) 0.343786 0.0118336
\(845\) 0 0
\(846\) −14.9517 −0.514048
\(847\) −2.96150 −0.101758
\(848\) −11.5090 −0.395220
\(849\) −1.98301 −0.0680567
\(850\) 0 0
\(851\) −38.1775 −1.30871
\(852\) −0.0473174 −0.00162107
\(853\) −15.5961 −0.534001 −0.267000 0.963696i \(-0.586033\pi\)
−0.267000 + 0.963696i \(0.586033\pi\)
\(854\) −59.0237 −2.01975
\(855\) 0 0
\(856\) 5.32672 0.182063
\(857\) −3.21516 −0.109828 −0.0549138 0.998491i \(-0.517488\pi\)
−0.0549138 + 0.998491i \(0.517488\pi\)
\(858\) 0.453451 0.0154806
\(859\) 20.1995 0.689198 0.344599 0.938750i \(-0.388015\pi\)
0.344599 + 0.938750i \(0.388015\pi\)
\(860\) 0 0
\(861\) −1.35658 −0.0462321
\(862\) 19.9679 0.680111
\(863\) −3.58013 −0.121869 −0.0609345 0.998142i \(-0.519408\pi\)
−0.0609345 + 0.998142i \(0.519408\pi\)
\(864\) −0.286438 −0.00974482
\(865\) 0 0
\(866\) −24.3996 −0.829133
\(867\) 0.471332 0.0160073
\(868\) 2.71263 0.0920728
\(869\) 16.6160 0.563659
\(870\) 0 0
\(871\) 40.0757 1.35791
\(872\) −29.8437 −1.01064
\(873\) 29.4970 0.998321
\(874\) −8.26713 −0.279640
\(875\) 0 0
\(876\) 0.0315598 0.00106631
\(877\) 1.12880 0.0381169 0.0190585 0.999818i \(-0.493933\pi\)
0.0190585 + 0.999818i \(0.493933\pi\)
\(878\) 9.05771 0.305683
\(879\) 1.73416 0.0584917
\(880\) 0 0
\(881\) −9.42205 −0.317437 −0.158719 0.987324i \(-0.550736\pi\)
−0.158719 + 0.987324i \(0.550736\pi\)
\(882\) 7.69350 0.259054
\(883\) −33.9568 −1.14274 −0.571368 0.820694i \(-0.693587\pi\)
−0.571368 + 0.820694i \(0.693587\pi\)
\(884\) 2.02195 0.0680056
\(885\) 0 0
\(886\) −36.0708 −1.21182
\(887\) 23.9547 0.804321 0.402161 0.915569i \(-0.368259\pi\)
0.402161 + 0.915569i \(0.368259\pi\)
\(888\) −1.45739 −0.0489069
\(889\) −38.5975 −1.29452
\(890\) 0 0
\(891\) 8.94369 0.299625
\(892\) −1.12135 −0.0375456
\(893\) −3.44076 −0.115141
\(894\) 0.606666 0.0202900
\(895\) 0 0
\(896\) 35.9376 1.20059
\(897\) −1.77928 −0.0594085
\(898\) 0.619167 0.0206619
\(899\) −18.7931 −0.626786
\(900\) 0 0
\(901\) −13.1221 −0.437159
\(902\) −8.40327 −0.279798
\(903\) 2.78097 0.0925449
\(904\) 44.4454 1.47823
\(905\) 0 0
\(906\) −1.77717 −0.0590427
\(907\) −20.1340 −0.668538 −0.334269 0.942478i \(-0.608489\pi\)
−0.334269 + 0.942478i \(0.608489\pi\)
\(908\) 0.0853488 0.00283240
\(909\) −54.2378 −1.79895
\(910\) 0 0
\(911\) −51.7375 −1.71414 −0.857070 0.515201i \(-0.827717\pi\)
−0.857070 + 0.515201i \(0.827717\pi\)
\(912\) −0.332504 −0.0110103
\(913\) −9.90171 −0.327699
\(914\) −25.2317 −0.834591
\(915\) 0 0
\(916\) −1.74598 −0.0576886
\(917\) −41.0216 −1.35465
\(918\) −3.29823 −0.108858
\(919\) 19.5840 0.646017 0.323009 0.946396i \(-0.395306\pi\)
0.323009 + 0.946396i \(0.395306\pi\)
\(920\) 0 0
\(921\) 1.26934 0.0418261
\(922\) 36.0111 1.18596
\(923\) 22.0907 0.727126
\(924\) −0.0250453 −0.000823931 0
\(925\) 0 0
\(926\) 10.9732 0.360602
\(927\) 42.5640 1.39799
\(928\) 1.32451 0.0434793
