Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [5220,2,Mod(1,5220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5220.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5220.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(41.6819098551\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 580) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 5220.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −1.00000 | −0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −2.00000 | −0.755929 | −0.377964 | − | 0.925820i | \(-0.623376\pi\) | ||||
−0.377964 | + | 0.925820i | \(0.623376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 4.00000 | 1.20605 | 0.603023 | − | 0.797724i | \(-0.293963\pi\) | ||||
0.603023 | + | 0.797724i | \(0.293963\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −6.00000 | −1.66410 | −0.832050 | − | 0.554700i | \(-0.812833\pi\) | ||||
−0.832050 | + | 0.554700i | \(0.812833\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 4.00000 | 0.970143 | 0.485071 | − | 0.874475i | \(-0.338794\pi\) | ||||
0.485071 | + | 0.874475i | \(0.338794\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −6.00000 | −1.25109 | −0.625543 | − | 0.780189i | \(-0.715123\pi\) | ||||
−0.625543 | + | 0.780189i | \(0.715123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 1.00000 | 0.185695 | ||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 2.00000 | 0.338062 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −8.00000 | −1.31519 | −0.657596 | − | 0.753371i | \(-0.728427\pi\) | ||||
−0.657596 | + | 0.753371i | \(0.728427\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 2.00000 | 0.312348 | 0.156174 | − | 0.987730i | \(-0.450084\pi\) | ||||
0.156174 | + | 0.987730i | \(0.450084\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 4.00000 | 0.583460 | 0.291730 | − | 0.956501i | \(-0.405769\pi\) | ||||
0.291730 | + | 0.956501i | \(0.405769\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3.00000 | −0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.00000 | 0.274721 | 0.137361 | − | 0.990521i | \(-0.456138\pi\) | ||||
0.137361 | + | 0.990521i | \(0.456138\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −4.00000 | −0.539360 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.00000 | −1.04151 | −0.520756 | − | 0.853706i | \(-0.674350\pi\) | ||||
−0.520756 | + | 0.853706i | \(0.674350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.0000 | 1.28037 | 0.640184 | − | 0.768221i | \(-0.278858\pi\) | ||||
0.640184 | + | 0.768221i | \(0.278858\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 6.00000 | 0.744208 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −10.0000 | −1.22169 | −0.610847 | − | 0.791748i | \(-0.709171\pi\) | ||||
−0.610847 | + | 0.791748i | \(0.709171\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 8.00000 | 0.949425 | 0.474713 | − | 0.880141i | \(-0.342552\pi\) | ||||
0.474713 | + | 0.880141i | \(0.342552\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | −8.00000 | −0.911685 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000 | 0.658586 | 0.329293 | − | 0.944228i | \(-0.393190\pi\) | ||||
0.329293 | + | 0.944228i | \(0.393190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −4.00000 | −0.433861 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
−0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 12.0000 | 1.25794 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −4.00000 | −0.410391 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −12.0000 | −1.21842 | −0.609208 | − | 0.793011i | \(-0.708512\pi\) | ||||
−0.609208 | + | 0.793011i | \(0.708512\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 10.0000 | 0.995037 | 0.497519 | − | 0.867453i | \(-0.334245\pi\) | ||||
0.497519 | + | 0.867453i | \(0.334245\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 6.00000 | 0.591198 | 0.295599 | − | 0.955312i | \(-0.404481\pi\) | ||||
0.295599 | + | 0.955312i | \(0.404481\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 2.00000 | 0.193347 | 0.0966736 | − | 0.995316i | \(-0.469180\pi\) | ||||
0.0966736 | + | 0.995316i | \(0.469180\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 10.0000 | 0.957826 | 0.478913 | − | 0.877862i | \(-0.341031\pi\) | ||||
0.478913 | + | 0.877862i | \(0.341031\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 6.00000 | 0.559503 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −8.00000 | −0.733359 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −1.00000 | −0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 4.00000 | 0.354943 | 0.177471 | − | 0.984126i | \(-0.443208\pi\) | ||||
