Properties

 Label 5225.2.a.b.1.1 Level $5225$ Weight $2$ Character 5225.1 Self dual yes Analytic conductor $41.722$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [5225,2,Mod(1,5225)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(5225, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("5225.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$5225 = 5^{2} \cdot 11 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5225.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$41.7218350561$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 209) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 5225.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{3} -2.00000 q^{4} +4.00000 q^{7} -2.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{3} -2.00000 q^{4} +4.00000 q^{7} -2.00000 q^{9} +1.00000 q^{11} +2.00000 q^{12} -2.00000 q^{13} +4.00000 q^{16} +1.00000 q^{19} -4.00000 q^{21} -3.00000 q^{23} +5.00000 q^{27} -8.00000 q^{28} -6.00000 q^{29} -7.00000 q^{31} -1.00000 q^{33} +4.00000 q^{36} +7.00000 q^{37} +2.00000 q^{39} +10.0000 q^{43} -2.00000 q^{44} -4.00000 q^{48} +9.00000 q^{49} +4.00000 q^{52} -6.00000 q^{53} -1.00000 q^{57} +3.00000 q^{59} -10.0000 q^{61} -8.00000 q^{63} -8.00000 q^{64} -11.0000 q^{67} +3.00000 q^{69} +15.0000 q^{71} -8.00000 q^{73} -2.00000 q^{76} +4.00000 q^{77} -16.0000 q^{79} +1.00000 q^{81} +8.00000 q^{84} +6.00000 q^{87} +9.00000 q^{89} -8.00000 q^{91} +6.00000 q^{92} +7.00000 q^{93} +1.00000 q^{97} -2.00000 q^{99} +O(q^{100})$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$3$$ −1.00000 −0.577350 −0.288675 0.957427i $$-0.593215\pi$$
−0.288675 + 0.957427i $$0.593215\pi$$
$$4$$ −2.00000 −1.00000
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 4.00000 1.51186 0.755929 0.654654i $$-0.227186\pi$$
0.755929 + 0.654654i $$0.227186\pi$$
$$8$$ 0 0
$$9$$ −2.00000 −0.666667
$$10$$ 0 0
$$11$$ 1.00000 0.301511
$$12$$ 2.00000 0.577350
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 4.00000 1.00000
$$17$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$18$$ 0 0
$$19$$ 1.00000 0.229416
$$20$$ 0 0
$$21$$ −4.00000 −0.872872
$$22$$ 0 0
$$23$$ −3.00000 −0.625543 −0.312772 0.949828i $$-0.601257\pi$$
−0.312772 + 0.949828i $$0.601257\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 5.00000 0.962250
$$28$$ −8.00000 −1.51186
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −7.00000 −1.25724 −0.628619 0.777714i $$-0.716379\pi$$
−0.628619 + 0.777714i $$0.716379\pi$$
$$32$$ 0 0
$$33$$ −1.00000 −0.174078
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 4.00000 0.666667
$$37$$ 7.00000 1.15079 0.575396 0.817875i $$-0.304848\pi$$
0.575396 + 0.817875i $$0.304848\pi$$
$$38$$ 0 0
$$39$$ 2.00000 0.320256
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ 10.0000 1.52499 0.762493 0.646997i $$-0.223975\pi$$
0.762493 + 0.646997i $$0.223975\pi$$
$$44$$ −2.00000 −0.301511
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ −4.00000 −0.577350
$$49$$ 9.00000 1.28571
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 4.00000 0.554700
$$53$$ −6.00000 −0.824163 −0.412082 0.911147i $$-0.635198\pi$$
−0.412082 + 0.911147i $$0.635198\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ −1.00000 −0.132453
$$58$$ 0 0
$$59$$ 3.00000 0.390567 0.195283 0.980747i $$-0.437437\pi$$
0.195283 + 0.980747i $$0.437437\pi$$
$$60$$ 0 0
$$61$$ −10.0000 −1.28037 −0.640184 0.768221i $$-0.721142\pi$$
−0.640184 + 0.768221i $$0.721142\pi$$
$$62$$ 0 0
$$63$$ −8.00000 −1.00791
$$64$$ −8.00000 −1.00000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −11.0000 −1.34386 −0.671932 0.740613i $$-0.734535\pi$$
−0.671932 + 0.740613i $$0.734535\pi$$
$$68$$ 0 0
$$69$$ 3.00000 0.361158
$$70$$ 0 0
$$71$$ 15.0000 1.78017 0.890086 0.455792i $$-0.150644\pi$$
0.890086 + 0.455792i $$0.150644\pi$$
$$72$$ 0 0
$$73$$ −8.00000 −0.936329 −0.468165 0.883641i $$-0.655085\pi$$
−0.468165 + 0.883641i $$0.655085\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ −2.00000 −0.229416
$$77$$ 4.00000 0.455842
$$78$$ 0 0
$$79$$ −16.0000 −1.80014 −0.900070 0.435745i $$-0.856485\pi$$
−0.900070 + 0.435745i $$0.856485\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$84$$ 8.00000 0.872872