\(929\) −26.0616 −0.855055 −0.427527 0.904002i \(-0.640615\pi\)
−0.427527 + 0.904002i \(0.640615\pi\)
\(930\) 0 0
\(931\) 1.77048 0.0580250
\(932\) 1.59453 0.0522307
\(933\) 1.18326 0.0387383
\(934\) −16.8720 −0.552069
\(935\) 0 0
\(936\) 32.4800 1.06164
\(937\) −37.3846 −1.22130 −0.610650 0.791900i \(-0.709092\pi\)
−0.610650 + 0.791900i \(0.709092\pi\)
\(938\) −43.6323 −1.42465
\(939\) −2.72108 −0.0887991
\(940\) 0 0
\(941\) −33.0380 −1.07701 −0.538504 0.842623i \(-0.681010\pi\)
−0.538504 + 0.842623i \(0.681010\pi\)
\(942\) 2.28033 0.0742970
\(943\) 32.9733 1.07376
\(944\) 7.88737 0.256712
\(945\) 0 0
\(946\) 17.2266 0.560085
\(947\) −47.6863 −1.54960 −0.774799 0.632208i \(-0.782149\pi\)
−0.774799 + 0.632208i \(0.782149\pi\)
\(948\) 0.140521 0.00456391
\(949\) −14.7341 −0.478290
\(950\) 0 0
\(951\) 0.600610 0.0194761
\(952\) 38.9911 1.26371
\(953\) −22.0635 −0.714708 −0.357354 0.933969i \(-0.616321\pi\)
−0.357354 + 0.933969i \(0.616321\pi\)
\(954\) 11.9009 0.385306
\(955\) 0 0
\(956\) −2.51550 −0.0813571
\(957\) 0.173514 0.00560892
\(958\) −37.6601 −1.21674
\(959\) 23.3231 0.753143
\(960\) 0 0
\(961\) 42.4412 1.36907
\(962\) −38.4148 −1.23854
\(963\) −5.80331 −0.187009
\(964\) 2.64953 0.0853355
\(965\) 0 0
\(966\) 1.93719 0.0623280
\(967\) 53.0016 1.70442 0.852209 0.523201i \(-0.175262\pi\)
0.852209 + 0.523201i \(0.175262\pi\)
\(968\) 2.74788 0.0883202
\(969\) −0.379107 −0.0121787
\(970\) 0 0
\(971\) −10.0046 −0.321062 −0.160531 0.987031i \(-0.551321\pi\)
−0.160531 + 0.987031i \(0.551321\pi\)
\(972\) 0.227703 0.00730359
\(973\) 55.4634 1.77808
\(974\) −11.9332 −0.382364
\(975\) 0 0
\(976\) 57.7013 1.84697
\(977\) −0.508472 −0.0162675 −0.00813373 0.999967i \(-0.502589\pi\)
−0.00813373 + 0.999967i \(0.502589\pi\)
\(978\) 0.00249381 7.97431e−5 0
\(979\) −1.30858 −0.0418224
\(980\) 0 0
\(981\) 32.5139 1.03809
\(982\) −12.6043 −0.402219
\(983\) −22.0873 −0.704476 −0.352238 0.935910i \(-0.614579\pi\)
−0.352238 + 0.935910i \(0.614579\pi\)
\(984\) 1.25873 0.0401267
\(985\) 0 0
\(986\) 15.2513 0.485700
\(987\) 0.806254 0.0256634
\(988\) −0.422002 −0.0134257
\(989\) −67.5949 −2.14939
\(990\) 0 0
\(991\) −48.5368 −1.54182 −0.770911 0.636943i \(-0.780199\pi\)
−0.770911 + 0.636943i \(0.780199\pi\)
\(992\) −5.17603 −0.164339
\(993\) −2.22255 −0.0705305
\(994\) −24.0512 −0.762859
\(995\) 0 0
\(996\) −0.0837386 −0.00265336
\(997\) −20.4836 −0.648723 −0.324362 0.945933i \(-0.605149\pi\)
−0.324362 + 0.945933i \(0.605149\pi\)
\(998\) 32.3941 1.02542
\(999\) 3.17890 0.100576
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.bc.1.10 30
5.2 odd 4 1045.2.b.e.419.10 30
5.3 odd 4 1045.2.b.e.419.21 yes 30
5.4 even 2 inner 5225.2.a.bc.1.21 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.b.e.419.10 30 5.2 odd 4
1045.2.b.e.419.21 yes 30 5.3 odd 4
5225.2.a.bc.1.10 30 1.1 even 1 trivial
5225.2.a.bc.1.21 30 5.4 even 2 inner