Properties

Label 5220.2.a.w.1.1
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -1.52543 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} -1.52543 q^{7} +1.52543 q^{11} +0.622216 q^{13} -5.52543 q^{17} +2.90321 q^{19} +2.90321 q^{23} +1.00000 q^{25} -1.00000 q^{29} -2.90321 q^{31} +1.52543 q^{35} +2.47457 q^{37} +8.23506 q^{41} -5.65878 q^{43} +4.70964 q^{47} -4.67307 q^{49} +11.2859 q^{53} -1.52543 q^{55} -10.2351 q^{59} -7.93978 q^{61} -0.622216 q^{65} -2.90321 q^{67} -7.47949 q^{71} +2.90321 q^{73} -2.32693 q^{77} -16.5763 q^{79} +6.76986 q^{83} +5.52543 q^{85} -13.9081 q^{89} -0.949145 q^{91} -2.90321 q^{95} +17.5669 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{5} + 2 q^{7} - 2 q^{11} + 2 q^{13} - 10 q^{17} + 2 q^{19} + 2 q^{23} + 3 q^{25} - 3 q^{29} - 2 q^{31} - 2 q^{35} + 14 q^{37} - 2 q^{41} - 10 q^{43} - 6 q^{47} - q^{49} - 6 q^{53} + 2 q^{55} - 4 q^{59} - 10 q^{61} - 2 q^{65} - 2 q^{67} + 4 q^{71} + 2 q^{73} - 20 q^{77} - 30 q^{79} + 14 q^{83} + 10 q^{85} - 2 q^{89} - 16 q^{91} - 2 q^{95} + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.52543 −0.576557 −0.288279 0.957547i \(-0.593083\pi\)
−0.288279 + 0.957547i \(0.593083\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.52543 0.459934 0.229967 0.973198i \(-0.426138\pi\)
0.229967 + 0.973198i \(0.426138\pi\)
\(12\) 0 0
\(13\) 0.622216 0.172572 0.0862858 0.996270i \(-0.472500\pi\)
0.0862858 + 0.996270i \(0.472500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.52543 −1.34011 −0.670057 0.742310i \(-0.733730\pi\)
−0.670057 + 0.742310i \(0.733730\pi\)
\(18\) 0 0
\(19\) 2.90321 0.666042 0.333021 0.942919i \(-0.391932\pi\)
0.333021 + 0.942919i \(0.391932\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.90321 0.605362 0.302681 0.953092i \(-0.402118\pi\)
0.302681 + 0.953092i \(0.402118\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −2.90321 −0.521432 −0.260716 0.965416i \(-0.583959\pi\)
−0.260716 + 0.965416i \(0.583959\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.52543 0.257844
\(36\) 0 0
\(37\) 2.47457 0.406817 0.203409 0.979094i \(-0.434798\pi\)
0.203409 + 0.979094i \(0.434798\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.23506 1.28610 0.643050 0.765824i \(-0.277669\pi\)
0.643050 + 0.765824i \(0.277669\pi\)
\(42\) 0 0
\(43\) −5.65878 −0.862956 −0.431478 0.902123i \(-0.642008\pi\)
−0.431478 + 0.902123i \(0.642008\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.70964 0.686971 0.343485 0.939158i \(-0.388392\pi\)
0.343485 + 0.939158i \(0.388392\pi\)
\(48\) 0 0
\(49\) −4.67307 −0.667582
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.2859 1.55024 0.775120 0.631814i \(-0.217689\pi\)
0.775120 + 0.631814i \(0.217689\pi\)
\(54\) 0 0
\(55\) −1.52543 −0.205689
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.2351 −1.33249 −0.666246 0.745732i \(-0.732100\pi\)
−0.666246 + 0.745732i \(0.732100\pi\)
\(60\) 0 0
\(61\) −7.93978 −1.01658 −0.508292 0.861185i \(-0.669723\pi\)
−0.508292 + 0.861185i \(0.669723\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.622216 −0.0771764
\(66\) 0 0
\(67\) −2.90321 −0.354684 −0.177342 0.984149i \(-0.556750\pi\)
−0.177342 + 0.984149i \(0.556750\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.47949 −0.887653 −0.443826 0.896113i \(-0.646379\pi\)
−0.443826 + 0.896113i \(0.646379\pi\)
\(72\) 0 0
\(73\) 2.90321 0.339795 0.169898 0.985462i \(-0.445656\pi\)
0.169898 + 0.985462i \(0.445656\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.32693 −0.265178
\(78\) 0 0
\(79\) −16.5763 −1.86498 −0.932489 0.361199i \(-0.882368\pi\)
−0.932489 + 0.361199i \(0.882368\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.76986 0.743089 0.371544 0.928415i \(-0.378828\pi\)
0.371544 + 0.928415i \(0.378828\pi\)
\(84\) 0 0
\(85\) 5.52543 0.599317
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.9081 −1.47426 −0.737130 0.675751i \(-0.763819\pi\)