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 6.00000 0.643268
$$88$$ 0 0
$$89$$ 9.00000 0.953998 0.476999 0.878904i $$-0.341725\pi$$
0.476999 + 0.878904i $$0.341725\pi$$
$$90$$ 0 0
$$91$$ −8.00000 −0.838628
$$92$$ 6.00000 0.625543
$$93$$ 7.00000 0.725866
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 1.00000 0.101535 0.0507673 0.998711i $$-0.483833\pi$$
0.0507673 + 0.998711i $$0.483833\pi$$
$$98$$ 0 0
$$99$$ −2.00000 −0.201008
$$100$$ 0 0
$$101$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$102$$ 0 0
$$103$$ 16.0000 1.57653 0.788263 0.615338i $$-0.210980\pi$$
0.788263 + 0.615338i $$0.210980\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 18.0000 1.74013 0.870063 0.492941i $$-0.164078\pi$$
0.870063 + 0.492941i $$0.164078\pi$$
$$108$$ −10.0000 −0.962250
$$109$$ 2.00000 0.191565 0.0957826 0.995402i $$-0.469465\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ −7.00000 −0.664411
$$112$$ 16.0000 1.51186
$$113$$ 9.00000 0.846649 0.423324 0.905978i $$-0.360863\pi$$
0.423324 + 0.905978i $$0.360863\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 12.0000 1.11417
$$117$$ 4.00000 0.369800
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 1.00000 0.0909091
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 14.0000 1.25724
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −2.00000 −0.177471 −0.0887357 0.996055i $$-0.528283\pi$$
−0.0887357 + 0.996055i $$0.528283\pi$$
$$128$$ 0 0
$$129$$ −10.0000 −0.880451
$$130$$ 0 0
$$131$$ −6.00000 −0.524222 −0.262111 0.965038i $$-0.584419\pi$$
−0.262111 + 0.965038i $$0.584419\pi$$
$$132$$ 2.00000 0.174078
$$133$$ 4.00000 0.346844
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −21.0000 −1.79415 −0.897076 0.441877i $$-0.854313\pi$$
−0.897076 + 0.441877i $$0.854313\pi$$
$$138$$ 0 0
$$139$$ 8.00000 0.678551 0.339276 0.940687i $$-0.389818\pi$$
0.339276 + 0.940687i $$0.389818\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −2.00000 −0.167248
$$144$$ −8.00000 −0.666667
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −9.00000 −0.742307
$$148$$ −14.0000 −1.15079
$$149$$ −6.00000 −0.491539 −0.245770 0.969328i $$-0.579041\pi$$
−0.245770 + 0.969328i $$0.579041\pi$$
$$150$$ 0 0
$$151$$ −10.0000 −0.813788 −0.406894 0.913475i $$-0.633388\pi$$
−0.406894 + 0.913475i $$0.633388\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ −4.00000 −0.320256
$$157$$ −17.0000 −1.35675 −0.678374 0.734717i $$-0.737315\pi$$
−0.678374 + 0.734717i $$0.737315\pi$$
$$158$$ 0 0
$$159$$ 6.00000 0.475831
$$160$$ 0 0
$$161$$ −12.0000 −0.945732
$$162$$ 0 0
$$163$$ 4.00000 0.313304 0.156652 0.987654i $$-0.449930\pi$$
0.156652 + 0.987654i $$0.449930\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 18.0000 1.39288 0.696441 0.717614i $$-0.254766\pi$$
0.696441 + 0.717614i $$0.254766\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ −2.00000 −0.152944
$$172$$ −20.0000 −1.52499
$$173$$ −24.0000 −1.82469 −0.912343 0.409426i $$-0.865729\pi$$
−0.912343 + 0.409426i $$0.865729\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 4.00000 0.301511
$$177$$ −3.00000 −0.225494
$$178$$ 0 0
$$179$$ 15.0000 1.12115 0.560576 0.828103i $$-0.310580\pi$$
0.560576 + 0.828103i $$0.310580\pi$$
$$180$$ 0 0
$$181$$ −7.00000 −0.520306 −0.260153 0.965567i $$-0.583773\pi$$
−0.260153 + 0.965567i $$0.583773\pi$$
$$182$$ 0 0
$$183$$ 10.0000 0.739221
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 20.0000 1.45479
$$190$$ 0 0
$$191$$ −15.0000 −1.08536 −0.542681 0.839939i $$-0.682591\pi$$
−0.542681 + 0.839939i $$0.682591\pi$$
$$192$$ 8.00000 0.577350
$$193$$ 4.00000 0.287926 0.143963 0.989583i $$-0.454015\pi$$
0.143963 + 0.989583i $$0.454015\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ −18.0000 −1.28571
$$197$$ −12.0000 −0.854965 −0.427482 0.904024i $$-0.640599\pi$$
−0.427482 + 0.904024i $$0.640599\pi$$
$$198$$ 0 0
$$199$$ −16.0000 −1.13421 −0.567105 0.823646i $$-0.691937\pi$$
−0.567105 + 0.823646i $$0.691937\pi$$
$$200$$ 0 0
$$201$$ 11.0000 0.775880
$$202$$ 0 0
$$203$$ −24.0000 −1.68447
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 6.00000 0.417029
$$208$$ −8.00000 −0.554700
