Properties

Label 522.2.k.c.199.1
Level $522$
Weight $2$
Character 522.199
Analytic conductor $4.168$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Error: no document with id 248694435 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [522,2,Mod(181,522)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("522.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(522, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 522 = 2 \cdot 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 522.k (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-1,0,-1,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.16819098551\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 58)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 199.1
Root \(0.900969 + 0.433884i\) of defining polynomial
Character \(\chi\) \(=\) 522.199
Dual form 522.2.k.c.181.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.222521 + 0.974928i) q^{2} +(-0.900969 - 0.433884i) q^{4} +(0.0440730 - 0.193096i) q^{5} +(-0.0990311 + 0.0476909i) q^{7} +(0.623490 - 0.781831i) q^{8} +(0.178448 + 0.0859360i) q^{10} +(0.832437 + 1.04384i) q^{11} +(2.45593 + 3.07964i) q^{13} +(-0.0244587 - 0.107160i) q^{14} +(0.623490 + 0.781831i) q^{16} +2.91185 q^{17} +(-1.16756 - 0.562269i) q^{19} +(-0.123490 + 0.154851i) q^{20} +(-1.20291 + 0.579289i) q^{22} +(1.73341 + 7.59455i) q^{23} +(4.46950 + 2.15240i) q^{25} +(-3.54892 + 1.70907i) q^{26} +0.109916 q^{28} +(1.39493 + 5.20136i) q^{29} +(2.07942 - 9.11052i) q^{31} +(-0.900969 + 0.433884i) q^{32} +(-0.647948 + 2.83885i) q^{34} +(0.00484434 + 0.0212244i) q^{35} +(-1.88740 + 2.36672i) q^{37} +(0.807979 - 1.01317i) q^{38} +(-0.123490 - 0.154851i) q^{40} -3.76271 q^{41} +(1.48307 + 6.49777i) q^{43} +(-0.297093 - 1.30165i) q^{44} -7.78986 q^{46} +(-0.500000 - 0.626980i) q^{47} +(-4.35690 + 5.46337i) q^{49} +(-3.09299 + 3.87849i) q^{50} +(-0.876510 - 3.84024i) q^{52} +(1.85474 - 8.12615i) q^{53} +(0.238250 - 0.114735i) q^{55} +(-0.0244587 + 0.107160i) q^{56} +(-5.38135 + 0.202542i) q^{58} +5.08815 q^{59} +(9.96346 - 4.79815i) q^{61} +(8.41939 + 4.05456i) q^{62} +(-0.222521 - 0.974928i) q^{64} +(0.702907 - 0.338502i) q^{65} +(-6.85839 + 8.60015i) q^{67} +(-2.62349 - 1.26341i) q^{68} -0.0217703 q^{70} +(-6.82640 - 8.56003i) q^{71} +(-1.76875 - 7.74940i) q^{73} +(-1.88740 - 2.36672i) q^{74} +(0.807979 + 1.01317i) q^{76} +(-0.132219 - 0.0636733i) q^{77} +(3.04892 - 3.82322i) q^{79} +(0.178448 - 0.0859360i) q^{80} +(0.837282 - 3.66837i) q^{82} +(-10.5184 - 5.06540i) q^{83} +(0.128334 - 0.562269i) q^{85} -6.66487 q^{86} +1.33513 q^{88} +(-2.55765 + 11.2058i) q^{89} +(-0.390084 - 0.187854i) q^{91} +(1.73341 - 7.59455i) q^{92} +(0.722521 - 0.347948i) q^{94} +(-0.160030 + 0.200671i) q^{95} +(9.54288 + 4.59561i) q^{97} +(-4.35690 - 5.46337i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - q^{4} + 4 q^{5} - 5 q^{7} - q^{8} - 3 q^{10} + 6 q^{11} + 11 q^{13} + 9 q^{14} - q^{16} + 10 q^{17} - 6 q^{19} + 4 q^{20} + 6 q^{22} + 7 q^{23} + 17 q^{25} - 3 q^{26} + 2 q^{28} - 15 q^{29}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/522\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{4}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.222521 + 0.974928i −0.157346 + 0.689378i
