Properties

Label 5220.2.a.w.1.2
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -0.630898 q^{7} +0.630898 q^{11} +4.34017 q^{13} -4.63090 q^{17} -1.70928 q^{19} -1.70928 q^{23} +1.00000 q^{25} -1.00000 q^{29} +1.70928 q^{31} +0.630898 q^{35} +3.36910 q^{37} -6.49693 q^{41} +6.38962 q^{43} -9.12783 q^{47} -6.60197 q^{49} -5.23513 q^{53} -0.630898 q^{55} +4.49693 q^{59} +12.4391 q^{61} -4.34017 q^{65} +1.70928 q^{67} -0.183417 q^{71} -1.70928 q^{73} -0.398032 q^{77} -13.8927 q^{79} +13.3112 q^{83} +4.63090 q^{85} -1.10504 q^{89} -2.73820 q^{91} +1.70928 q^{95} -7.28458 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 2 q^{7} - 2 q^{11} + 2 q^{13} - 10 q^{17} + 2 q^{19} + 2 q^{23} + 3 q^{25} - 3 q^{29} - 2 q^{31} - 2 q^{35} + 14 q^{37} - 2 q^{41} - 10 q^{43} - 6 q^{47} - q^{49} - 6 q^{53} + 2 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.630898 −0.238457 −0.119228 0.992867i \(-0.538042\pi\)
−0.119228 + 0.992867i \(0.538042\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.630898 0.190223 0.0951114 0.995467i \(-0.469679\pi\)
0.0951114 + 0.995467i \(0.469679\pi\)
\(12\) 0 0
\(13\) 4.34017 1.20375 0.601874 0.798591i \(-0.294421\pi\)
0.601874 + 0.798591i \(0.294421\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.63090 −1.12316 −0.561579 0.827423i \(-0.689806\pi\)
−0.561579 + 0.827423i \(0.689806\pi\)
\(18\) 0 0
\(19\) −1.70928 −0.392135 −0.196067 0.980590i \(-0.562817\pi\)
−0.196067 + 0.980590i \(0.562817\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.70928 −0.356409 −0.178204 0.983994i \(-0.557029\pi\)
−0.178204 + 0.983994i \(0.557029\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 1.70928 0.306995 0.153497 0.988149i \(-0.450946\pi\)
0.153497 + 0.988149i \(0.450946\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.630898 0.106641
\(36\) 0 0
\(37\) 3.36910 0.553877 0.276939 0.960888i \(-0.410680\pi\)
0.276939 + 0.960888i \(0.410680\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.49693 −1.01465 −0.507325 0.861755i \(-0.669366\pi\)
−0.507325 + 0.861755i \(0.669366\pi\)
\(42\) 0 0
\(43\) 6.38962 0.974408 0.487204 0.873288i \(-0.338017\pi\)
0.487204 + 0.873288i \(0.338017\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.12783 −1.33143 −0.665715 0.746206i \(-0.731873\pi\)
−0.665715 + 0.746206i \(0.731873\pi\)
\(48\) 0 0
\(49\) −6.60197 −0.943138
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.23513 −0.719101 −0.359550 0.933126i \(-0.617070\pi\)
−0.359550 + 0.933126i \(0.617070\pi\)
\(54\) 0 0
\(55\) −0.630898 −0.0850702
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.49693 0.585450 0.292725 0.956197i \(-0.405438\pi\)
0.292725 + 0.956197i \(0.405438\pi\)
\(60\) 0 0
\(61\) 12.4391 1.59266 0.796330 0.604863i \(-0.206772\pi\)
0.796330 + 0.604863i \(0.206772\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.34017 −0.538332
\(66\) 0 0
\(67\) 1.70928 0.208821 0.104411 0.994534i \(-0.466704\pi\)
0.104411 + 0.994534i \(0.466704\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.183417 −0.0217677 −0.0108838 0.999941i \(-0.503464\pi\)
−0.0108838 + 0.999941i \(0.503464\pi\)
\(72\) 0 0
\(73\) −1.70928 −0.200056 −0.100028 0.994985i \(-0.531893\pi\)
−0.100028 + 0.994985i \(0.531893\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.398032 −0.0453599
\(78\) 0 0
\(79\) −13.8927 −1.56305 −0.781525 0.623874i \(-0.785558\pi\)
−0.781525 + 0.623874i \(0.785558\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.3112 1.46110 0.730549 0.682860i \(-0.239264\pi\)
0.730549 + 0.682860i \(0.239264\pi\)
\(84\) 0 0
\(85\) 4.63090 0.502291
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.10504 −0.117134 −0.0585670 0.998283i \(-0.518653\pi\)
−0.0585670 + 0.998283i \(0.518653\pi\)
\(90\) 0 0
\(91\) −2.73820 −0.287042
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.70928 0.175368
\(96\) 0 0