$$209$$ 1.00000 0.0691714
$$210$$ 0 0
$$211$$ −22.0000 −1.51454 −0.757271 0.653101i $$-0.773468\pi$$
−0.757271 + 0.653101i $$0.773468\pi$$
$$212$$ 12.0000 0.824163
$$213$$ −15.0000 −1.02778
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −28.0000 −1.90076
$$218$$ 0 0
$$219$$ 8.00000 0.540590
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ −5.00000 −0.334825 −0.167412 0.985887i $$-0.553541\pi$$
−0.167412 + 0.985887i $$0.553541\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 12.0000 0.796468 0.398234 0.917284i $$-0.369623\pi$$
0.398234 + 0.917284i $$0.369623\pi$$
$$228$$ 2.00000 0.132453
$$229$$ −13.0000 −0.859064 −0.429532 0.903052i $$-0.641321\pi$$
−0.429532 + 0.903052i $$0.641321\pi$$
$$230$$ 0 0
$$231$$ −4.00000 −0.263181
$$232$$ 0 0
$$233$$ −18.0000 −1.17922 −0.589610 0.807688i $$-0.700718\pi$$
−0.589610 + 0.807688i $$0.700718\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ −6.00000 −0.390567
$$237$$ 16.0000 1.03931
$$238$$ 0 0
$$239$$ −18.0000 −1.16432 −0.582162 0.813073i $$-0.697793\pi$$
−0.582162 + 0.813073i $$0.697793\pi$$
$$240$$ 0 0
$$241$$ 20.0000 1.28831 0.644157 0.764894i $$-0.277208\pi$$
0.644157 + 0.764894i $$0.277208\pi$$
$$242$$ 0 0
$$243$$ −16.0000 −1.02640
$$244$$ 20.0000 1.28037
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −2.00000 −0.127257
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 21.0000 1.32551 0.662754 0.748837i $$-0.269387\pi$$
0.662754 + 0.748837i $$0.269387\pi$$
$$252$$ 16.0000 1.00791
$$253$$ −3.00000 −0.188608
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 16.0000 1.00000
$$257$$ 6.00000 0.374270 0.187135 0.982334i $$-0.440080\pi$$
0.187135 + 0.982334i $$0.440080\pi$$
$$258$$ 0 0
$$259$$ 28.0000 1.73984
$$260$$ 0 0
$$261$$ 12.0000 0.742781
$$262$$ 0 0
$$263$$ 30.0000 1.84988 0.924940 0.380114i $$-0.124115\pi$$
0.924940 + 0.380114i $$0.124115\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −9.00000 −0.550791
$$268$$ 22.0000 1.34386
$$269$$ −30.0000 −1.82913 −0.914566 0.404436i $$-0.867468\pi$$
−0.914566 + 0.404436i $$0.867468\pi$$
$$270$$ 0 0
$$271$$ −16.0000 −0.971931 −0.485965 0.873978i $$-0.661532\pi$$
−0.485965 + 0.873978i $$0.661532\pi$$
$$272$$ 0 0
$$273$$ 8.00000 0.484182
$$274$$ 0 0
$$275$$ 0 0
$$276$$ −6.00000 −0.361158
$$277$$ −26.0000 −1.56219 −0.781094 0.624413i $$-0.785338\pi$$
−0.781094 + 0.624413i $$0.785338\pi$$
$$278$$ 0 0
$$279$$ 14.0000 0.838158
$$280$$ 0 0
$$281$$ −30.0000 −1.78965 −0.894825 0.446417i $$-0.852700\pi$$
−0.894825 + 0.446417i $$0.852700\pi$$
$$282$$ 0 0
$$283$$ −14.0000 −0.832214 −0.416107 0.909316i $$-0.636606\pi$$
−0.416107 + 0.909316i $$0.636606\pi$$
$$284$$ −30.0000 −1.78017
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −17.0000 −1.00000
$$290$$ 0 0
$$291$$ −1.00000 −0.0586210
$$292$$ 16.0000 0.936329
$$293$$ −18.0000 −1.05157 −0.525786 0.850617i $$-0.676229\pi$$
−0.525786 + 0.850617i $$0.676229\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 5.00000 0.290129
$$298$$ 0 0
$$299$$ 6.00000 0.346989
$$300$$ 0 0
$$301$$ 40.0000 2.30556
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 4.00000 0.229416
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −2.00000 −0.114146 −0.0570730 0.998370i $$-0.518177\pi$$
−0.0570730 + 0.998370i $$0.518177\pi$$
$$308$$ −8.00000 −0.455842
$$309$$ −16.0000 −0.910208
$$310$$ 0 0
$$311$$ −24.0000 −1.36092 −0.680458 0.732787i $$-0.738219\pi$$
−0.680458 + 0.732787i $$0.738219\pi$$
$$312$$ 0 0
$$313$$ 1.00000 0.0565233 0.0282617 0.999601i $$-0.491003\pi$$
0.0282617 + 0.999601i $$0.491003\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 32.0000 1.80014
$$317$$ −15.0000 −0.842484 −0.421242 0.906948i $$-0.638406\pi$$
−0.421242 + 0.906948i $$0.638406\pi$$
$$318$$ 0 0
$$319$$ −6.00000 −0.335936
$$320$$ 0 0
$$321$$ −18.0000 −1.00466
$$322$$ 0 0
$$323$$ 0 0
$$324$$ −2.00000 −0.111111
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −2.00000 −0.110600
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −7.00000 −0.384755 −0.192377 0.981321i $$-0.561620\pi$$
−0.192377 + 0.981321i $$0.561620\pi$$
$$332$$ 0 0
$$333$$ −14.0000 −0.767195
$$334$$ 0 0
$$335$$ 0 0
$$336$$ −16.0000 −0.872872