−0.737130 + 0.675751i \(0.763819\pi\)
\(90\) 0 0
\(91\) −0.949145 −0.0994974
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.90321 −0.297863
\(96\) 0 0
\(97\) 17.5669 1.78365 0.891825 0.452381i \(-0.149425\pi\)
0.891825 + 0.452381i \(0.149425\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.05086 −0.502579 −0.251289 0.967912i \(-0.580855\pi\)
−0.251289 + 0.967912i \(0.580855\pi\)
\(102\) 0 0
\(103\) 9.56691 0.942656 0.471328 0.881958i \(-0.343775\pi\)
0.471328 + 0.881958i \(0.343775\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.576283 0.0557113 0.0278557 0.999612i \(-0.491132\pi\)
0.0278557 + 0.999612i \(0.491132\pi\)
\(108\) 0 0
\(109\) 7.28592 0.697864 0.348932 0.937148i \(-0.386544\pi\)
0.348932 + 0.937148i \(0.386544\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.7605 −1.10633 −0.553167 0.833070i \(-0.686581\pi\)
−0.553167 + 0.833070i \(0.686581\pi\)
\(114\) 0 0
\(115\) −2.90321 −0.270726
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.42864 0.772652
\(120\) 0 0
\(121\) −8.67307 −0.788461
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −14.5161 −1.28809 −0.644046 0.764987i \(-0.722745\pi\)
−0.644046 + 0.764987i \(0.722745\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.7605 1.37700 0.688500 0.725236i \(-0.258269\pi\)
0.688500 + 0.725236i \(0.258269\pi\)
\(132\) 0 0
\(133\) −4.42864 −0.384012
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.52543 −0.472069 −0.236035 0.971745i \(-0.575848\pi\)
−0.236035 + 0.971745i \(0.575848\pi\)
\(138\) 0 0
\(139\) −17.4193 −1.47748 −0.738742 0.673989i \(-0.764580\pi\)
−0.738742 + 0.673989i \(0.764580\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.949145 0.0793715
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −5.37778 −0.437638 −0.218819 0.975765i \(-0.570220\pi\)
−0.218819 + 0.975765i \(0.570220\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.90321 0.233192
\(156\) 0 0
\(157\) −1.39207 −0.111100 −0.0555498 0.998456i \(-0.517691\pi\)
−0.0555498 + 0.998456i \(0.517691\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.42864 −0.349026
\(162\) 0 0
\(163\) 7.19850 0.563830 0.281915 0.959439i \(-0.409030\pi\)
0.281915 + 0.959439i \(0.409030\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.7605 −1.21958 −0.609792 0.792562i \(-0.708747\pi\)
−0.609792 + 0.792562i \(0.708747\pi\)
\(168\) 0 0
\(169\) −12.6128 −0.970219
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.4795 −1.02483 −0.512413 0.858739i \(-0.671248\pi\)
−0.512413 + 0.858739i \(0.671248\pi\)
\(174\) 0 0
\(175\) −1.52543 −0.115311
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.266706 0.0199346 0.00996728 0.999950i \(-0.496827\pi\)
0.00996728 + 0.999950i \(0.496827\pi\)
\(180\) 0 0
\(181\) −20.7971 −1.54583 −0.772916 0.634508i \(-0.781203\pi\)
−0.772916 + 0.634508i \(0.781203\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.47457 −0.181934
\(186\) 0 0
\(187\) −8.42864 −0.616363
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.43356 0.682589 0.341294 0.939956i \(-0.389135\pi\)
0.341294 + 0.939956i \(0.389135\pi\)
\(192\) 0 0
\(193\) 5.23014 0.376474 0.188237 0.982124i \(-0.439723\pi\)
0.188237 + 0.982124i \(0.439723\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.5397 −0.822171 −0.411085 0.911597i \(-0.634850\pi\)
−0.411085 + 0.911597i \(0.634850\pi\)
\(198\) 0 0
\(199\) 8.33677 0.590978 0.295489 0.955346i \(-0.404517\pi\)
0.295489 + 0.955346i \(0.404517\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.52543 0.107064
\(204\) 0 0
\(205\) −8.23506 −0.575162
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.42864 0.306335
\(210\) 0 0
\(211\) 9.79213 0.674118 0.337059 0.941483i \(-0.390568\pi\)
0.337059 + 0.941483i \(0.390568\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.65878 0.385926
\(216\) 0 0
\(217\) 4.42864 0.300636
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.43801 −0.231265