\(97\) −7.28458 −0.739637 −0.369819 0.929104i \(-0.620580\pi\)
−0.369819 + 0.929104i \(0.620580\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.26180 −0.324561 −0.162280 0.986745i \(-0.551885\pi\)
−0.162280 + 0.986745i \(0.551885\pi\)
\(102\) 0 0
\(103\) −15.2846 −1.50603 −0.753017 0.658001i \(-0.771402\pi\)
−0.753017 + 0.658001i \(0.771402\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.10731 −0.203721 −0.101861 0.994799i \(-0.532480\pi\)
−0.101861 + 0.994799i \(0.532480\pi\)
\(108\) 0 0
\(109\) −9.23513 −0.884565 −0.442283 0.896876i \(-0.645831\pi\)
−0.442283 + 0.896876i \(0.645831\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.86603 0.363686 0.181843 0.983328i \(-0.441794\pi\)
0.181843 + 0.983328i \(0.441794\pi\)
\(114\) 0 0
\(115\) 1.70928 0.159391
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.92162 0.267825
\(120\) 0 0
\(121\) −10.6020 −0.963815
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.54638 0.758368 0.379184 0.925321i \(-0.376205\pi\)
0.379184 + 0.925321i \(0.376205\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.133969 0.0117049 0.00585247 0.999983i \(-0.498137\pi\)
0.00585247 + 0.999983i \(0.498137\pi\)
\(132\) 0 0
\(133\) 1.07838 0.0935072
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.63090 −0.395644 −0.197822 0.980238i \(-0.563387\pi\)
−0.197822 + 0.980238i \(0.563387\pi\)
\(138\) 0 0
\(139\) 10.2557 0.869873 0.434937 0.900461i \(-0.356771\pi\)
0.434937 + 0.900461i \(0.356771\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.73820 0.228980
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −1.65983 −0.135075 −0.0675374 0.997717i \(-0.521514\pi\)
−0.0675374 + 0.997717i \(0.521514\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.70928 −0.137292
\(156\) 0 0
\(157\) −11.6514 −0.929884 −0.464942 0.885341i \(-0.653925\pi\)
−0.464942 + 0.885341i \(0.653925\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.07838 0.0849881
\(162\) 0 0
\(163\) 8.23287 0.644848 0.322424 0.946595i \(-0.395502\pi\)
0.322424 + 0.946595i \(0.395502\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.133969 −0.0103668 −0.00518342 0.999987i \(-0.501650\pi\)
−0.00518342 + 0.999987i \(0.501650\pi\)
\(168\) 0 0
\(169\) 5.83710 0.449008
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.18342 −0.470117 −0.235058 0.971981i \(-0.575528\pi\)
−0.235058 + 0.971981i \(0.575528\pi\)
\(174\) 0 0
\(175\) −0.630898 −0.0476914
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.0410 −1.64742 −0.823712 0.567008i \(-0.808101\pi\)
−0.823712 + 0.567008i \(0.808101\pi\)
\(180\) 0 0
\(181\) 10.5958 0.787581 0.393791 0.919200i \(-0.371163\pi\)
0.393791 + 0.919200i \(0.371163\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.36910 −0.247701
\(186\) 0 0
\(187\) −2.92162 −0.213650
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.26406 −0.308537 −0.154268 0.988029i \(-0.549302\pi\)
−0.154268 + 0.988029i \(0.549302\pi\)
\(192\) 0 0
\(193\) −1.31124 −0.0943854 −0.0471927 0.998886i \(-0.515027\pi\)
−0.0471927 + 0.998886i \(0.515027\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.6225 −1.75428 −0.877140 0.480235i \(-0.840551\pi\)
−0.877140 + 0.480235i \(0.840551\pi\)
\(198\) 0 0
\(199\) −9.97334 −0.706991 −0.353496 0.935436i \(-0.615007\pi\)
−0.353496 + 0.935436i \(0.615007\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.630898 0.0442803
\(204\) 0 0
\(205\) 6.49693 0.453765
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.07838 −0.0745929
\(210\) 0 0
\(211\) −13.4101 −0.923192 −0.461596 0.887090i \(-0.652723\pi\)
−0.461596 + 0.887090i \(0.652723\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.38962 −0.435769
\(216\) 0 0
\(217\) −1.07838 −0.0732051
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −20.0989 −1.35200
\(222\) 0 0
\(223\) 6.07611 0.406886 0.203443 0.979087i \(-0.434787\pi\)