$$337$$ 4.00000 0.217894 0.108947 0.994048i $$-0.465252\pi$$
0.108947 + 0.994048i $$0.465252\pi$$
$$338$$ 0 0
$$339$$ −9.00000 −0.488813
$$340$$ 0 0
$$341$$ −7.00000 −0.379071
$$342$$ 0 0
$$343$$ 8.00000 0.431959
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 18.0000 0.966291 0.483145 0.875540i $$-0.339494\pi$$
0.483145 + 0.875540i $$0.339494\pi$$
$$348$$ −12.0000 −0.643268
$$349$$ −28.0000 −1.49881 −0.749403 0.662114i $$-0.769659\pi$$
−0.749403 + 0.662114i $$0.769659\pi$$
$$350$$ 0 0
$$351$$ −10.0000 −0.533761
$$352$$ 0 0
$$353$$ 21.0000 1.11772 0.558859 0.829263i $$-0.311239\pi$$
0.558859 + 0.829263i $$0.311239\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ −18.0000 −0.953998
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 12.0000 0.633336 0.316668 0.948536i $$-0.397436\pi$$
0.316668 + 0.948536i $$0.397436\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ 0 0
$$363$$ −1.00000 −0.0524864
$$364$$ 16.0000 0.838628
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −23.0000 −1.20059 −0.600295 0.799779i $$-0.704950\pi$$
−0.600295 + 0.799779i $$0.704950\pi$$
$$368$$ −12.0000 −0.625543
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −24.0000 −1.24602
$$372$$ −14.0000 −0.725866
$$373$$ −14.0000 −0.724893 −0.362446 0.932005i $$-0.618058\pi$$
−0.362446 + 0.932005i $$0.618058\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 12.0000 0.618031
$$378$$ 0 0
$$379$$ 5.00000 0.256833 0.128416 0.991720i $$-0.459011\pi$$
0.128416 + 0.991720i $$0.459011\pi$$
$$380$$ 0 0
$$381$$ 2.00000 0.102463
$$382$$ 0 0
$$383$$ −33.0000 −1.68622 −0.843111 0.537740i $$-0.819278\pi$$
−0.843111 + 0.537740i $$0.819278\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −20.0000 −1.01666
$$388$$ −2.00000 −0.101535
$$389$$ −3.00000 −0.152106 −0.0760530 0.997104i $$-0.524232\pi$$
−0.0760530 + 0.997104i $$0.524232\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 6.00000 0.302660
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 4.00000 0.201008
$$397$$ −14.0000 −0.702640 −0.351320 0.936255i $$-0.614267\pi$$
−0.351320 + 0.936255i $$0.614267\pi$$
$$398$$ 0 0
$$399$$ −4.00000 −0.200250
$$400$$ 0 0
$$401$$ −30.0000 −1.49813 −0.749064 0.662497i $$-0.769497\pi$$
−0.749064 + 0.662497i $$0.769497\pi$$
$$402$$ 0 0
$$403$$ 14.0000 0.697390
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 7.00000 0.346977
$$408$$ 0 0
$$409$$ 32.0000 1.58230 0.791149 0.611623i $$-0.209483\pi$$
0.791149 + 0.611623i $$0.209483\pi$$
$$410$$ 0 0
$$411$$ 21.0000 1.03585
$$412$$ −32.0000 −1.57653
$$413$$ 12.0000 0.590481
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −8.00000 −0.391762
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ 26.0000 1.26716 0.633581 0.773676i $$-0.281584\pi$$
0.633581 + 0.773676i $$0.281584\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −40.0000 −1.93574
$$428$$ −36.0000 −1.74013
$$429$$ 2.00000 0.0965609
$$430$$ 0 0
$$431$$ −6.00000 −0.289010 −0.144505 0.989504i $$-0.546159\pi$$
−0.144505 + 0.989504i $$0.546159\pi$$
$$432$$ 20.0000 0.962250
$$433$$ 13.0000 0.624740 0.312370 0.949960i $$-0.398877\pi$$
0.312370 + 0.949960i $$0.398877\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ −4.00000 −0.191565
$$437$$ −3.00000 −0.143509
$$438$$ 0 0
$$439$$ 14.0000 0.668184 0.334092 0.942541i $$-0.391570\pi$$
0.334092 + 0.942541i $$0.391570\pi$$
$$440$$ 0 0
$$441$$ −18.0000 −0.857143
$$442$$ 0 0
$$443$$ 27.0000 1.28281 0.641404 0.767203i $$-0.278352\pi$$
0.641404 + 0.767203i $$0.278352\pi$$
$$444$$ 14.0000 0.664411
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 6.00000 0.283790
$$448$$ −32.0000 −1.51186
$$449$$ −27.0000 −1.27421 −0.637104 0.770778i $$-0.719868\pi$$
−0.637104 + 0.770778i $$0.719868\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ −18.0000 −0.846649
$$453$$ 10.0000 0.469841
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 10.0000 0.467780 0.233890 0.972263i $$-0.424854\pi$$
0.233890 + 0.972263i $$0.424854\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 12.0000 0.558896 0.279448 0.960161i $$-0.409849\pi$$
0.279448 + 0.960161i $$0.409849\pi$$
$$462$$ 0 0
$$463$$ −29.0000 −1.34774 −0.673872 0.738848i $$-0.735370\pi$$