\(222\) 0 0
\(223\) 16.0558 1.07517 0.537587 0.843208i \(-0.319336\pi\)
0.537587 + 0.843208i \(0.319336\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.1985 −1.27425 −0.637125 0.770761i \(-0.719876\pi\)
−0.637125 + 0.770761i \(0.719876\pi\)
\(228\) 0 0
\(229\) −10.5906 −0.699845 −0.349922 0.936779i \(-0.613792\pi\)
−0.349922 + 0.936779i \(0.613792\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −23.1240 −1.51490 −0.757451 0.652892i \(-0.773556\pi\)
−0.757451 + 0.652892i \(0.773556\pi\)
\(234\) 0 0
\(235\) −4.70964 −0.307223
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.9906 1.09903 0.549516 0.835483i \(-0.314812\pi\)
0.549516 + 0.835483i \(0.314812\pi\)
\(240\) 0 0
\(241\) 0.368416 0.0237318 0.0118659 0.999930i \(-0.496223\pi\)
0.0118659 + 0.999930i \(0.496223\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.67307 0.298552
\(246\) 0 0
\(247\) 1.80642 0.114940
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.7190 −0.992175 −0.496087 0.868273i \(-0.665230\pi\)
−0.496087 + 0.868273i \(0.665230\pi\)
\(252\) 0 0
\(253\) 4.42864 0.278426
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.6035 −1.16045 −0.580227 0.814455i \(-0.697036\pi\)
−0.580227 + 0.814455i \(0.697036\pi\)
\(258\) 0 0
\(259\) −3.77478 −0.234553
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.7096 0.783710 0.391855 0.920027i \(-0.371834\pi\)
0.391855 + 0.920027i \(0.371834\pi\)
\(264\) 0 0
\(265\) −11.2859 −0.693288
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −21.7462 −1.32589 −0.662945 0.748668i \(-0.730694\pi\)
−0.662945 + 0.748668i \(0.730694\pi\)
\(270\) 0 0
\(271\) −18.3827 −1.11667 −0.558335 0.829616i \(-0.688560\pi\)
−0.558335 + 0.829616i \(0.688560\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.52543 0.0919867
\(276\) 0 0
\(277\) 12.7971 0.768901 0.384450 0.923146i \(-0.374391\pi\)
0.384450 + 0.923146i \(0.374391\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.1842 −1.26374 −0.631872 0.775073i \(-0.717713\pi\)
−0.631872 + 0.775073i \(0.717713\pi\)
\(282\) 0 0
\(283\) −5.68736 −0.338079 −0.169039 0.985609i \(-0.554066\pi\)
−0.169039 + 0.985609i \(0.554066\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.5620 −0.741511
\(288\) 0 0
\(289\) 13.5303 0.795903
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 25.0879 1.46565 0.732825 0.680417i \(-0.238201\pi\)
0.732825 + 0.680417i \(0.238201\pi\)
\(294\) 0 0
\(295\) 10.2351 0.595908
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.80642 0.104468
\(300\) 0 0
\(301\) 8.63206 0.497544
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.93978 0.454630
\(306\) 0 0
\(307\) 30.8113 1.75850 0.879248 0.476364i \(-0.158046\pi\)
0.879248 + 0.476364i \(0.158046\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −30.0370 −1.70324 −0.851622 0.524156i \(-0.824381\pi\)
−0.851622 + 0.524156i \(0.824381\pi\)
\(312\) 0 0
\(313\) −18.3368 −1.03646 −0.518228 0.855243i \(-0.673408\pi\)
−0.518228 + 0.855243i \(0.673408\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.4558 −1.14891 −0.574457 0.818535i \(-0.694787\pi\)
−0.574457 + 0.818535i \(0.694787\pi\)
\(318\) 0 0
\(319\) −1.52543 −0.0854075
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.0415 −0.892572
\(324\) 0 0
\(325\) 0.622216 0.0345143
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.18421 −0.396078
\(330\) 0 0
\(331\) −12.0272 −0.661075 −0.330537 0.943793i \(-0.607230\pi\)
−0.330537 + 0.943793i \(0.607230\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.90321 0.158619
\(336\) 0 0
\(337\) −32.2306 −1.75571 −0.877857 0.478923i \(-0.841027\pi\)
−0.877857 + 0.478923i \(0.841027\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.42864 −0.239824
\(342\) 0 0
\(343\) 17.8064 0.961457
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.9037 1.60531 0.802657 0.596441i \(-0.203419\pi\)