0.177471 | + | 0.984126i | \(0.443208\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −8.00000 | −0.693688 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 20.0000 | 1.70872 | 0.854358 | − | 0.519685i | \(-0.173951\pi\) | ||||
0.854358 | + | 0.519685i | \(0.173951\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 12.0000 | 1.01783 | 0.508913 | − | 0.860818i | \(-0.330047\pi\) | ||||
0.508913 | + | 0.860818i | \(0.330047\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −24.0000 | −2.00698 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −1.00000 | −0.0830455 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 16.0000 | 1.30206 | 0.651031 | − | 0.759051i | \(-0.274337\pi\) | ||||
0.651031 | + | 0.759051i | \(0.274337\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 4.00000 | 0.319235 | 0.159617 | − | 0.987179i | \(-0.448974\pi\) | ||||
0.159617 | + | 0.987179i | \(0.448974\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 12.0000 | 0.945732 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −8.00000 | −0.626608 | −0.313304 | − | 0.949653i | \(-0.601436\pi\) | ||||
−0.313304 | + | 0.949653i | \(0.601436\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 10.0000 | 0.773823 | 0.386912 | − | 0.922117i | \(-0.373542\pi\) | ||||
0.386912 | + | 0.922117i | \(0.373542\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 23.0000 | 1.76923 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −10.0000 | −0.760286 | −0.380143 | − | 0.924928i | \(-0.624125\pi\) | ||||
−0.380143 | + | 0.924928i | \(0.624125\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | −2.00000 | −0.151186 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 20.0000 | 1.49487 | 0.747435 | − | 0.664335i | \(-0.231285\pi\) | ||||
0.747435 | + | 0.664335i | \(0.231285\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −22.0000 | −1.63525 | −0.817624 | − | 0.575753i | \(-0.804709\pi\) | ||||
−0.817624 | + | 0.575753i | \(0.804709\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 8.00000 | 0.588172 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 16.0000 | 1.17004 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.0000 | −1.73658 | −0.868290 | − | 0.496058i | \(-0.834780\pi\) | ||||
−0.868290 | + | 0.496058i | \(0.834780\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 16.0000 | 1.15171 | 0.575853 | − | 0.817554i | \(-0.304670\pi\) | ||||
0.575853 | + | 0.817554i | \(0.304670\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 22.0000 | 1.56744 | 0.783718 | − | 0.621117i | \(-0.213321\pi\) | ||||
0.783718 | + | 0.621117i | \(0.213321\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | −2.00000 | −0.140372 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −2.00000 | −0.139686 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 16.0000 | 1.10674 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 20.0000 | 1.37686 | 0.688428 | − | 0.725304i | \(-0.258301\pi\) | ||||
0.688428 | + | 0.725304i | \(0.258301\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −4.00000 | −0.272798 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −24.0000 | −1.61441 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 14.0000 | 0.937509 | 0.468755 | − | 0.883328i | \(-0.344703\pi\) | ||||
0.468755 | + | 0.883328i | \(0.344703\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 6.00000 | 0.398234 | 0.199117 | − | 0.979976i | \(-0.436193\pi\) | ||||
0.199117 | + | 0.979976i | \(0.436193\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 2.00000 | 0.132164 | 0.0660819 | − | 0.997814i | \(-0.478950\pi\) | ||||
0.0660819 | + | 0.997814i | \(0.478950\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 22.0000 | 1.44127 | 0.720634 | − | 0.693316i | \(-0.243851\pi\) | ||||
0.720634 | + | 0.693316i | \(0.243851\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −4.00000 | −0.260931 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −20.0000 | −1.29369 | −0.646846 | − | 0.762620i | \(-0.723912\pi\) | ||||
−0.646846 | + | 0.762620i | \(0.723912\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 26.0000 | 1.67481 | 0.837404 | − | 0.546585i | \(-0.184072\pi\) | ||||
0.837404 | + | 0.546585i | \(0.184072\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 3.00000 | 0.191663 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −24.0000 | −1.52708 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 28.0000 | 1.76734 | 0.883672 | − | 0.468106i | \(-0.155064\pi\) | ||||
0.883672 | + | 0.468106i | \(0.155064\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −24.0000 | −1.50887 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 18.0000 | 1.12281 | 0.561405 | − | 0.827541i | \(-0.310261\pi\) | ||||