\(3\) 0 0
\(4\) −0.900969 0.433884i −0.450484 0.216942i
\(5\) 0.0440730 0.193096i 0.0197100 0.0863553i −0.964116 0.265480i \(-0.914469\pi\)
0.983826 + 0.179125i \(0.0573266\pi\)
\(6\) 0 0
\(7\) −0.0990311 + 0.0476909i −0.0374302 + 0.0180255i −0.452505 0.891762i \(-0.649470\pi\)
0.415075 + 0.909787i \(0.363755\pi\)
\(8\) 0.623490 0.781831i 0.220437 0.276419i
\(9\) 0 0
\(10\) 0.178448 + 0.0859360i 0.0564302 + 0.0271753i
\(11\) 0.832437 + 1.04384i 0.250989 + 0.314731i 0.891325 0.453364i \(-0.149776\pi\)
−0.640336 + 0.768095i \(0.721205\pi\)
\(12\) 0 0
\(13\) 2.45593 + 3.07964i 0.681152 + 0.854137i 0.995460 0.0951839i \(-0.0303439\pi\)
−0.314308 + 0.949321i \(0.601772\pi\)
\(14\) −0.0244587 0.107160i −0.00653685 0.0286398i
\(15\) 0 0
\(16\) 0.623490 + 0.781831i 0.155872 + 0.195458i
\(17\) 2.91185 0.706228 0.353114 0.935580i \(-0.385123\pi\)
0.353114 + 0.935580i \(0.385123\pi\)
\(18\) 0 0
\(19\) −1.16756 0.562269i −0.267857 0.128993i 0.295135 0.955456i \(-0.404635\pi\)
−0.562992 + 0.826462i \(0.690350\pi\)
\(20\) −0.123490 + 0.154851i −0.0276132 + 0.0346258i
\(21\) 0 0
\(22\) −1.20291 + 0.579289i −0.256461 + 0.123505i
\(23\) 1.73341 + 7.59455i 0.361440 + 1.58357i 0.749542 + 0.661956i \(0.230274\pi\)
−0.388102 + 0.921616i \(0.626869\pi\)
\(24\) 0 0
\(25\) 4.46950 + 2.15240i 0.893900 + 0.430480i
\(26\) −3.54892 + 1.70907i −0.696000 + 0.335176i
\(27\) 0 0
\(28\) 0.109916 0.0207722
\(29\) 1.39493 + 5.20136i 0.259032 + 0.965869i
\(30\) 0 0
\(31\) 2.07942 9.11052i 0.373474 1.63630i −0.343467 0.939165i \(-0.611601\pi\)
0.716942 0.697133i \(-0.245541\pi\)
\(32\) −0.900969 + 0.433884i −0.159270 + 0.0767005i
\(33\) 0 0
\(34\) −0.647948 + 2.83885i −0.111122 + 0.486858i
\(35\) 0.00484434 + 0.0212244i 0.000818843 + 0.00358758i
\(36\) 0 0
\(37\) −1.88740 + 2.36672i −0.310286 + 0.389086i −0.912384 0.409336i \(-0.865760\pi\)
0.602098 + 0.798422i \(0.294332\pi\)
\(38\) 0.807979 1.01317i 0.131071 0.164358i
\(39\) 0 0
\(40\) −0.123490 0.154851i −0.0195255 0.0244841i
\(41\) −3.76271 −0.587636 −0.293818 0.955861i \(-0.594926\pi\)
−0.293818 + 0.955861i \(0.594926\pi\)
\(42\) 0 0
\(43\) 1.48307 + 6.49777i 0.226167 + 0.990901i 0.952734 + 0.303806i \(0.0982574\pi\)
−0.726567 + 0.687095i \(0.758885\pi\)
\(44\) −0.297093 1.30165i −0.0447885 0.196231i
\(45\) 0 0
\(46\) −7.78986 −1.14855
\(47\) −0.500000 0.626980i −0.0729325 0.0914545i 0.744027 0.668150i \(-0.232913\pi\)
−0.816959 + 0.576695i \(0.804342\pi\)
\(48\) 0 0