0.802657 + 0.596441i \(0.203419\pi\)
\(348\) 0 0
\(349\) 29.8163 1.59603 0.798014 0.602639i \(-0.205884\pi\)
0.798014 + 0.602639i \(0.205884\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −21.1842 −1.12752 −0.563761 0.825938i \(-0.690646\pi\)
−0.563761 + 0.825938i \(0.690646\pi\)
\(354\) 0 0
\(355\) 7.47949 0.396970
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.1985 −0.591034 −0.295517 0.955337i \(-0.595492\pi\)
−0.295517 + 0.955337i \(0.595492\pi\)
\(360\) 0 0
\(361\) −10.5714 −0.556387
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.90321 −0.151961
\(366\) 0 0
\(367\) −9.95407 −0.519598 −0.259799 0.965663i \(-0.583656\pi\)
−0.259799 + 0.965663i \(0.583656\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −17.2159 −0.893802
\(372\) 0 0
\(373\) 2.29529 0.118845 0.0594227 0.998233i \(-0.481074\pi\)
0.0594227 + 0.998233i \(0.481074\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.622216 −0.0320457
\(378\) 0 0
\(379\) 9.61729 0.494007 0.247004 0.969015i \(-0.420554\pi\)
0.247004 + 0.969015i \(0.420554\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.86172 0.350618 0.175309 0.984513i \(-0.443908\pi\)
0.175309 + 0.984513i \(0.443908\pi\)
\(384\) 0 0
\(385\) 2.32693 0.118591
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −25.3590 −1.28575 −0.642877 0.765969i \(-0.722260\pi\)
−0.642877 + 0.765969i \(0.722260\pi\)
\(390\) 0 0
\(391\) −16.0415 −0.811253
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.5763 0.834043
\(396\) 0 0
\(397\) 24.2766 1.21841 0.609203 0.793015i \(-0.291490\pi\)
0.609203 + 0.793015i \(0.291490\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.30465 −0.264902 −0.132451 0.991190i \(-0.542285\pi\)
−0.132451 + 0.991190i \(0.542285\pi\)
\(402\) 0 0
\(403\) −1.80642 −0.0899844
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.77478 0.187109
\(408\) 0 0
\(409\) 0.714082 0.0353091 0.0176545 0.999844i \(-0.494380\pi\)
0.0176545 + 0.999844i \(0.494380\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 15.6128 0.768258
\(414\) 0 0
\(415\) −6.76986 −0.332319
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.6321 0.812529 0.406265 0.913755i \(-0.366831\pi\)
0.406265 + 0.913755i \(0.366831\pi\)
\(420\) 0 0
\(421\) −30.4286 −1.48300 −0.741501 0.670952i \(-0.765886\pi\)
−0.741501 + 0.670952i \(0.765886\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.52543 −0.268023
\(426\) 0 0
\(427\) 12.1116 0.586119
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.2257 1.50409 0.752044 0.659112i \(-0.229068\pi\)
0.752044 + 0.659112i \(0.229068\pi\)
\(432\) 0 0
\(433\) 35.2400 1.69353 0.846763 0.531971i \(-0.178548\pi\)
0.846763 + 0.531971i \(0.178548\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.42864 0.403197
\(438\) 0 0
\(439\) 30.6133 1.46109 0.730547 0.682862i \(-0.239265\pi\)
0.730547 + 0.682862i \(0.239265\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.4938 −1.49631 −0.748157 0.663521i \(-0.769061\pi\)
−0.748157 + 0.663521i \(0.769061\pi\)
\(444\) 0 0
\(445\) 13.9081 0.659309
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.6321 0.879301 0.439651 0.898169i \(-0.355102\pi\)
0.439651 + 0.898169i \(0.355102\pi\)
\(450\) 0 0
\(451\) 12.5620 0.591521
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.949145 0.0444966
\(456\) 0 0
\(457\) −31.2859 −1.46349 −0.731747 0.681577i \(-0.761295\pi\)
−0.731747 + 0.681577i \(0.761295\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 28.9304 1.34742 0.673712 0.738994i \(-0.264699\pi\)
0.673712 + 0.738994i \(0.264699\pi\)
\(462\) 0 0
\(463\) −14.1289 −0.656626 −0.328313 0.944569i \(-0.606480\pi\)
−0.328313 + 0.944569i \(0.606480\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −30.6909 −1.42021 −0.710103 0.704098i \(-0.751352\pi\)
−0.710103 + 0.704098i \(0.751352\pi\)
\(468\) 0 0
\(469\) 4.42864 0.204496
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.63206 −0.396903