0.561405 | + | 0.827541i | \(0.310261\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 16.0000 | 0.994192 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −16.0000 | −0.986602 | −0.493301 | − | 0.869859i | \(-0.664210\pi\) | ||||
−0.493301 | + | 0.869859i | \(0.664210\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −2.00000 | −0.122859 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −14.0000 | −0.853595 | −0.426798 | − | 0.904347i | \(-0.640358\pi\) | ||||
−0.426798 | + | 0.904347i | \(0.640358\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −8.00000 | −0.485965 | −0.242983 | − | 0.970031i | \(-0.578126\pi\) | ||||
−0.242983 | + | 0.970031i | \(0.578126\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 4.00000 | 0.241209 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 14.0000 | 0.841178 | 0.420589 | − | 0.907251i | \(-0.361823\pi\) | ||||
0.420589 | + | 0.907251i | \(0.361823\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 10.0000 | 0.596550 | 0.298275 | − | 0.954480i | \(-0.403589\pi\) | ||||
0.298275 | + | 0.954480i | \(0.403589\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −30.0000 | −1.78331 | −0.891657 | − | 0.452711i | \(-0.850457\pi\) | ||||
−0.891657 | + | 0.452711i | \(0.850457\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −4.00000 | −0.236113 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −1.00000 | −0.0588235 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 4.00000 | 0.233682 | 0.116841 | − | 0.993151i | \(-0.462723\pi\) | ||||
0.116841 | + | 0.993151i | \(0.462723\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 8.00000 | 0.465778 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 36.0000 | 2.08193 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −8.00000 | −0.461112 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −10.0000 | −0.572598 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4.00000 | 0.228292 | 0.114146 | − | 0.993464i | \(-0.463587\pi\) | ||||
0.114146 | + | 0.993464i | \(0.463587\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −26.0000 | −1.46961 | −0.734803 | − | 0.678280i | \(-0.762726\pi\) | ||||
−0.734803 | + | 0.678280i | \(0.762726\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 24.0000 | 1.34797 | 0.673987 | − | 0.738743i | \(-0.264580\pi\) | ||||
0.673987 | + | 0.738743i | \(0.264580\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 4.00000 | 0.223957 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 16.0000 | 0.890264 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −6.00000 | −0.332820 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −8.00000 | −0.441054 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −36.0000 | −1.97874 | −0.989369 | − | 0.145424i | \(-0.953545\pi\) | ||||
−0.989369 | + | 0.145424i | \(0.953545\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 10.0000 | 0.546358 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 28.0000 | 1.52526 | 0.762629 | − | 0.646837i | \(-0.223908\pi\) | ||||
0.762629 | + | 0.646837i | \(0.223908\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000 | 1.07990 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 6.00000 | 0.322097 | 0.161048 | − | 0.986947i | \(-0.448512\pi\) | ||||
0.161048 | + | 0.986947i | \(0.448512\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 2.00000 | 0.107058 | 0.0535288 | − | 0.998566i | \(-0.482953\pi\) | ||||
0.0535288 | + | 0.998566i | \(0.482953\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 14.0000 | 0.745145 | 0.372572 | − | 0.928003i | \(-0.378476\pi\) | ||||
0.372572 | + | 0.928003i | \(0.378476\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −8.00000 | −0.424596 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 32.0000 | 1.67039 | 0.835193 | − | 0.549957i | \(-0.185356\pi\) | ||||
0.835193 | + | 0.549957i | \(0.185356\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −4.00000 | −0.207670 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −22.0000 | −1.13912 | −0.569558 | − | 0.821951i | \(-0.692886\pi\) | ||||
−0.569558 | + | 0.821951i | \(0.692886\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −6.00000 | −0.309016 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −28.0000 | −1.43826 | −0.719132 | − | 0.694874i | \(-0.755460\pi\) | ||||
−0.719132 | + | 0.694874i | \(0.755460\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 10.0000 | 0.510976 | 0.255488 | − | 0.966812i | \(-0.417764\pi\) | ||||