0.203443 + 0.979087i \(0.434787\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.2329 −1.34290 −0.671451 0.741049i \(-0.734329\pi\)
−0.671451 + 0.741049i \(0.734329\pi\)
\(228\) 0 0
\(229\) −21.8843 −1.44615 −0.723077 0.690767i \(-0.757273\pi\)
−0.723077 + 0.690767i \(0.757273\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.1978 0.668080 0.334040 0.942559i \(-0.391588\pi\)
0.334040 + 0.942559i \(0.391588\pi\)
\(234\) 0 0
\(235\) 9.12783 0.595434
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.17727 −0.334890 −0.167445 0.985881i \(-0.553552\pi\)
−0.167445 + 0.985881i \(0.553552\pi\)
\(240\) 0 0
\(241\) −25.5174 −1.64372 −0.821862 0.569687i \(-0.807064\pi\)
−0.821862 + 0.569687i \(0.807064\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.60197 0.421784
\(246\) 0 0
\(247\) −7.41855 −0.472031
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −24.0494 −1.51799 −0.758994 0.651098i \(-0.774309\pi\)
−0.758994 + 0.651098i \(0.774309\pi\)
\(252\) 0 0
\(253\) −1.07838 −0.0677970
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.0144 1.37322 0.686610 0.727026i \(-0.259098\pi\)
0.686610 + 0.727026i \(0.259098\pi\)
\(258\) 0 0
\(259\) −2.12556 −0.132076
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.12783 −0.0695447 −0.0347724 0.999395i \(-0.511071\pi\)
−0.0347724 + 0.999395i \(0.511071\pi\)
\(264\) 0 0
\(265\) 5.23513 0.321592
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.85762 0.479088 0.239544 0.970886i \(-0.423002\pi\)
0.239544 + 0.970886i \(0.423002\pi\)
\(270\) 0 0
\(271\) −6.47414 −0.393276 −0.196638 0.980476i \(-0.563002\pi\)
−0.196638 + 0.980476i \(0.563002\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.630898 0.0380446
\(276\) 0 0
\(277\) −18.5958 −1.11731 −0.558657 0.829399i \(-0.688683\pi\)
−0.558657 + 0.829399i \(0.688683\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.24128 −0.491633 −0.245817 0.969316i \(-0.579056\pi\)
−0.245817 + 0.969316i \(0.579056\pi\)
\(282\) 0 0
\(283\) −21.5936 −1.28360 −0.641802 0.766870i \(-0.721813\pi\)
−0.641802 + 0.766870i \(0.721813\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.09890 0.241950
\(288\) 0 0
\(289\) 4.44521 0.261483
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −31.0166 −1.81201 −0.906006 0.423265i \(-0.860884\pi\)
−0.906006 + 0.423265i \(0.860884\pi\)
\(294\) 0 0
\(295\) −4.49693 −0.261821
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.41855 −0.429026
\(300\) 0 0
\(301\) −4.03120 −0.232354
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.4391 −0.712259
\(306\) 0 0
\(307\) 13.3958 0.764537 0.382268 0.924051i \(-0.375143\pi\)
0.382268 + 0.924051i \(0.375143\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.2784 1.37670 0.688352 0.725377i \(-0.258334\pi\)
0.688352 + 0.725377i \(0.258334\pi\)
\(312\) 0 0
\(313\) −0.0266620 −0.00150702 −0.000753512 1.00000i \(-0.500240\pi\)
−0.000753512 1.00000i \(0.500240\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.9854 1.29099 0.645496 0.763764i \(-0.276651\pi\)
0.645496 + 0.763764i \(0.276651\pi\)
\(318\) 0 0
\(319\) −0.630898 −0.0353235
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.91548 0.440429
\(324\) 0 0
\(325\) 4.34017 0.240749
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.75872 0.317489
\(330\) 0 0
\(331\) 25.9071 1.42398 0.711991 0.702189i \(-0.247794\pi\)
0.711991 + 0.702189i \(0.247794\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.70928 −0.0933877
\(336\) 0 0
\(337\) 12.8599 0.700523 0.350261 0.936652i \(-0.386093\pi\)
0.350261 + 0.936652i \(0.386093\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.07838 0.0583974
\(342\) 0 0
\(343\) 8.58145 0.463355
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.2579 −0.711722 −0.355861 0.934539i \(-0.615812\pi\)
−0.355861 + 0.934539i \(0.615812\pi\)
\(348\) 0 0
\(349\) 4.21008 0.225360 0.112680 0.993631i \(-0.464056\pi\)