\(474\) 0 0
\(475\) 2.90321 0.133208
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.04641 −0.413341 −0.206670 0.978411i \(-0.566263\pi\)
−0.206670 + 0.978411i \(0.566263\pi\)
\(480\) 0 0
\(481\) 1.53972 0.0702051
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.5669 −0.797673
\(486\) 0 0
\(487\) −14.6494 −0.663828 −0.331914 0.943310i \(-0.607694\pi\)
−0.331914 + 0.943310i \(0.607694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 22.1289 0.998664 0.499332 0.866411i \(-0.333579\pi\)
0.499332 + 0.866411i \(0.333579\pi\)
\(492\) 0 0
\(493\) 5.52543 0.248853
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 11.4094 0.511783
\(498\) 0 0
\(499\) 29.9813 1.34215 0.671073 0.741391i \(-0.265834\pi\)
0.671073 + 0.741391i \(0.265834\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.6874 0.788640 0.394320 0.918973i \(-0.370980\pi\)
0.394320 + 0.918973i \(0.370980\pi\)
\(504\) 0 0
\(505\) 5.05086 0.224760
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.45091 −0.0643107 −0.0321553 0.999483i \(-0.510237\pi\)
−0.0321553 + 0.999483i \(0.510237\pi\)
\(510\) 0 0
\(511\) −4.42864 −0.195911
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −9.56691 −0.421569
\(516\) 0 0
\(517\) 7.18421 0.315961
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 31.8765 1.39653 0.698267 0.715837i \(-0.253955\pi\)
0.698267 + 0.715837i \(0.253955\pi\)
\(522\) 0 0
\(523\) 14.9032 0.651672 0.325836 0.945426i \(-0.394354\pi\)
0.325836 + 0.945426i \(0.394354\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0415 0.698778
\(528\) 0 0
\(529\) −14.5714 −0.633537
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.12399 0.221944
\(534\) 0 0
\(535\) −0.576283 −0.0249149
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.12843 −0.307043
\(540\) 0 0
\(541\) −12.7841 −0.549633 −0.274817 0.961497i \(-0.588617\pi\)
−0.274817 + 0.961497i \(0.588617\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.28592 −0.312094
\(546\) 0 0
\(547\) −18.8617 −0.806469 −0.403235 0.915097i \(-0.632114\pi\)
−0.403235 + 0.915097i \(0.632114\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.90321 −0.123681
\(552\) 0 0
\(553\) 25.2859 1.07527
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.6316 0.662331 0.331166 0.943573i \(-0.392558\pi\)
0.331166 + 0.943573i \(0.392558\pi\)
\(558\) 0 0
\(559\) −3.52098 −0.148922
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.18865 0.0500958 0.0250479 0.999686i \(-0.492026\pi\)
0.0250479 + 0.999686i \(0.492026\pi\)
\(564\) 0 0
\(565\) 11.7605 0.494768
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −28.5303 −1.19605 −0.598027 0.801476i \(-0.704049\pi\)
−0.598027 + 0.801476i \(0.704049\pi\)
\(570\) 0 0
\(571\) −22.8385 −0.955763 −0.477882 0.878424i \(-0.658595\pi\)
−0.477882 + 0.878424i \(0.658595\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.90321 0.121072
\(576\) 0 0
\(577\) 4.18913 0.174396 0.0871979 0.996191i \(-0.472209\pi\)
0.0871979 + 0.996191i \(0.472209\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.3269 −0.428433
\(582\) 0 0
\(583\) 17.2159 0.713008
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.2815 −1.62132 −0.810660 0.585517i \(-0.800891\pi\)
−0.810660 + 0.585517i \(0.800891\pi\)
\(588\) 0 0
\(589\) −8.42864 −0.347296
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.4509 0.880883 0.440442 0.897781i \(-0.354822\pi\)
0.440442 + 0.897781i \(0.354822\pi\)
\(594\) 0 0
\(595\) −8.42864 −0.345541
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.3827 −0.751097 −0.375549 0.926803i \(-0.622546\pi\)
−0.375549 + 0.926803i \(0.622546\pi\)
\(600\) 0 0
\(601\) −12.3555 −0.503992 −0.251996 0.967728i \(-0.581087\pi\)
−0.251996 + 0.967728i \(0.581087\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.67307 0.352610
\(606\) 0 0
\(607\) 48.4340 1.96588 0.982938 0.183935i \(-0.0588835\pi\)