0.255488 | + | 0.966812i | \(0.417764\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 8.00000 | 0.407718 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 26.0000 | 1.31825 | 0.659126 | − | 0.752032i | \(-0.270926\pi\) | ||||
0.659126 | + | 0.752032i | \(0.270926\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −24.0000 | −1.21373 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −8.00000 | −0.402524 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 34.0000 | 1.70641 | 0.853206 | − | 0.521575i | \(-0.174655\pi\) | ||||
0.853206 | + | 0.521575i | \(0.174655\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −22.0000 | −1.09863 | −0.549314 | − | 0.835616i | \(-0.685111\pi\) | ||||
−0.549314 | + | 0.835616i | \(0.685111\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −32.0000 | −1.58618 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 34.0000 | 1.68119 | 0.840596 | − | 0.541663i | \(-0.182205\pi\) | ||||
0.840596 | + | 0.541663i | \(0.182205\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 16.0000 | 0.787309 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −6.00000 | −0.294528 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 32.0000 | 1.56330 | 0.781651 | − | 0.623716i | \(-0.214378\pi\) | ||||
0.781651 | + | 0.623716i | \(0.214378\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −22.0000 | −1.07221 | −0.536107 | − | 0.844150i | \(-0.680106\pi\) | ||||
−0.536107 | + | 0.844150i | \(0.680106\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 4.00000 | 0.194029 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −20.0000 | −0.967868 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 20.0000 | 0.963366 | 0.481683 | − | 0.876346i | \(-0.340026\pi\) | ||||
0.481683 | + | 0.876346i | \(0.340026\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 20.0000 | 0.961139 | 0.480569 | − | 0.876957i | \(-0.340430\pi\) | ||||
0.480569 | + | 0.876957i | \(0.340430\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −24.0000 | −1.14808 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −20.0000 | −0.954548 | −0.477274 | − | 0.878755i | \(-0.658375\pi\) | ||||
−0.477274 | + | 0.878755i | \(0.658375\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −36.0000 | −1.71041 | −0.855206 | − | 0.518289i | \(-0.826569\pi\) | ||||
−0.855206 | + | 0.518289i | \(0.826569\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 6.00000 | 0.284427 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 14.0000 | 0.660701 | 0.330350 | − | 0.943858i | \(-0.392833\pi\) | ||||
0.330350 | + | 0.943858i | \(0.392833\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 8.00000 | 0.376705 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −12.0000 | −0.562569 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 2.00000 | 0.0935561 | 0.0467780 | − | 0.998905i | \(-0.485105\pi\) | ||||
0.0467780 | + | 0.998905i | \(0.485105\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −30.0000 | −1.39724 | −0.698620 | − | 0.715493i | \(-0.746202\pi\) | ||||
−0.698620 | + | 0.715493i | \(0.746202\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 2.00000 | 0.0929479 | 0.0464739 | − | 0.998920i | \(-0.485202\pi\) | ||||
0.0464739 | + | 0.998920i | \(0.485202\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −20.0000 | −0.925490 | −0.462745 | − | 0.886492i | \(-0.653135\pi\) | ||||
−0.462745 | + | 0.886492i | \(0.653135\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 20.0000 | 0.923514 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 16.0000 | 0.735681 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 4.00000 | 0.183533 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −16.0000 | −0.731059 | −0.365529 | − | 0.930800i | \(-0.619112\pi\) | ||||
−0.365529 | + | 0.930800i | \(0.619112\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 48.0000 | 2.18861 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 12.0000 | 0.544892 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −10.0000 | −0.453143 | −0.226572 | − | 0.973995i | \(-0.572752\pi\) | ||||
−0.226572 | + | 0.973995i | \(0.572752\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 28.0000 | 1.26362 | 0.631811 | − | 0.775122i | \(-0.282312\pi\) | ||||
0.631811 | + | 0.775122i | \(0.282312\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 4.00000 | 0.180151 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −16.0000 | −0.717698 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −20.0000 | −0.895323 | −0.447661 | − | 0.894203i | \(-0.647743\pi\) | ||||
−0.447661 | + | 0.894203i | \(0.647743\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −44.0000 | −1.96186 | −0.980932 | − | 0.194354i | \(-0.937739\pi\) | ||||