0.112680 + 0.993631i \(0.464056\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.24128 −0.438639 −0.219319 0.975653i \(-0.570384\pi\)
−0.219319 + 0.975653i \(0.570384\pi\)
\(354\) 0 0
\(355\) 0.183417 0.00973479
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.2329 −0.645626 −0.322813 0.946463i \(-0.604628\pi\)
−0.322813 + 0.946463i \(0.604628\pi\)
\(360\) 0 0
\(361\) −16.0784 −0.846230
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.70928 0.0894676
\(366\) 0 0
\(367\) −3.55252 −0.185440 −0.0927200 0.995692i \(-0.529556\pi\)
−0.0927200 + 0.995692i \(0.529556\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.30283 0.171475
\(372\) 0 0
\(373\) 7.94214 0.411228 0.205614 0.978633i \(-0.434081\pi\)
0.205614 + 0.978633i \(0.434081\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.34017 −0.223530
\(378\) 0 0
\(379\) 21.5259 1.10571 0.552855 0.833278i \(-0.313539\pi\)
0.552855 + 0.833278i \(0.313539\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.2062 1.33907 0.669537 0.742778i \(-0.266492\pi\)
0.669537 + 0.742778i \(0.266492\pi\)
\(384\) 0 0
\(385\) 0.398032 0.0202856
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 22.6947 1.15067 0.575334 0.817919i \(-0.304872\pi\)
0.575334 + 0.817919i \(0.304872\pi\)
\(390\) 0 0
\(391\) 7.91548 0.400303
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.8927 0.699017
\(396\) 0 0
\(397\) −14.4124 −0.723338 −0.361669 0.932307i \(-0.617793\pi\)
−0.361669 + 0.932307i \(0.617793\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −33.1194 −1.65390 −0.826952 0.562272i \(-0.809927\pi\)
−0.826952 + 0.562272i \(0.809927\pi\)
\(402\) 0 0
\(403\) 7.41855 0.369544
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.12556 0.105360
\(408\) 0 0
\(409\) 17.2351 0.852222 0.426111 0.904671i \(-0.359883\pi\)
0.426111 + 0.904671i \(0.359883\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.83710 −0.139605
\(414\) 0 0
\(415\) −13.3112 −0.653423
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.96880 0.193889 0.0969444 0.995290i \(-0.469093\pi\)
0.0969444 + 0.995290i \(0.469093\pi\)
\(420\) 0 0
\(421\) −24.9216 −1.21461 −0.607303 0.794470i \(-0.707749\pi\)
−0.607303 + 0.794470i \(0.707749\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.63090 −0.224632
\(426\) 0 0
\(427\) −7.84778 −0.379781
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.67420 −0.273317 −0.136658 0.990618i \(-0.543636\pi\)
−0.136658 + 0.990618i \(0.543636\pi\)
\(432\) 0 0
\(433\) 12.3174 0.591936 0.295968 0.955198i \(-0.404358\pi\)
0.295968 + 0.955198i \(0.404358\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.92162 0.139760
\(438\) 0 0
\(439\) −26.3857 −1.25932 −0.629661 0.776870i \(-0.716806\pi\)
−0.629661 + 0.776870i \(0.716806\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −38.1750 −1.81375 −0.906875 0.421400i \(-0.861539\pi\)
−0.906875 + 0.421400i \(0.861539\pi\)
\(444\) 0 0
\(445\) 1.10504 0.0523839
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.96880 0.281685 0.140843 0.990032i \(-0.455019\pi\)
0.140843 + 0.990032i \(0.455019\pi\)
\(450\) 0 0
\(451\) −4.09890 −0.193010
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.73820 0.128369
\(456\) 0 0
\(457\) −14.7649 −0.690671 −0.345336 0.938479i \(-0.612235\pi\)
−0.345336 + 0.938479i \(0.612235\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13.6163 −0.634176 −0.317088 0.948396i \(-0.602705\pi\)
−0.317088 + 0.948396i \(0.602705\pi\)
\(462\) 0 0
\(463\) 27.3835 1.27262 0.636309 0.771434i \(-0.280460\pi\)
0.636309 + 0.771434i \(0.280460\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.4824 1.27173 0.635866 0.771799i \(-0.280643\pi\)
0.635866 + 0.771799i \(0.280643\pi\)
\(468\) 0 0
\(469\) −1.07838 −0.0497949
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.03120 0.185355
\(474\) 0 0
\(475\) −1.70928 −0.0784269