\(49\) −4.35690 + 5.46337i −0.622414 + 0.780482i
\(50\) −3.09299 + 3.87849i −0.437415 + 0.548501i
\(51\) 0 0
\(52\) −0.876510 3.84024i −0.121550 0.532546i
\(53\) 1.85474 8.12615i 0.254768 1.11621i −0.671992 0.740558i \(-0.734561\pi\)
0.926760 0.375654i \(-0.122582\pi\)
\(54\) 0 0
\(55\) 0.238250 0.114735i 0.0321257 0.0154709i
\(56\) −0.0244587 + 0.107160i −0.00326843 + 0.0143199i
\(57\) 0 0
\(58\) −5.38135 + 0.202542i −0.706606 + 0.0265951i
\(59\) 5.08815 0.662420 0.331210 0.943557i \(-0.392543\pi\)
0.331210 + 0.943557i \(0.392543\pi\)
\(60\) 0 0
\(61\) 9.96346 4.79815i 1.27569 0.614340i 0.331411 0.943486i \(-0.392475\pi\)
0.944279 + 0.329146i \(0.106761\pi\)
\(62\) 8.41939 + 4.05456i 1.06926 + 0.514930i
\(63\) 0 0
\(64\) −0.222521 0.974928i −0.0278151 0.121866i
\(65\) 0.702907 0.338502i 0.0871848 0.0419860i
\(66\) 0 0
\(67\) −6.85839 + 8.60015i −0.837885 + 1.05068i 0.160092 + 0.987102i \(0.448821\pi\)
−0.997977 + 0.0635730i \(0.979750\pi\)
\(68\) −2.62349 1.26341i −0.318145 0.153210i
\(69\) 0 0
\(70\) −0.0217703 −0.00260204
\(71\) −6.82640 8.56003i −0.810144 1.01589i −0.999423 0.0339653i \(-0.989186\pi\)
0.189279 0.981923i \(-0.439385\pi\)
\(72\) 0 0
\(73\) −1.76875 7.74940i −0.207017 0.906999i −0.966539 0.256518i \(-0.917425\pi\)
0.759523 0.650481i \(-0.225432\pi\)
\(74\) −1.88740 2.36672i −0.219405 0.275125i
\(75\) 0 0
\(76\) 0.807979 + 1.01317i 0.0926815 + 0.116219i
\(77\) −0.132219 0.0636733i −0.0150678 0.00725625i
\(78\) 0 0
\(79\) 3.04892 3.82322i 0.343030 0.430146i −0.580153 0.814508i \(-0.697007\pi\)
0.923183 + 0.384362i \(0.125578\pi\)
\(80\) 0.178448 0.0859360i 0.0199511 0.00960794i
\(81\) 0 0
\(82\) 0.837282 3.66837i 0.0924623 0.405104i
\(83\) −10.5184 5.06540i −1.15455 0.556000i −0.244150 0.969737i \(-0.578509\pi\)
−0.910396 + 0.413737i \(0.864223\pi\)
\(84\) 0 0
\(85\) 0.128334 0.562269i 0.0139198 0.0609866i
\(86\) −6.66487 −0.718692
\(87\) 0 0
\(88\) 1.33513 0.142325
\(89\) −2.55765 + 11.2058i −0.271110 + 1.18781i 0.637595 + 0.770372i \(0.279929\pi\)
−0.908705 + 0.417439i \(0.862928\pi\)
\(90\) 0 0
\(91\) −0.390084 0.187854i −0.0408919 0.0196925i
\(92\) 1.73341 7.59455i 0.180720 0.791786i
\(93\) 0 0
\(94\) 0.722521 0.347948i 0.0745223 0.0358881i
\(95\) −0.160030 + 0.200671i −0.0164187 + 0.0205884i
\(96\) 0 0
\(97\) 9.54288 + 4.59561i 0.968932 + 0.466613i 0.850285 0.526323i \(-0.176430\pi\)
0.118648 + 0.992936i \(0.462144\pi\)
\(98\) −4.35690 5.46337i −0.440113 0.551884i
\(99\) 0 0
\(100\) −3.09299 3.87849i −0.309299 0.387849i
\(101\) 1.32908 + 5.82310i 0.132249 + 0.579420i 0.997012 + 0.0772410i \(0.0246111\pi\)
−0.864764 + 0.502179i \(0.832532\pi\)
\(102\) 0 0
\(103\) −8.97434 11.2535i −0.884268 1.10884i −0.993388 0.114809i \(-0.963374\pi\)
0.109119 0.994029i \(-0.465197\pi\)
\(104\) 3.93900 0.386251
\(105\) 0 0
\(106\) 7.50969 + 3.61648i 0.729405 + 0.351263i