−0.980932 | + | 0.194354i | \(0.937739\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −10.0000 | −0.444994 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 18.0000 | 0.797836 | 0.398918 | − | 0.916987i | \(-0.369386\pi\) | ||||
0.398918 | + | 0.916987i | \(0.369386\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −6.00000 | −0.264392 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 16.0000 | 0.703679 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 6.00000 | 0.262865 | 0.131432 | − | 0.991325i | \(-0.458042\pi\) | ||||
0.131432 | + | 0.991325i | \(0.458042\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −26.0000 | −1.13690 | −0.568450 | − | 0.822718i | \(-0.692457\pi\) | ||||
−0.568450 | + | 0.822718i | \(0.692457\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.0000 | 0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −12.0000 | −0.519778 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | −2.00000 | −0.0864675 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −12.0000 | −0.516877 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 22.0000 | 0.945854 | 0.472927 | − | 0.881102i | \(-0.343197\pi\) | ||||
0.472927 | + | 0.881102i | \(0.343197\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −10.0000 | −0.428353 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −2.00000 | −0.0855138 | −0.0427569 | − | 0.999086i | \(-0.513614\pi\) | ||||
−0.0427569 | + | 0.999086i | \(0.513614\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 4.00000 | 0.170406 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −16.0000 | −0.680389 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 18.0000 | 0.762684 | 0.381342 | − | 0.924434i | \(-0.375462\pi\) | ||||
0.381342 | + | 0.924434i | \(0.375462\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −24.0000 | −1.01509 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 6.00000 | 0.251533 | 0.125767 | − | 0.992060i | \(-0.459861\pi\) | ||||
0.125767 | + | 0.992060i | \(0.459861\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 24.0000 | 1.00437 | 0.502184 | − | 0.864761i | \(-0.332530\pi\) | ||||
0.502184 | + | 0.864761i | \(0.332530\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −6.00000 | −0.250217 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 16.0000 | 0.666089 | 0.333044 | − | 0.942911i | \(-0.391924\pi\) | ||||
0.333044 | + | 0.942911i | \(0.391924\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −12.0000 | −0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 8.00000 | 0.331326 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −18.0000 | −0.742940 | −0.371470 | − | 0.928445i | \(-0.621146\pi\) | ||||
−0.371470 | + | 0.928445i | \(0.621146\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 14.0000 | 0.574911 | 0.287456 | − | 0.957794i | \(-0.407191\pi\) | ||||
0.287456 | + | 0.957794i | \(0.407191\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 8.00000 | 0.327968 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −40.0000 | −1.63436 | −0.817178 | − | 0.576386i | \(-0.804463\pi\) | ||||
−0.817178 | + | 0.576386i | \(0.804463\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −10.0000 | −0.407909 | −0.203954 | − | 0.978980i | \(-0.565379\pi\) | ||||
−0.203954 | + | 0.978980i | \(0.565379\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −5.00000 | −0.203279 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −4.00000 | −0.162355 | −0.0811775 | − | 0.996700i | \(-0.525868\pi\) | ||||
−0.0811775 | + | 0.996700i | \(0.525868\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −24.0000 | −0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 6.00000 | 0.242338 | 0.121169 | − | 0.992632i | \(-0.461336\pi\) | ||||
0.121169 | + | 0.992632i | \(0.461336\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −12.0000 | −0.483102 | −0.241551 | − | 0.970388i | \(-0.577656\pi\) | ||||
−0.241551 | + | 0.970388i | \(0.577656\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −20.0000 | −0.803868 | −0.401934 | − | 0.915669i | \(-0.631662\pi\) | ||||
−0.401934 | + | 0.915669i | \(0.631662\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 12.0000 | 0.480770 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −32.0000 | −1.27592 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −20.0000 | −0.796187 | −0.398094 | − | 0.917345i | \(-0.630328\pi\) | ||||
−0.398094 | + | 0.917345i | \(0.630328\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −4.00000 | −0.158735 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 18.0000 | 0.713186 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0000 | −1.18493 | −0.592464 | − | 0.805597i | \(-0.701845\pi\) | ||||