−0.673872 + 0.738848i $$0.735370\pi$$
$$464$$ −24.0000 −1.11417
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 3.00000 0.138823 0.0694117 0.997588i $$-0.477888\pi$$
0.0694117 + 0.997588i $$0.477888\pi$$
$$468$$ −8.00000 −0.369800
$$469$$ −44.0000 −2.03173
$$470$$ 0 0
$$471$$ 17.0000 0.783319
$$472$$ 0 0
$$473$$ 10.0000 0.459800
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 12.0000 0.549442
$$478$$ 0 0
$$479$$ −6.00000 −0.274147 −0.137073 0.990561i $$-0.543770\pi$$
−0.137073 + 0.990561i $$0.543770\pi$$
$$480$$ 0 0
$$481$$ −14.0000 −0.638345
$$482$$ 0 0
$$483$$ 12.0000 0.546019
$$484$$ −2.00000 −0.0909091
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 7.00000 0.317200 0.158600 0.987343i $$-0.449302\pi$$
0.158600 + 0.987343i $$0.449302\pi$$
$$488$$ 0 0
$$489$$ −4.00000 −0.180886
$$490$$ 0 0
$$491$$ 30.0000 1.35388 0.676941 0.736038i $$-0.263305\pi$$
0.676941 + 0.736038i $$0.263305\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ −28.0000 −1.25724
$$497$$ 60.0000 2.69137
$$498$$ 0 0
$$499$$ −16.0000 −0.716258 −0.358129 0.933672i $$-0.616585\pi$$
−0.358129 + 0.933672i $$0.616585\pi$$
$$500$$ 0 0
$$501$$ −18.0000 −0.804181
$$502$$ 0 0
$$503$$ −18.0000 −0.802580 −0.401290 0.915951i $$-0.631438\pi$$
−0.401290 + 0.915951i $$0.631438\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 9.00000 0.399704
$$508$$ 4.00000 0.177471
$$509$$ 21.0000 0.930809 0.465404 0.885098i $$-0.345909\pi$$
0.465404 + 0.885098i $$0.345909\pi$$
$$510$$ 0 0
$$511$$ −32.0000 −1.41560
$$512$$ 0 0
$$513$$ 5.00000 0.220755
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 20.0000 0.880451
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 24.0000 1.05348
$$520$$ 0 0
$$521$$ 39.0000 1.70862 0.854311 0.519763i $$-0.173980\pi$$
0.854311 + 0.519763i $$0.173980\pi$$
$$522$$ 0 0
$$523$$ 16.0000 0.699631 0.349816 0.936819i $$-0.386244\pi$$
0.349816 + 0.936819i $$0.386244\pi$$
$$524$$ 12.0000 0.524222
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ −4.00000 −0.174078
$$529$$ −14.0000 −0.608696
$$530$$ 0 0
$$531$$ −6.00000 −0.260378
$$532$$ −8.00000 −0.346844
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ −15.0000 −0.647298
$$538$$ 0 0
$$539$$ 9.00000 0.387657
$$540$$ 0 0
$$541$$ −10.0000 −0.429934 −0.214967 0.976621i $$-0.568964\pi$$
−0.214967 + 0.976621i $$0.568964\pi$$
$$542$$ 0 0
$$543$$ 7.00000 0.300399
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 22.0000 0.940652 0.470326 0.882493i $$-0.344136\pi$$
0.470326 + 0.882493i $$0.344136\pi$$
$$548$$ 42.0000 1.79415
$$549$$ 20.0000 0.853579
$$550$$ 0 0
$$551$$ −6.00000 −0.255609
$$552$$ 0 0
$$553$$ −64.0000 −2.72156
$$554$$ 0 0
$$555$$ 0 0
$$556$$ −16.0000 −0.678551
$$557$$ 30.0000 1.27114 0.635570 0.772043i $$-0.280765\pi$$
0.635570 + 0.772043i $$0.280765\pi$$
$$558$$ 0 0
$$559$$ −20.0000 −0.845910
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 6.00000 0.252870 0.126435 0.991975i $$-0.459647\pi$$
0.126435 + 0.991975i $$0.459647\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 4.00000 0.167984
$$568$$ 0 0
$$569$$ 6.00000 0.251533 0.125767 0.992060i $$-0.459861\pi$$
0.125767 + 0.992060i $$0.459861\pi$$
$$570$$ 0 0
$$571$$ −46.0000 −1.92504 −0.962520 0.271211i $$-0.912576\pi$$
−0.962520 + 0.271211i $$0.912576\pi$$
$$572$$ 4.00000 0.167248
$$573$$ 15.0000 0.626634
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 16.0000 0.666667
$$577$$ 7.00000 0.291414 0.145707 0.989328i $$-0.453454\pi$$
0.145707 + 0.989328i $$0.453454\pi$$
$$578$$ 0 0
$$579$$ −4.00000 −0.166234
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −6.00000 −0.248495
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −24.0000 −0.990586 −0.495293 0.868726i $$-0.664939\pi$$
−0.495293 + 0.868726i $$0.664939\pi$$
$$588$$ 18.0000 0.742307
$$589$$ −7.00000 −0.288430
$$590$$ 0 0
$$591$$ 12.0000 0.493614
$$592$$ 28.0000 1.15079
$$593$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 12.0000 0.491539
$$597$$ 16.0000 0.654836
$$598$$ 0 0
$$599$$ −24.0000 −0.980613 −0.490307 0.871550i $$-0.663115\pi$$
−0.490307 + 0.871550i $$0.663115\pi$$
$$600$$ 0 0
$$601$$ 20.0000 0.815817 0.407909 0.913023i $$-0.366258\pi$$