0.982938 + 0.183935i \(0.0588835\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.93041 0.118552
\(612\) 0 0
\(613\) −0.958989 −0.0387332 −0.0193666 0.999812i \(-0.506165\pi\)
−0.0193666 + 0.999812i \(0.506165\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.09679 −0.205189 −0.102594 0.994723i \(-0.532714\pi\)
−0.102594 + 0.994723i \(0.532714\pi\)
\(618\) 0 0
\(619\) 0.0142901 0.000574368 0 0.000287184 1.00000i \(-0.499909\pi\)
0.000287184 1.00000i \(0.499909\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 21.2159 0.849995
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.6731 −0.545181
\(630\) 0 0
\(631\) −12.8859 −0.512978 −0.256489 0.966547i \(-0.582566\pi\)
−0.256489 + 0.966547i \(0.582566\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.5161 0.576052
\(636\) 0 0
\(637\) −2.90766 −0.115206
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 46.6865 1.84400 0.922002 0.387185i \(-0.126553\pi\)
0.922002 + 0.387185i \(0.126553\pi\)
\(642\) 0 0
\(643\) −28.1388 −1.10968 −0.554842 0.831956i \(-0.687221\pi\)
−0.554842 + 0.831956i \(0.687221\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 47.5067 1.86768 0.933840 0.357690i \(-0.116436\pi\)
0.933840 + 0.357690i \(0.116436\pi\)
\(648\) 0 0
\(649\) −15.6128 −0.612858
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.5383 −0.999392 −0.499696 0.866201i \(-0.666555\pi\)
−0.499696 + 0.866201i \(0.666555\pi\)
\(654\) 0 0
\(655\) −15.7605 −0.615813
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11.4938 −0.447734 −0.223867 0.974620i \(-0.571868\pi\)
−0.223867 + 0.974620i \(0.571868\pi\)
\(660\) 0 0
\(661\) 48.4929 1.88615 0.943077 0.332574i \(-0.107917\pi\)
0.943077 + 0.332574i \(0.107917\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.42864 0.171735
\(666\) 0 0
\(667\) −2.90321 −0.112413
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.1116 −0.467561
\(672\) 0 0
\(673\) −15.1526 −0.584088 −0.292044 0.956405i \(-0.594335\pi\)
−0.292044 + 0.956405i \(0.594335\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −38.8943 −1.49483 −0.747415 0.664357i \(-0.768705\pi\)
−0.747415 + 0.664357i \(0.768705\pi\)
\(678\) 0 0
\(679\) −26.7971 −1.02838
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.3733 −0.435189 −0.217594 0.976039i \(-0.569821\pi\)
−0.217594 + 0.976039i \(0.569821\pi\)
\(684\) 0 0
\(685\) 5.52543 0.211116
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.02227 0.267527
\(690\) 0 0
\(691\) −29.4893 −1.12183 −0.560914 0.827874i \(-0.689550\pi\)
−0.560914 + 0.827874i \(0.689550\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.4193 0.660751
\(696\) 0 0
\(697\) −45.5022 −1.72352
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −52.2895 −1.97495 −0.987473 0.157789i \(-0.949563\pi\)
−0.987473 + 0.157789i \(0.949563\pi\)
\(702\) 0 0
\(703\) 7.18421 0.270958
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.70471 0.289766
\(708\) 0 0
\(709\) 9.18421 0.344920 0.172460 0.985017i \(-0.444828\pi\)
0.172460 + 0.985017i \(0.444828\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.42864 −0.315655
\(714\) 0 0
\(715\) −0.949145 −0.0354960
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.74620 0.288885 0.144442 0.989513i \(-0.453861\pi\)
0.144442 + 0.989513i \(0.453861\pi\)
\(720\) 0 0
\(721\) −14.5936 −0.543495
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 5.06821 0.187969 0.0939847 0.995574i \(-0.470040\pi\)
0.0939847 + 0.995574i \(0.470040\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31.2672 1.15646
\(732\) 0 0
\(733\) −0.659257 −0.0243502 −0.0121751 0.999926i \(-0.503876\pi\)
−0.0121751 + 0.999926i \(0.503876\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.42864 −0.163131
\(738\) 0 0
\(739\) −7.07805 −0.260370 −0.130185 0.991490i \(-0.541557\pi\)
−0.130185 + 0.991490i \(0.541557\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.3412 0.966366 0.483183 0.875519i \(-0.339481\pi\)