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 23.1012 1.05552 0.527760 0.849394i \(-0.323032\pi\)
0.527760 + 0.849394i \(0.323032\pi\)
\(480\) 0 0
\(481\) 14.6225 0.666728
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.28458 0.330776
\(486\) 0 0
\(487\) 19.5669 0.886661 0.443330 0.896358i \(-0.353797\pi\)
0.443330 + 0.896358i \(0.353797\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −19.3835 −0.874764 −0.437382 0.899276i \(-0.644094\pi\)
−0.437382 + 0.899276i \(0.644094\pi\)
\(492\) 0 0
\(493\) 4.63090 0.208565
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.115718 0.00519065
\(498\) 0 0
\(499\) −14.3545 −0.642598 −0.321299 0.946978i \(-0.604119\pi\)
−0.321299 + 0.946978i \(0.604119\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 33.5936 1.49786 0.748931 0.662648i \(-0.230567\pi\)
0.748931 + 0.662648i \(0.230567\pi\)
\(504\) 0 0
\(505\) 3.26180 0.145148
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.7998 1.49815 0.749074 0.662486i \(-0.230499\pi\)
0.749074 + 0.662486i \(0.230499\pi\)
\(510\) 0 0
\(511\) 1.07838 0.0477046
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.2846 0.673519
\(516\) 0 0
\(517\) −5.75872 −0.253268
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.6491 1.16752 0.583760 0.811926i \(-0.301581\pi\)
0.583760 + 0.811926i \(0.301581\pi\)
\(522\) 0 0
\(523\) 10.2907 0.449982 0.224991 0.974361i \(-0.427765\pi\)
0.224991 + 0.974361i \(0.427765\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.91548 −0.344804
\(528\) 0 0
\(529\) −20.0784 −0.872973
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −28.1978 −1.22138
\(534\) 0 0
\(535\) 2.10731 0.0911068
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.16517 −0.179406
\(540\) 0 0
\(541\) −33.3028 −1.43180 −0.715900 0.698203i \(-0.753984\pi\)
−0.715900 + 0.698203i \(0.753984\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.23513 0.395590
\(546\) 0 0
\(547\) −38.2062 −1.63358 −0.816790 0.576936i \(-0.804248\pi\)
−0.816790 + 0.576936i \(0.804248\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.70928 0.0728176
\(552\) 0 0
\(553\) 8.76487 0.372720
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 41.5174 1.75915 0.879575 0.475760i \(-0.157827\pi\)
0.879575 + 0.475760i \(0.157827\pi\)
\(558\) 0 0
\(559\) 27.7321 1.17294
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.6042 0.784075 0.392038 0.919949i \(-0.371770\pi\)
0.392038 + 0.919949i \(0.371770\pi\)
\(564\) 0 0
\(565\) −3.86603 −0.162645
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.4452 −0.815186 −0.407593 0.913164i \(-0.633632\pi\)
−0.407593 + 0.913164i \(0.633632\pi\)
\(570\) 0 0
\(571\) 32.5113 1.36056 0.680278 0.732954i \(-0.261859\pi\)
0.680278 + 0.732954i \(0.261859\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.70928 −0.0712817
\(576\) 0 0
\(577\) −16.9444 −0.705405 −0.352702 0.935736i \(-0.614737\pi\)
−0.352702 + 0.935736i \(0.614737\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.39803 −0.348409
\(582\) 0 0
\(583\) −3.30283 −0.136789
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.59809 0.313607 0.156803 0.987630i \(-0.449881\pi\)
0.156803 + 0.987630i \(0.449881\pi\)
\(588\) 0 0
\(589\) −2.92162 −0.120383
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.7998 −0.566688 −0.283344 0.959018i \(-0.591444\pi\)
−0.283344 + 0.959018i \(0.591444\pi\)
\(594\) 0 0
\(595\) −2.92162 −0.119775
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.47414 −0.264526 −0.132263 0.991215i \(-0.542224\pi\)
−0.132263 + 0.991215i \(0.542224\pi\)
\(600\) 0 0
\(601\) −38.3812 −1.56560 −0.782801 0.622272i \(-0.786210\pi\)
−0.782801 + 0.622272i \(0.786210\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.6020 0.431031
\(606\) 0 0
\(607\) −3.81271 −0.154753 −0.0773765 0.997002i \(-0.524654\pi\)
−0.0773765 + 0.997002i \(0.524654\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −39.6163 −1.60271