0.407909 + 0.913023i $$0.366258\pi$$
$$602$$ 0 0
$$603$$ 22.0000 0.895909
$$604$$ 20.0000 0.813788
$$605$$ 0 0
$$606$$ 0 0
$$607$$ −8.00000 −0.324710 −0.162355 0.986732i $$-0.551909\pi$$
−0.162355 + 0.986732i $$0.551909\pi$$
$$608$$ 0 0
$$609$$ 24.0000 0.972529
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ −2.00000 −0.0807792 −0.0403896 0.999184i $$-0.512860\pi$$
−0.0403896 + 0.999184i $$0.512860\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 30.0000 1.20775 0.603877 0.797077i $$-0.293622\pi$$
0.603877 + 0.797077i $$0.293622\pi$$
$$618$$ 0 0
$$619$$ −13.0000 −0.522514 −0.261257 0.965269i $$-0.584137\pi$$
−0.261257 + 0.965269i $$0.584137\pi$$
$$620$$ 0 0
$$621$$ −15.0000 −0.601929
$$622$$ 0 0
$$623$$ 36.0000 1.44231
$$624$$ 8.00000 0.320256
$$625$$ 0 0
$$626$$ 0 0
$$627$$ −1.00000 −0.0399362
$$628$$ 34.0000 1.35675
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −1.00000 −0.0398094 −0.0199047 0.999802i $$-0.506336\pi$$
−0.0199047 + 0.999802i $$0.506336\pi$$
$$632$$ 0 0
$$633$$ 22.0000 0.874421
$$634$$ 0 0
$$635$$ 0 0
$$636$$ −12.0000 −0.475831
$$637$$ −18.0000 −0.713186
$$638$$ 0 0
$$639$$ −30.0000 −1.18678
$$640$$ 0 0
$$641$$ −15.0000 −0.592464 −0.296232 0.955116i $$-0.595730\pi$$
−0.296232 + 0.955116i $$0.595730\pi$$
$$642$$ 0 0
$$643$$ 7.00000 0.276053 0.138027 0.990429i $$-0.455924\pi$$
0.138027 + 0.990429i $$0.455924\pi$$
$$644$$ 24.0000 0.945732
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −21.0000 −0.825595 −0.412798 0.910823i $$-0.635448\pi$$
−0.412798 + 0.910823i $$0.635448\pi$$
$$648$$ 0 0
$$649$$ 3.00000 0.117760
$$650$$ 0 0
$$651$$ 28.0000 1.09741
$$652$$ −8.00000 −0.313304
$$653$$ −27.0000 −1.05659 −0.528296 0.849060i $$-0.677169\pi$$
−0.528296 + 0.849060i $$0.677169\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 16.0000 0.624219
$$658$$ 0 0
$$659$$ −18.0000 −0.701180 −0.350590 0.936529i $$-0.614019\pi$$
−0.350590 + 0.936529i $$0.614019\pi$$
$$660$$ 0 0
$$661$$ −13.0000 −0.505641 −0.252821 0.967513i $$-0.581358\pi$$
−0.252821 + 0.967513i $$0.581358\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 18.0000 0.696963
$$668$$ −36.0000 −1.39288
$$669$$ 5.00000 0.193311
$$670$$ 0 0
$$671$$ −10.0000 −0.386046
$$672$$ 0 0
$$673$$ −14.0000 −0.539660 −0.269830 0.962908i $$-0.586968\pi$$
−0.269830 + 0.962908i $$0.586968\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 18.0000 0.692308
$$677$$ −6.00000 −0.230599 −0.115299 0.993331i $$-0.536783\pi$$
−0.115299 + 0.993331i $$0.536783\pi$$
$$678$$ 0 0
$$679$$ 4.00000 0.153506
$$680$$ 0 0
$$681$$ −12.0000 −0.459841
$$682$$ 0 0
$$683$$ −12.0000 −0.459167 −0.229584 0.973289i $$-0.573736\pi$$
−0.229584 + 0.973289i $$0.573736\pi$$
$$684$$ 4.00000 0.152944
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 13.0000 0.495981
$$688$$ 40.0000 1.52499
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ 17.0000 0.646710 0.323355 0.946278i $$-0.395189\pi$$
0.323355 + 0.946278i $$0.395189\pi$$
$$692$$ 48.0000 1.82469
$$693$$ −8.00000 −0.303895
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 18.0000 0.680823
$$700$$ 0 0
$$701$$ 30.0000 1.13308 0.566542 0.824033i $$-0.308281\pi$$
0.566542 + 0.824033i $$0.308281\pi$$
$$702$$ 0 0
$$703$$ 7.00000 0.264010
$$704$$ −8.00000 −0.301511
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 6.00000 0.225494
$$709$$ −25.0000 −0.938895 −0.469447 0.882960i $$-0.655547\pi$$
−0.469447 + 0.882960i $$0.655547\pi$$
$$710$$ 0 0
$$711$$ 32.0000 1.20009
$$712$$ 0 0
$$713$$ 21.0000 0.786456
$$714$$ 0 0
$$715$$ 0 0
$$716$$ −30.0000 −1.12115
$$717$$ 18.0000 0.672222
$$718$$ 0 0
$$719$$ −9.00000 −0.335643 −0.167822 0.985817i $$-0.553673\pi$$
−0.167822 + 0.985817i $$0.553673\pi$$
$$720$$ 0 0
$$721$$ 64.0000 2.38348
$$722$$ 0 0
$$723$$ −20.0000 −0.743808
$$724$$ 14.0000 0.520306
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −35.0000 −1.29808 −0.649039 0.760755i $$-0.724829\pi$$
−0.649039 + 0.760755i $$0.724829\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ 0 0
$$732$$ −20.0000 −0.739221
$$733$$ 22.0000 0.812589 0.406294 0.913742i $$-0.366821\pi$$
0.406294 + 0.913742i $$0.366821\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −11.0000 −0.405190