−0.592464 | + | 0.805597i | \(0.701845\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 26.0000 | 1.02534 | 0.512670 | − | 0.858586i | \(-0.328656\pi\) | ||||
0.512670 | + | 0.858586i | \(0.328656\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −10.0000 | −0.393141 | −0.196570 | − | 0.980490i | \(-0.562980\pi\) | ||||
−0.196570 | + | 0.980490i | \(0.562980\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −32.0000 | −1.25611 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 8.00000 | 0.313064 | 0.156532 | − | 0.987673i | \(-0.449969\pi\) | ||||
0.156532 | + | 0.987673i | \(0.449969\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −12.0000 | −0.468879 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 36.0000 | 1.40236 | 0.701180 | − | 0.712984i | \(-0.252657\pi\) | ||||
0.701180 | + | 0.712984i | \(0.252657\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 22.0000 | 0.855701 | 0.427850 | − | 0.903850i | \(-0.359271\pi\) | ||||
0.427850 | + | 0.903850i | \(0.359271\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 8.00000 | 0.310227 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −6.00000 | −0.232321 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 40.0000 | 1.54418 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −50.0000 | −1.92736 | −0.963679 | − | 0.267063i | \(-0.913947\pi\) | ||||
−0.963679 | + | 0.267063i | \(0.913947\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −36.0000 | −1.38359 | −0.691796 | − | 0.722093i | \(-0.743180\pi\) | ||||
−0.691796 | + | 0.722093i | \(0.743180\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 24.0000 | 0.921035 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 34.0000 | 1.30097 | 0.650487 | − | 0.759517i | \(-0.274565\pi\) | ||||
0.650487 | + | 0.759517i | \(0.274565\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −20.0000 | −0.764161 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −12.0000 | −0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 28.0000 | 1.06517 | 0.532585 | − | 0.846376i | \(-0.321221\pi\) | ||||
0.532585 | + | 0.846376i | \(0.321221\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −12.0000 | −0.455186 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 8.00000 | 0.303022 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 26.0000 | 0.982006 | 0.491003 | − | 0.871158i | \(-0.336630\pi\) | ||||
0.491003 | + | 0.871158i | \(0.336630\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −32.0000 | −1.20690 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −20.0000 | −0.752177 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −34.0000 | −1.27690 | −0.638448 | − | 0.769665i | \(-0.720423\pi\) | ||||
−0.638448 | + | 0.769665i | \(0.720423\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 24.0000 | 0.897549 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −36.0000 | −1.34257 | −0.671287 | − | 0.741198i | \(-0.734258\pi\) | ||||
−0.671287 | + | 0.741198i | \(0.734258\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −12.0000 | −0.446903 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 1.00000 | 0.0371391 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 8.00000 | 0.296704 | 0.148352 | − | 0.988935i | \(-0.452603\pi\) | ||||
0.148352 | + | 0.988935i | \(0.452603\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 16.0000 | 0.591781 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 36.0000 | 1.32969 | 0.664845 | − | 0.746981i | \(-0.268498\pi\) | ||||
0.664845 | + | 0.746981i | \(0.268498\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −40.0000 | −1.47342 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −20.0000 | −0.735712 | −0.367856 | − | 0.929883i | \(-0.619908\pi\) | ||||
−0.367856 | + | 0.929883i | \(0.619908\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 52.0000 | 1.90769 | 0.953847 | − | 0.300291i | \(-0.0970839\pi\) | ||||
0.953847 | + | 0.300291i | \(0.0970839\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −6.00000 | −0.219823 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −4.00000 | −0.146157 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 8.00000 | 0.291924 | 0.145962 | − | 0.989290i | \(-0.453372\pi\) | ||||
0.145962 | + | 0.989290i | \(0.453372\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −16.0000 | −0.582300 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 32.0000 | 1.16306 | 0.581530 | − | 0.813525i | \(-0.302454\pi\) | ||||