0.483183 + 0.875519i \(0.339481\pi\)
\(744\) 0 0
\(745\) 2.00000 0.0732743
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.879077 −0.0321208
\(750\) 0 0
\(751\) 4.92195 0.179604 0.0898022 0.995960i \(-0.471377\pi\)
0.0898022 + 0.995960i \(0.471377\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.37778 0.195718
\(756\) 0 0
\(757\) 30.9032 1.12320 0.561598 0.827410i \(-0.310187\pi\)
0.561598 + 0.827410i \(0.310187\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.3274 −1.13562 −0.567809 0.823160i \(-0.692209\pi\)
−0.567809 + 0.823160i \(0.692209\pi\)
\(762\) 0 0
\(763\) −11.1141 −0.402359
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.36842 −0.229950
\(768\) 0 0
\(769\) −26.5620 −0.957850 −0.478925 0.877856i \(-0.658973\pi\)
−0.478925 + 0.877856i \(0.658973\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.8528 0.534219 0.267110 0.963666i \(-0.413931\pi\)
0.267110 + 0.963666i \(0.413931\pi\)
\(774\) 0 0
\(775\) −2.90321 −0.104286
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23.9081 0.856598
\(780\) 0 0
\(781\) −11.4094 −0.408261
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.39207 0.0496853
\(786\) 0 0
\(787\) −25.5540 −0.910902 −0.455451 0.890261i \(-0.650522\pi\)
−0.455451 + 0.890261i \(0.650522\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 17.9398 0.637865
\(792\) 0 0
\(793\) −4.94025 −0.175434
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.2208 0.362038 0.181019 0.983480i \(-0.442060\pi\)
0.181019 + 0.983480i \(0.442060\pi\)
\(798\) 0 0
\(799\) −26.0228 −0.920619
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.42864 0.156283
\(804\) 0 0
\(805\) 4.42864 0.156089
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.44155 0.0858402 0.0429201 0.999079i \(-0.486334\pi\)
0.0429201 + 0.999079i \(0.486334\pi\)
\(810\) 0 0
\(811\) −2.33984 −0.0821628 −0.0410814 0.999156i \(-0.513080\pi\)
−0.0410814 + 0.999156i \(0.513080\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −7.19850 −0.252152
\(816\) 0 0
\(817\) −16.4286 −0.574765
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.6539 −0.511423 −0.255712 0.966753i \(-0.582310\pi\)
−0.255712 + 0.966753i \(0.582310\pi\)
\(822\) 0 0
\(823\) 47.3733 1.65133 0.825665 0.564160i \(-0.190800\pi\)
0.825665 + 0.564160i \(0.190800\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.3412 0.637787 0.318893 0.947791i \(-0.396689\pi\)
0.318893 + 0.947791i \(0.396689\pi\)
\(828\) 0 0
\(829\) 45.5625 1.58245 0.791225 0.611525i \(-0.209444\pi\)
0.791225 + 0.611525i \(0.209444\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.8207 0.894635
\(834\) 0 0
\(835\) 15.7605 0.545414
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.9733 1.06932 0.534658 0.845068i \(-0.320440\pi\)
0.534658 + 0.845068i \(0.320440\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.6128 0.433895
\(846\) 0 0
\(847\) 13.2301 0.454593
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.18421 0.246271
\(852\) 0 0
\(853\) 25.4050 0.869850 0.434925 0.900467i \(-0.356775\pi\)
0.434925 + 0.900467i \(0.356775\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 19.2573 0.657818 0.328909 0.944362i \(-0.393319\pi\)
0.328909 + 0.944362i \(0.393319\pi\)
\(858\) 0 0
\(859\) 42.2623 1.44197 0.720985 0.692951i \(-0.243690\pi\)
0.720985 + 0.692951i \(0.243690\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.88400 0.336455 0.168228 0.985748i \(-0.446196\pi\)
0.168228 + 0.985748i \(0.446196\pi\)
\(864\) 0 0
\(865\) 13.4795 0.458317
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25.2859 −0.857766
\(870\) 0 0
\(871\) −1.80642 −0.0612083
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.52543 0.0515689
\(876\) 0 0
\(877\) −12.6508 −0.427187 −0.213594 0.976923i \(-0.568517\pi\)
−0.213594 + 0.976923i \(0.568517\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.0888033 0.00299186 0.00149593 0.999999i \(-0.499524\pi\)