$$738$$ 0 0
$$739$$ 44.0000 1.61857 0.809283 0.587419i $$-0.199856\pi$$
0.809283 + 0.587419i $$0.199856\pi$$
$$740$$ 0 0
$$741$$ 2.00000 0.0734718
$$742$$ 0 0
$$743$$ 30.0000 1.10059 0.550297 0.834969i $$-0.314515\pi$$
0.550297 + 0.834969i $$0.314515\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 72.0000 2.63082
$$750$$ 0 0
$$751$$ −1.00000 −0.0364905 −0.0182453 0.999834i $$-0.505808\pi$$
−0.0182453 + 0.999834i $$0.505808\pi$$
$$752$$ 0 0
$$753$$ −21.0000 −0.765283
$$754$$ 0 0
$$755$$ 0 0
$$756$$ −40.0000 −1.45479
$$757$$ −14.0000 −0.508839 −0.254419 0.967094i $$-0.581884\pi$$
−0.254419 + 0.967094i $$0.581884\pi$$
$$758$$ 0 0
$$759$$ 3.00000 0.108893
$$760$$ 0 0
$$761$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$762$$ 0 0
$$763$$ 8.00000 0.289619
$$764$$ 30.0000 1.08536
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −6.00000 −0.216647
$$768$$ −16.0000 −0.577350
$$769$$ −28.0000 −1.00971 −0.504853 0.863205i $$-0.668453\pi$$
−0.504853 + 0.863205i $$0.668453\pi$$
$$770$$ 0 0
$$771$$ −6.00000 −0.216085
$$772$$ −8.00000 −0.287926
$$773$$ 6.00000 0.215805 0.107903 0.994161i $$-0.465587\pi$$
0.107903 + 0.994161i $$0.465587\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ −28.0000 −1.00449
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 15.0000 0.536742
$$782$$ 0 0
$$783$$ −30.0000 −1.07211
$$784$$ 36.0000 1.28571
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −20.0000 −0.712923 −0.356462 0.934310i $$-0.616017\pi$$
−0.356462 + 0.934310i $$0.616017\pi$$
$$788$$ 24.0000 0.854965
$$789$$ −30.0000 −1.06803
$$790$$ 0 0
$$791$$ 36.0000 1.28001
$$792$$ 0 0
$$793$$ 20.0000 0.710221
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 32.0000 1.13421
$$797$$ −51.0000 −1.80651 −0.903256 0.429101i $$-0.858830\pi$$
−0.903256 + 0.429101i $$0.858830\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −18.0000 −0.635999
$$802$$ 0 0
$$803$$ −8.00000 −0.282314
$$804$$ −22.0000 −0.775880
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 30.0000 1.05605
$$808$$ 0 0
$$809$$ −24.0000 −0.843795 −0.421898 0.906644i $$-0.638636\pi$$
−0.421898 + 0.906644i $$0.638636\pi$$
$$810$$ 0 0
$$811$$ 20.0000 0.702295 0.351147 0.936320i $$-0.385792\pi$$
0.351147 + 0.936320i $$0.385792\pi$$
$$812$$ 48.0000 1.68447
$$813$$ 16.0000 0.561144
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 10.0000 0.349856
$$818$$ 0 0
$$819$$ 16.0000 0.559085
$$820$$ 0 0
$$821$$ 36.0000 1.25641 0.628204 0.778048i $$-0.283790\pi$$
0.628204 + 0.778048i $$0.283790\pi$$
$$822$$ 0 0
$$823$$ 13.0000 0.453152 0.226576 0.973994i $$-0.427247\pi$$
0.226576 + 0.973994i $$0.427247\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 42.0000 1.46048 0.730242 0.683189i $$-0.239408\pi$$
0.730242 + 0.683189i $$0.239408\pi$$
$$828$$ −12.0000 −0.417029
$$829$$ 11.0000 0.382046 0.191023 0.981586i $$-0.438820\pi$$
0.191023 + 0.981586i $$0.438820\pi$$
$$830$$ 0 0
$$831$$ 26.0000 0.901930
$$832$$ 16.0000 0.554700
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 0 0
$$836$$ −2.00000 −0.0691714
$$837$$ −35.0000 −1.20978
$$838$$ 0 0
$$839$$ 33.0000 1.13929 0.569643 0.821892i $$-0.307081\pi$$
0.569643 + 0.821892i $$0.307081\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 30.0000 1.03325
$$844$$ 44.0000 1.51454
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 4.00000 0.137442
$$848$$ −24.0000 −0.824163
$$849$$ 14.0000 0.480479
$$850$$ 0 0
$$851$$ −21.0000 −0.719871
$$852$$ 30.0000 1.02778
$$853$$ 22.0000 0.753266 0.376633 0.926363i $$-0.377082\pi$$
0.376633 + 0.926363i $$0.377082\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −30.0000 −1.02478 −0.512390 0.858753i $$-0.671240\pi$$
−0.512390 + 0.858753i $$0.671240\pi$$
$$858$$ 0 0
$$859$$ 5.00000 0.170598 0.0852989 0.996355i $$-0.472815\pi$$
0.0852989 + 0.996355i $$0.472815\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 24.0000 0.816970 0.408485 0.912765i $$-0.366057\pi$$
0.408485 + 0.912765i $$0.366057\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 17.0000 0.577350
$$868$$ 56.0000 1.90076
$$869$$ −16.0000 −0.542763
$$870$$ 0 0
$$871$$ 22.0000 0.745442
$$872$$ 0 0