0.581530 | + | 0.813525i | \(0.302454\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −22.0000 | −0.797499 | −0.398750 | − | 0.917060i | \(-0.630556\pi\) | ||||
−0.398750 | + | 0.917060i | \(0.630556\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −20.0000 | −0.724049 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 48.0000 | 1.73318 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −42.0000 | −1.51456 | −0.757279 | − | 0.653091i | \(-0.773472\pi\) | ||||
−0.757279 | + | 0.653091i | \(0.773472\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −24.0000 | −0.863220 | −0.431610 | − | 0.902060i | \(-0.642054\pi\) | ||||
−0.431610 | + | 0.902060i | \(0.642054\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 8.00000 | 0.286630 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 32.0000 | 1.14505 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −4.00000 | −0.142766 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 10.0000 | 0.356462 | 0.178231 | − | 0.983989i | \(-0.442963\pi\) | ||||
0.178231 | + | 0.983989i | \(0.442963\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −60.0000 | −2.13066 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 24.0000 | 0.850124 | 0.425062 | − | 0.905164i | \(-0.360252\pi\) | ||||
0.425062 | + | 0.905164i | \(0.360252\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 16.0000 | 0.566039 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | −12.0000 | −0.422944 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 42.0000 | 1.47664 | 0.738321 | − | 0.674450i | \(-0.235619\pi\) | ||||
0.738321 | + | 0.674450i | \(0.235619\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 8.00000 | 0.280228 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 22.0000 | 0.767805 | 0.383903 | − | 0.923374i | \(-0.374580\pi\) | ||||
0.383903 | + | 0.923374i | \(0.374580\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 8.00000 | 0.278862 | 0.139431 | − | 0.990232i | \(-0.455473\pi\) | ||||
0.139431 | + | 0.990232i | \(0.455473\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 28.0000 | 0.973655 | 0.486828 | − | 0.873498i | \(-0.338154\pi\) | ||||
0.486828 | + | 0.873498i | \(0.338154\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 38.0000 | 1.31979 | 0.659897 | − | 0.751356i | \(-0.270600\pi\) | ||||
0.659897 | + | 0.751356i | \(0.270600\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −12.0000 | −0.415775 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −10.0000 | −0.346064 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 24.0000 | 0.828572 | 0.414286 | − | 0.910147i | \(-0.364031\pi\) | ||||
0.414286 | + | 0.910147i | \(0.364031\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 1.00000 | 0.0344828 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −23.0000 | −0.791224 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −10.0000 | −0.343604 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 48.0000 | 1.64542 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −12.0000 | −0.410872 | −0.205436 | − | 0.978671i | \(-0.565861\pi\) | ||||
−0.205436 | + | 0.978671i | \(0.565861\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 2.00000 | 0.0683187 | 0.0341593 | − | 0.999416i | \(-0.489125\pi\) | ||||
0.0341593 | + | 0.999416i | \(0.489125\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −36.0000 | −1.22830 | −0.614152 | − | 0.789188i | \(-0.710502\pi\) | ||||
−0.614152 | + | 0.789188i | \(0.710502\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 18.0000 | 0.612727 | 0.306364 | − | 0.951915i | \(-0.400888\pi\) | ||||
0.306364 | + | 0.951915i | \(0.400888\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 10.0000 | 0.340010 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 32.0000 | 1.08553 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 60.0000 | 2.03302 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 2.00000 | 0.0676123 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −50.0000 | −1.68838 | −0.844190 | − | 0.536044i | \(-0.819918\pi\) | ||||
−0.844190 | + | 0.536044i | \(0.819918\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 42.0000 | 1.41502 | 0.707508 | − | 0.706705i | \(-0.249819\pi\) | ||||
0.707508 | + | 0.706705i | \(0.249819\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 54.0000 | 1.81724 | 0.908622 | − | 0.417619i | \(-0.137135\pi\) | ||||
0.908622 | + | 0.417619i | \(0.137135\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −20.0000 | −0.671534 | −0.335767 | − | 0.941945i | \(-0.608996\pi\) | ||||