\(612\) 0 0
\(613\) 13.6332 0.550638 0.275319 0.961353i \(-0.411216\pi\)
0.275319 + 0.961353i \(0.411216\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.70928 −0.390881 −0.195440 0.980716i \(-0.562614\pi\)
−0.195440 + 0.980716i \(0.562614\pi\)
\(618\) 0 0
\(619\) 13.9916 0.562369 0.281185 0.959654i \(-0.409273\pi\)
0.281185 + 0.959654i \(0.409273\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.697167 0.0279314
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.6020 −0.622091
\(630\) 0 0
\(631\) −29.8264 −1.18737 −0.593686 0.804697i \(-0.702328\pi\)
−0.593686 + 0.804697i \(0.702328\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.54638 −0.339153
\(636\) 0 0
\(637\) −28.6537 −1.13530
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −41.8453 −1.65279 −0.826396 0.563090i \(-0.809612\pi\)
−0.826396 + 0.563090i \(0.809612\pi\)
\(642\) 0 0
\(643\) 29.7548 1.17342 0.586708 0.809798i \(-0.300424\pi\)
0.586708 + 0.809798i \(0.300424\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.27635 0.0894925 0.0447463 0.998998i \(-0.485752\pi\)
0.0447463 + 0.998998i \(0.485752\pi\)
\(648\) 0 0
\(649\) 2.83710 0.111366
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.2678 1.06707 0.533535 0.845778i \(-0.320863\pi\)
0.533535 + 0.845778i \(0.320863\pi\)
\(654\) 0 0
\(655\) −0.133969 −0.00523461
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.1750 −0.707998 −0.353999 0.935246i \(-0.615178\pi\)
−0.353999 + 0.935246i \(0.615178\pi\)
\(660\) 0 0
\(661\) −49.2639 −1.91614 −0.958072 0.286529i \(-0.907498\pi\)
−0.958072 + 0.286529i \(0.907498\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.07838 −0.0418177
\(666\) 0 0
\(667\) 1.70928 0.0661834
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.84778 0.302960
\(672\) 0 0
\(673\) −9.78539 −0.377199 −0.188599 0.982054i \(-0.560395\pi\)
−0.188599 + 0.982054i \(0.560395\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26.4352 1.01599 0.507994 0.861361i \(-0.330387\pi\)
0.507994 + 0.861361i \(0.330387\pi\)
\(678\) 0 0
\(679\) 4.59583 0.176372
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.7031 0.868711 0.434356 0.900741i \(-0.356976\pi\)
0.434356 + 0.900741i \(0.356976\pi\)
\(684\) 0 0
\(685\) 4.63090 0.176938
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −22.7214 −0.865616
\(690\) 0 0
\(691\) −5.81205 −0.221101 −0.110550 0.993871i \(-0.535261\pi\)
−0.110550 + 0.993871i \(0.535261\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.2557 −0.389019
\(696\) 0 0
\(697\) 30.0866 1.13961
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.3111 1.44699 0.723494 0.690330i \(-0.242535\pi\)
0.723494 + 0.690330i \(0.242535\pi\)
\(702\) 0 0
\(703\) −5.75872 −0.217194
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.05786 0.0773937
\(708\) 0 0
\(709\) −3.75872 −0.141162 −0.0705809 0.997506i \(-0.522485\pi\)
−0.0705809 + 0.997506i \(0.522485\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.92162 −0.109416
\(714\) 0 0
\(715\) −2.73820 −0.102403
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.8576 −0.815152 −0.407576 0.913171i \(-0.633626\pi\)
−0.407576 + 0.913171i \(0.633626\pi\)
\(720\) 0 0
\(721\) 9.64301 0.359124
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −18.2739 −0.677742 −0.338871 0.940833i \(-0.610045\pi\)
−0.338871 + 0.940833i \(0.610045\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −29.5897 −1.09441
\(732\) 0 0
\(733\) 49.9383 1.84451 0.922256 0.386580i \(-0.126344\pi\)
0.922256 + 0.386580i \(0.126344\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.07838 0.0397226
\(738\) 0 0
\(739\) 32.6453 1.20088 0.600438 0.799671i \(-0.294993\pi\)
0.600438 + 0.799671i \(0.294993\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 38.3896 1.40838 0.704189 0.710012i \(-0.251311\pi\)
0.704189 + 0.710012i \(0.251311\pi\)
\(744\) 0 0