$$873$$ −2.00000 −0.0676897
$$874$$ 0 0
$$875$$ 0 0
$$876$$ −16.0000 −0.540590
$$877$$ 4.00000 0.135070 0.0675352 0.997717i $$-0.478487\pi$$
0.0675352 + 0.997717i $$0.478487\pi$$
$$878$$ 0 0
$$879$$ 18.0000 0.607125
$$880$$ 0 0
$$881$$ 9.00000 0.303218 0.151609 0.988441i $$-0.451555\pi$$
0.151609 + 0.988441i $$0.451555\pi$$
$$882$$ 0 0
$$883$$ 4.00000 0.134611 0.0673054 0.997732i $$-0.478560\pi$$
0.0673054 + 0.997732i $$0.478560\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −54.0000 −1.81314 −0.906571 0.422053i $$-0.861310\pi$$
−0.906571 + 0.422053i $$0.861310\pi$$
$$888$$ 0 0
$$889$$ −8.00000 −0.268311
$$890$$ 0 0
$$891$$ 1.00000 0.0335013
$$892$$ 10.0000 0.334825
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ −6.00000 −0.200334
$$898$$ 0 0
$$899$$ 42.0000 1.40078
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ −40.0000 −1.33112
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −8.00000 −0.265636 −0.132818 0.991140i $$-0.542403\pi$$
−0.132818 + 0.991140i $$0.542403\pi$$
$$908$$ −24.0000 −0.796468
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ −4.00000 −0.132453
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 26.0000 0.859064
$$917$$ −24.0000 −0.792550
$$918$$ 0 0
$$919$$ −4.00000 −0.131948 −0.0659739 0.997821i $$-0.521015\pi$$
−0.0659739 + 0.997821i $$0.521015\pi$$
$$920$$ 0 0
$$921$$ 2.00000 0.0659022
$$922$$ 0 0
$$923$$ −30.0000 −0.987462
$$924$$ 8.00000 0.263181
$$925$$ 0 0
$$926$$ 0 0
$$927$$ −32.0000 −1.05102
$$928$$ 0 0
$$929$$ 30.0000 0.984268 0.492134 0.870519i $$-0.336217\pi$$
0.492134 + 0.870519i $$0.336217\pi$$
$$930$$ 0 0
$$931$$ 9.00000 0.294963
$$932$$ 36.0000 1.17922
$$933$$ 24.0000 0.785725
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 22.0000 0.718709 0.359354 0.933201i $$-0.382997\pi$$
0.359354 + 0.933201i $$0.382997\pi$$
$$938$$ 0 0
$$939$$ −1.00000 −0.0326338
$$940$$ 0 0
$$941$$ −24.0000 −0.782378 −0.391189 0.920310i $$-0.627936\pi$$
−0.391189 + 0.920310i $$0.627936\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 12.0000 0.390567
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 3.00000 0.0974869 0.0487435 0.998811i $$-0.484478\pi$$
0.0487435 + 0.998811i $$0.484478\pi$$
$$948$$ −32.0000 −1.03931
$$949$$ 16.0000 0.519382
$$950$$ 0 0
$$951$$ 15.0000 0.486408
$$952$$ 0 0
$$953$$ 36.0000 1.16615 0.583077 0.812417i $$-0.301849\pi$$
0.583077 + 0.812417i $$0.301849\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 36.0000 1.16432
$$957$$ 6.00000 0.193952
$$958$$ 0 0
$$959$$ −84.0000 −2.71250
$$960$$ 0 0
$$961$$ 18.0000 0.580645
$$962$$ 0 0
$$963$$ −36.0000 −1.16008
$$964$$ −40.0000 −1.28831
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 22.0000 0.707472 0.353736 0.935345i $$-0.384911\pi$$
0.353736 + 0.935345i $$0.384911\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −15.0000 −0.481373 −0.240686 0.970603i $$-0.577373\pi$$
−0.240686 + 0.970603i $$0.577373\pi$$
$$972$$ 32.0000 1.02640
$$973$$ 32.0000 1.02587
$$974$$ 0 0
$$975$$ 0 0
$$976$$ −40.0000 −1.28037
$$977$$ 9.00000 0.287936 0.143968 0.989582i $$-0.454014\pi$$
0.143968 + 0.989582i $$0.454014\pi$$
$$978$$ 0 0
$$979$$ 9.00000 0.287641
$$980$$ 0 0
$$981$$ −4.00000 −0.127710
$$982$$ 0 0
$$983$$ 15.0000 0.478426 0.239213 0.970967i $$-0.423111\pi$$
0.239213 + 0.970967i $$0.423111\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 4.00000 0.127257
$$989$$ −30.0000 −0.953945
$$990$$ 0 0
$$991$$ 8.00000 0.254128 0.127064 0.991894i $$-0.459445\pi$$
0.127064 + 0.991894i $$0.459445\pi$$
$$992$$ 0 0
$$993$$ 7.00000 0.222138
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 40.0000 1.26681 0.633406 0.773819i $$-0.281656\pi$$
0.633406 + 0.773819i $$0.281656\pi$$
$$998$$ 0 0
$$999$$ 35.0000 1.10735
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.b.1.1 1
5.4 even 2 209.2.a.a.1.1 1
15.14 odd 2 1881.2.a.c.1.1 1
20.19 odd 2 3344.2.a.d.1.1 1
55.54 odd 2 2299.2.a.c.1.1 1
95.94 odd 2 3971.2.a.a.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.a.1.1 1 5.4 even 2
1881.2.a.c.1.1 1 15.14 odd 2
2299.2.a.c.1.1 1 55.54 odd 2
3344.2.a.d.1.1 1 20.19 odd 2
3971.2.a.a.1.1 1 95.94 odd 2
5225.2.a.b.1.1 1 1.1 even 1 trivial