−0.335767 | + | 0.941945i | \(0.608996\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −8.00000 | −0.268311 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 16.0000 | 0.535420 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −20.0000 | −0.668526 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 8.00000 | 0.266519 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 22.0000 | 0.731305 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 44.0000 | 1.46100 | 0.730498 | − | 0.682915i | \(-0.239288\pi\) | ||||
0.730498 | + | 0.682915i | \(0.239288\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −24.0000 | −0.795155 | −0.397578 | − | 0.917568i | \(-0.630149\pi\) | ||||
−0.397578 | + | 0.917568i | \(0.630149\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 24.0000 | 0.794284 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −24.0000 | −0.792550 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −36.0000 | −1.18753 | −0.593765 | − | 0.804638i | \(-0.702359\pi\) | ||||
−0.593765 | + | 0.804638i | \(0.702359\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −48.0000 | −1.57994 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −8.00000 | −0.263038 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 18.0000 | 0.590561 | 0.295280 | − | 0.955411i | \(-0.404587\pi\) | ||||
0.295280 | + | 0.955411i | \(0.404587\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −12.0000 | −0.393284 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −16.0000 | −0.523256 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 26.0000 | 0.849383 | 0.424691 | − | 0.905338i | \(-0.360383\pi\) | ||||
0.424691 | + | 0.905338i | \(0.360383\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 18.0000 | 0.586783 | 0.293392 | − | 0.955992i | \(-0.405216\pi\) | ||||
0.293392 | + | 0.955992i | \(0.405216\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −12.0000 | −0.390774 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 12.0000 | 0.389948 | 0.194974 | − | 0.980808i | \(-0.437538\pi\) | ||||
0.194974 | + | 0.980808i | \(0.437538\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6.00000 | 0.194359 | 0.0971795 | − | 0.995267i | \(-0.469018\pi\) | ||||
0.0971795 | + | 0.995267i | \(0.469018\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 24.0000 | 0.776622 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −40.0000 | −1.29167 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −31.0000 | −1.00000 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −16.0000 | −0.515058 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −16.0000 | −0.514525 | −0.257263 | − | 0.966342i | \(-0.582821\pi\) | ||||
−0.257263 | + | 0.966342i | \(0.582821\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −20.0000 | −0.641831 | −0.320915 | − | 0.947108i | \(-0.603990\pi\) | ||||
−0.320915 | + | 0.947108i | \(0.603990\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −24.0000 | −0.769405 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 2.00000 | 0.0639857 | 0.0319928 | − | 0.999488i | \(-0.489815\pi\) | ||||
0.0319928 | + | 0.999488i | \(0.489815\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −24.0000 | −0.767043 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −60.0000 | −1.91370 | −0.956851 | − | 0.290578i | \(-0.906153\pi\) | ||||
−0.956851 | + | 0.290578i | \(0.906153\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −22.0000 | −0.700978 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −24.0000 | −0.763156 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −16.0000 | −0.508257 | −0.254128 | − | 0.967170i | \(-0.581789\pi\) | ||||
−0.254128 | + | 0.967170i | \(0.581789\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 20.0000 | 0.634043 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −32.0000 | −1.01345 | −0.506725 | − | 0.862108i | \(-0.669144\pi\) | ||||
−0.506725 | + | 0.862108i | \(0.669144\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 5220.2.a.e.1.1 | 1 | ||
3.2 | odd | 2 | 580.2.a.b.1.1 | ✓ | 1 | ||
12.11 | even | 2 | 2320.2.a.g.1.1 | 1 | |||
15.2 | even | 4 | 2900.2.c.d.349.1 | 2 | |||
15.8 | even | 4 | 2900.2.c.d.349.2 | 2 | |||
15.14 | odd | 2 | 2900.2.a.d.1.1 | 1 | |||
24.5 | odd | 2 | 9280.2.a.f.1.1 | 1 | |||
24.11 | even | 2 | 9280.2.a.i.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
580.2.a.b.1.1 | ✓ | 1 | 3.2 | odd | 2 | ||
2320.2.a.g.1.1 | 1 | 12.11 | even | 2 | |||
2900.2.a.d.1.1 | 1 | 15.14 | odd | 2 | |||
2900.2.c.d.349.1 | 2 | 15.2 | even | 4 | |||
2900.2.c.d.349.2 | 2 | 15.8 | even | 4 | |||
5220.2.a.e.1.1 | 1 | 1.1 | even | 1 | trivial | ||
9280.2.a.f.1.1 | 1 | 24.5 | odd | 2 | |||
9280.2.a.i.1.1 | 1 | 24.11 | even | 2 |