\(745\) 2.00000 0.0732743
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.32950 0.0485787
\(750\) 0 0
\(751\) 44.6453 1.62913 0.814565 0.580073i \(-0.196976\pi\)
0.814565 + 0.580073i \(0.196976\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.65983 0.0604073
\(756\) 0 0
\(757\) 26.2907 0.955553 0.477776 0.878482i \(-0.341443\pi\)
0.477776 + 0.878482i \(0.341443\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 9.15061 0.331709 0.165855 0.986150i \(-0.446962\pi\)
0.165855 + 0.986150i \(0.446962\pi\)
\(762\) 0 0
\(763\) 5.82642 0.210931
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.5174 0.704734
\(768\) 0 0
\(769\) −9.90110 −0.357043 −0.178521 0.983936i \(-0.557131\pi\)
−0.178521 + 0.983936i \(0.557131\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.5197 −0.953848 −0.476924 0.878945i \(-0.658248\pi\)
−0.476924 + 0.878945i \(0.658248\pi\)
\(774\) 0 0
\(775\) 1.70928 0.0613990
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.1050 0.397879
\(780\) 0 0
\(781\) −0.115718 −0.00414070
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.6514 0.415857
\(786\) 0 0
\(787\) −52.6141 −1.87549 −0.937745 0.347325i \(-0.887090\pi\)
−0.937745 + 0.347325i \(0.887090\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.43907 −0.0867233
\(792\) 0 0
\(793\) 53.9877 1.91716
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.4885 −0.654897 −0.327448 0.944869i \(-0.606189\pi\)
−0.327448 + 0.944869i \(0.606189\pi\)
\(798\) 0 0
\(799\) 42.2700 1.49541
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.07838 −0.0380551
\(804\) 0 0
\(805\) −1.07838 −0.0380078
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −54.9770 −1.93289 −0.966445 0.256874i \(-0.917307\pi\)
−0.966445 + 0.256874i \(0.917307\pi\)
\(810\) 0 0
\(811\) 51.5006 1.80843 0.904216 0.427076i \(-0.140456\pi\)
0.904216 + 0.427076i \(0.140456\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.23287 −0.288385
\(816\) 0 0
\(817\) −10.9216 −0.382099
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.7961 −0.376785 −0.188393 0.982094i \(-0.560328\pi\)
−0.188393 + 0.982094i \(0.560328\pi\)
\(822\) 0 0
\(823\) 13.2969 0.463500 0.231750 0.972775i \(-0.425555\pi\)
0.231750 + 0.972775i \(0.425555\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.3896 1.05675 0.528375 0.849011i \(-0.322801\pi\)
0.528375 + 0.849011i \(0.322801\pi\)
\(828\) 0 0
\(829\) −9.64754 −0.335073 −0.167536 0.985866i \(-0.553581\pi\)
−0.167536 + 0.985866i \(0.553581\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 30.5730 1.05929
\(834\) 0 0
\(835\) 0.133969 0.00463619
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.3584 1.04809 0.524045 0.851691i \(-0.324423\pi\)
0.524045 + 0.851691i \(0.324423\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5.83710 −0.200802
\(846\) 0 0
\(847\) 6.68876 0.229828
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5.75872 −0.197407
\(852\) 0 0
\(853\) −16.2472 −0.556295 −0.278147 0.960538i \(-0.589720\pi\)
−0.278147 + 0.960538i \(0.589720\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.2183 −0.861441 −0.430721 0.902485i \(-0.641741\pi\)
−0.430721 + 0.902485i \(0.641741\pi\)
\(858\) 0 0
\(859\) −10.4040 −0.354980 −0.177490 0.984123i \(-0.556798\pi\)
−0.177490 + 0.984123i \(0.556798\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.515180 −0.0175369 −0.00876846 0.999962i \(-0.502791\pi\)
−0.00876846 + 0.999962i \(0.502791\pi\)
\(864\) 0 0
\(865\) 6.18342 0.210243
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.76487 −0.297328
\(870\) 0 0
\(871\) 7.41855 0.251368
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.630898 0.0213282
\(876\) 0 0
\(877\) −44.3234 −1.49669 −0.748347 0.663308i \(-0.769152\pi\)
−0.748347 + 0.663308i \(0.769152\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 48.4222 1.63139 0.815694 0.578484i \(-0.196356\pi\)
