Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [5225,2,Mod(1,5225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 5225 = 5^{2} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(41.7218350561\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Twist minimal: | no (minimal twist has level 1045) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.74370 | 2.61424 | 5.52788 | 0 | −7.17269 | −3.68386 | −9.67944 | 3.83426 | 0 | ||||||||||||||||||
1.2 | −2.71685 | −2.46712 | 5.38125 | 0 | 6.70278 | −0.267393 | −9.18634 | 3.08666 | 0 | ||||||||||||||||||
1.3 | −2.58163 | 0.787674 | 4.66484 | 0 | −2.03349 | 0.906789 | −6.87964 | −2.37957 | 0 | ||||||||||||||||||
1.4 | −2.06343 | 3.28666 | 2.25776 | 0 | −6.78181 | 3.51972 | −0.531875 | 7.80213 | 0 | ||||||||||||||||||
1.5 | −1.84475 | −3.33093 | 1.40312 | 0 | 6.14475 | 3.04962 | 1.10110 | 8.09513 | 0 | ||||||||||||||||||
1.6 | −1.66420 | 1.15649 | 0.769547 | 0 | −1.92462 | 3.92678 | 2.04771 | −1.66254 | 0 | ||||||||||||||||||
1.7 | −1.60597 | 0.776012 | 0.579148 | 0 | −1.24625 | 0.953282 | 2.28185 | −2.39780 | 0 | ||||||||||||||||||
1.8 | −1.28593 | −0.496540 | −0.346393 | 0 | 0.638514 | −3.51780 | 3.01729 | −2.75345 | 0 | ||||||||||||||||||
1.9 | −1.06190 | 2.29282 | −0.872373 | 0 | −2.43474 | −3.97400 | 3.05017 | 2.25702 | 0 | ||||||||||||||||||
1.10 | −0.790175 | −2.57534 | −1.37562 | 0 | 2.03497 | −0.0669205 | 2.66733 | 3.63236 | 0 | ||||||||||||||||||
1.11 | −0.104144 | −0.696995 | −1.98915 | 0 | 0.0725876 | 3.21657 | 0.415445 | −2.51420 | 0 | ||||||||||||||||||
1.12 | 0.104144 | 0.696995 | −1.98915 | 0 | 0.0725876 | −3.21657 | −0.415445 | −2.51420 | 0 | ||||||||||||||||||
1.13 | 0.790175 | 2.57534 | −1.37562 | 0 | 2.03497 | 0.0669205 | −2.66733 | 3.63236 | 0 | ||||||||||||||||||
1.14 | 1.06190 | −2.29282 | −0.872373 | 0 | −2.43474 | 3.97400 | −3.05017 | 2.25702 | 0 | ||||||||||||||||||
1.15 | 1.28593 | 0.496540 | −0.346393 | 0 | 0.638514 | 3.51780 | −3.01729 | −2.75345 | 0 | ||||||||||||||||||
1.16 | 1.60597 | −0.776012 | 0.579148 | 0 | −1.24625 | −0.953282 | −2.28185 | −2.39780 | 0 | ||||||||||||||||||
1.17 | 1.66420 | −1.15649 | 0.769547 | 0 | −1.92462 | −3.92678 | −2.04771 | −1.66254 | 0 | ||||||||||||||||||
1.18 | 1.84475 | 3.33093 | 1.40312 | 0 | 6.14475 | −3.04962 | −1.10110 | 8.09513 | 0 | ||||||||||||||||||
1.19 | 2.06343 | −3.28666 | 2.25776 | 0 | −6.78181 | −3.51972 | 0.531875 | 7.80213 | 0 | ||||||||||||||||||
1.20 | 2.58163 | −0.787674 | 4.66484 | 0 | −2.03349 | −0.906789 | 6.87964 | −2.37957 | 0 | ||||||||||||||||||
See all 22 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \( -1 \) |
\(11\) | \( +1 \) |
\(19\) | \( +1 \) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 5225.2.a.bb | 22 | |
5.b | even | 2 | 1 | inner | 5225.2.a.bb | 22 | |
5.c | odd | 4 | 2 | 1045.2.b.d | ✓ | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1045.2.b.d | ✓ | 22 | 5.c | odd | 4 | 2 | |
5225.2.a.bb | 22 | 1.a | even | 1 | 1 | trivial | |
5225.2.a.bb | 22 | 5.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5225))\):
\( T_{2}^{22} - 38 T_{2}^{20} + 620 T_{2}^{18} - 5698 T_{2}^{16} + 32546 T_{2}^{14} - 120279 T_{2}^{12} + \cdots - 484 \)
|
\( T_{7}^{22} - 91 T_{7}^{20} + 3554 T_{7}^{18} - 77495 T_{7}^{16} + 1025919 T_{7}^{14} - 8370354 T_{7}^{12} + \cdots - 11664 \)
|