0.00149593 + 0.999999i \(0.499524\pi\)
\(882\) 0 0
\(883\) 57.3131 1.92874 0.964370 0.264557i \(-0.0852258\pi\)
0.964370 + 0.264557i \(0.0852258\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27.0781 −0.909192 −0.454596 0.890698i \(-0.650216\pi\)
−0.454596 + 0.890698i \(0.650216\pi\)
\(888\) 0 0
\(889\) 22.1432 0.742659
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.6731 0.457552
\(894\) 0 0
\(895\) −0.266706 −0.00891500
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.90321 0.0968275
\(900\) 0 0
\(901\) −62.3595 −2.07750
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.7971 0.691318
\(906\) 0 0
\(907\) −38.6276 −1.28261 −0.641304 0.767287i \(-0.721606\pi\)
−0.641304 + 0.767287i \(0.721606\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.27163 −0.174657 −0.0873284 0.996180i \(-0.527833\pi\)
−0.0873284 + 0.996180i \(0.527833\pi\)
\(912\) 0 0
\(913\) 10.3269 0.341771
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −24.0415 −0.793920
\(918\) 0 0
\(919\) 11.6632 0.384734 0.192367 0.981323i \(-0.438384\pi\)
0.192367 + 0.981323i \(0.438384\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.65386 −0.153184
\(924\) 0 0
\(925\) 2.47457 0.0813634
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 46.8198 1.53611 0.768054 0.640385i \(-0.221225\pi\)
0.768054 + 0.640385i \(0.221225\pi\)
\(930\) 0 0
\(931\) −13.5669 −0.444638
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.42864 0.275646
\(936\) 0 0
\(937\) 4.44738 0.145289 0.0726447 0.997358i \(-0.476856\pi\)
0.0726447 + 0.997358i \(0.476856\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.6726 0.413115 0.206557 0.978434i \(-0.433774\pi\)
0.206557 + 0.978434i \(0.433774\pi\)
\(942\) 0 0
\(943\) 23.9081 0.778556
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.2306 0.657407 0.328703 0.944433i \(-0.393388\pi\)
0.328703 + 0.944433i \(0.393388\pi\)
\(948\) 0 0
\(949\) 1.80642 0.0586390
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.5718 0.795960 0.397980 0.917394i \(-0.369711\pi\)
0.397980 + 0.917394i \(0.369711\pi\)
\(954\) 0 0
\(955\) −9.43356 −0.305263
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.42864 0.272175
\(960\) 0 0
\(961\) −22.5714 −0.728108
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.23014 −0.168364
\(966\) 0 0
\(967\) 52.9960 1.70424 0.852119 0.523349i \(-0.175317\pi\)
0.852119 + 0.523349i \(0.175317\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.02720 −0.129239 −0.0646195 0.997910i \(-0.520583\pi\)
−0.0646195 + 0.997910i \(0.520583\pi\)
\(972\) 0 0
\(973\) 26.5718 0.851854
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.2761 −0.424739 −0.212370 0.977189i \(-0.568118\pi\)
−0.212370 + 0.977189i \(0.568118\pi\)
\(978\) 0 0
\(979\) −21.2159 −0.678062
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23.5857 0.752265 0.376133 0.926566i \(-0.377254\pi\)
0.376133 + 0.926566i \(0.377254\pi\)
\(984\) 0 0
\(985\) 11.5397 0.367686
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.4286 −0.522400
\(990\) 0 0
\(991\) 50.7882 1.61334 0.806670 0.591003i \(-0.201268\pi\)
0.806670 + 0.591003i \(0.201268\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.33677 −0.264293
\(996\) 0 0
\(997\) −54.5705 −1.72826 −0.864132 0.503266i \(-0.832132\pi\)
−0.864132 + 0.503266i \(0.832132\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.w.1.1 3
3.2 odd 2 580.2.a.d.1.3 3
12.11 even 2 2320.2.a.o.1.1 3
15.2 even 4 2900.2.c.g.349.1 6
15.8 even 4 2900.2.c.g.349.6 6
15.14 odd 2 2900.2.a.f.1.1 3
24.5 odd 2 9280.2.a.bh.1.1 3
24.11 even 2 9280.2.a.bt.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.2.a.d.1.3 3 3.2 odd 2
2320.2.a.o.1.1 3 12.11 even 2
2900.2.a.f.1.1 3 15.14 odd 2
2900.2.c.g.349.1 6 15.2 even 4
2900.2.c.g.349.6 6 15.8 even 4
5220.2.a.w.1.1 3 1.1 even 1 trivial
9280.2.a.bh.1.1 3 24.5 odd 2
9280.2.a.bt.1.3 3 24.11 even 2