0.815694 + 0.578484i \(0.196356\pi\)
\(882\) 0 0
\(883\) 2.85780 0.0961726 0.0480863 0.998843i \(-0.484688\pi\)
0.0480863 + 0.998843i \(0.484688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.6453 0.424587 0.212293 0.977206i \(-0.431907\pi\)
0.212293 + 0.977206i \(0.431907\pi\)
\(888\) 0 0
\(889\) −5.39189 −0.180838
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.6020 0.522100
\(894\) 0 0
\(895\) 22.0410 0.736751
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.70928 −0.0570075
\(900\) 0 0
\(901\) 24.2434 0.807664
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.5958 −0.352217
\(906\) 0 0
\(907\) 4.39416 0.145906 0.0729528 0.997335i \(-0.476758\pi\)
0.0729528 + 0.997335i \(0.476758\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.2267 0.835799 0.417899 0.908493i \(-0.362766\pi\)
0.417899 + 0.908493i \(0.362766\pi\)
\(912\) 0 0
\(913\) 8.39803 0.277934
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.0845208 −0.00279112
\(918\) 0 0
\(919\) 29.9733 0.988729 0.494365 0.869255i \(-0.335401\pi\)
0.494365 + 0.869255i \(0.335401\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.796064 −0.0262028
\(924\) 0 0
\(925\) 3.36910 0.110775
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −52.8659 −1.73447 −0.867236 0.497897i \(-0.834106\pi\)
−0.867236 + 0.497897i \(0.834106\pi\)
\(930\) 0 0
\(931\) 11.2846 0.369837
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.92162 0.0955473
\(936\) 0 0
\(937\) 43.2762 1.41377 0.706885 0.707328i \(-0.250100\pi\)
0.706885 + 0.707328i \(0.250100\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 53.1506 1.73266 0.866330 0.499472i \(-0.166473\pi\)
0.866330 + 0.499472i \(0.166473\pi\)
\(942\) 0 0
\(943\) 11.1050 0.361630
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.8599 −0.807838 −0.403919 0.914795i \(-0.632352\pi\)
−0.403919 + 0.914795i \(0.632352\pi\)
\(948\) 0 0
\(949\) −7.41855 −0.240816
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −8.47027 −0.274379 −0.137189 0.990545i \(-0.543807\pi\)
−0.137189 + 0.990545i \(0.543807\pi\)
\(954\) 0 0
\(955\) 4.26406 0.137982
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.92162 0.0943441
\(960\) 0 0
\(961\) −28.0784 −0.905754
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.31124 0.0422104
\(966\) 0 0
\(967\) −15.9116 −0.511683 −0.255841 0.966719i \(-0.582352\pi\)
−0.255841 + 0.966719i \(0.582352\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 33.9071 1.08813 0.544065 0.839043i \(-0.316885\pi\)
0.544065 + 0.839043i \(0.316885\pi\)
\(972\) 0 0
\(973\) −6.47027 −0.207427
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.1362 −0.420265 −0.210133 0.977673i \(-0.567390\pi\)
−0.210133 + 0.977673i \(0.567390\pi\)
\(978\) 0 0
\(979\) −0.697167 −0.0222816
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 43.0700 1.37372 0.686859 0.726790i \(-0.258989\pi\)
0.686859 + 0.726790i \(0.258989\pi\)
\(984\) 0 0
\(985\) 24.6225 0.784538
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.9216 −0.347287
\(990\) 0 0
\(991\) −41.3217 −1.31263 −0.656314 0.754488i \(-0.727885\pi\)
−0.656314 + 0.754488i \(0.727885\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.97334 0.316176
\(996\) 0 0
\(997\) 44.3605 1.40491 0.702456 0.711727i \(-0.252087\pi\)
0.702456 + 0.711727i \(0.252087\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.w.1.2 3
3.2 odd 2 580.2.a.d.1.1 3
12.11 even 2 2320.2.a.o.1.3 3
15.2 even 4 2900.2.c.g.349.5 6
15.8 even 4 2900.2.c.g.349.2 6
15.14 odd 2 2900.2.a.f.1.3 3
24.5 odd 2 9280.2.a.bh.1.3 3
24.11 even 2 9280.2.a.bt.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.2.a.d.1.1 3 3.2 odd 2
2320.2.a.o.1.3 3 12.11 even 2
2900.2.a.f.1.3 3 15.14 odd 2
2900.2.c.g.349.2 6 15.8 even 4
2900.2.c.g.349.5 6 15.2 even 4
5220.2.a.w.1.2 3 1.1 even 1 trivial
9280.2.a.bh.1.3 3 24.5 odd 2
9280.2.a.bt.1.1 3 24.11 even 2