\(107\) 10.2823 12.8936i 0.994030 1.24647i 0.0249596 0.999688i \(-0.492054\pi\)
0.969070 0.246785i \(-0.0793743\pi\)
\(108\) 0 0
\(109\) −2.55980 + 1.23274i −0.245185 + 0.118075i −0.552441 0.833552i \(-0.686303\pi\)
0.307256 + 0.951627i \(0.400589\pi\)
\(110\) 0.0588430 + 0.257808i 0.00561046 + 0.0245810i
\(111\) 0 0
\(112\) −0.0990311 0.0476909i −0.00935756 0.00450636i
\(113\) 14.1223 6.80094i 1.32851 0.639778i 0.371125 0.928583i \(-0.378972\pi\)
0.957388 + 0.288804i \(0.0932577\pi\)
\(114\) 0 0
\(115\) 1.54288 0.143874
\(116\) 1.00000 5.29150i 0.0928477 0.491304i
\(117\) 0 0
\(118\) −1.13222 + 4.96058i −0.104229 + 0.456658i
\(119\) −0.288364 + 0.138869i −0.0264343 + 0.0127301i
\(120\) 0 0
\(121\) 2.05107 8.98634i 0.186461 0.816940i
\(122\) 2.46077 + 10.7813i 0.222788 + 0.976097i
\(123\) 0 0
\(124\) −5.82640 + 7.30607i −0.523226 + 0.656104i
\(125\) 1.23005 1.54244i 0.110019 0.137960i
\(126\) 0 0
\(127\) −1.68867 2.11752i −0.149845 0.187900i 0.701244 0.712922i \(-0.252629\pi\)
−0.851089 + 0.525022i \(0.824057\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0.173604 + 0.760607i 0.0152260 + 0.0667097i
\(131\) −3.25182 14.2472i −0.284113 1.24478i −0.892466 0.451115i \(-0.851027\pi\)
0.608353 0.793667i \(-0.291831\pi\)
\(132\) 0 0
\(133\) 0.142440 0.0123511
\(134\) −6.85839 8.60015i −0.592474 0.742939i
\(135\) 0 0
\(136\) 1.81551 2.27658i 0.155679 0.195215i
\(137\) 0.993959 1.24639i 0.0849197 0.106486i −0.737557 0.675285i \(-0.764021\pi\)
0.822476 + 0.568799i \(0.192592\pi\)
\(138\) 0 0
\(139\) −0.287168 1.25816i −0.0243573 0.106716i 0.961288 0.275545i \(-0.0888585\pi\)
−0.985645 + 0.168829i \(0.946001\pi\)
\(140\) 0.00484434 0.0212244i 0.000409421 0.00179379i
\(141\) 0 0
\(142\) 9.86443 4.75046i 0.827804 0.398650i
\(143\) −1.17025 + 5.12721i −0.0978613 + 0.428758i
\(144\) 0 0
\(145\) 1.06584 0.0401160i 0.0885135 0.00333145i
\(146\) 7.94869 0.657838
\(147\) 0 0
\(148\) 2.72737 1.31343i 0.224188 0.107963i
\(149\) −6.03415 2.90589i −0.494337 0.238060i 0.170069 0.985432i \(-0.445601\pi\)
−0.664406 + 0.747372i \(0.731315\pi\)
\(150\) 0 0
\(151\) 2.11260 + 9.25593i 0.171921 + 0.753237i 0.985207 + 0.171371i \(0.0548198\pi\)
−0.813285 + 0.581865i \(0.802323\pi\)
\(152\) −1.16756 + 0.562269i −0.0947018 + 0.0456060i
\(153\) 0 0
\(154\) 0.0914984 0.114735i 0.00737315 0.00924564i
\(155\) −1.66756 0.803056i −0.133942 0.0645030i
\(156\) 0 0
\(157\) 9.39373 0.749701 0.374851 0.927085i \(-0.377694\pi\)
0.374851 + 0.927085i \(0.377694\pi\)
\(158\) 3.04892 + 3.82322i 0.242559 + 0.304159i
\(159\) 0 0
\(160\) 0.0440730 + 0.193096i 0.00348428 + 0.0152656i
\(161\) −0.533852 0.669429i −0.0420734 0.0527584i
\(162\) 0 0
\(163\) −10.1434 12.7194i −0.794492 0.996262i −0.999846 0.0175740i \(-0.994406\pi\)
0.205353 0.978688i \(-0.434166\pi\)
\(164\) 3.39008 + 1.63258i 0.264721 + 0.127483i
\(165\) 0 0
\(166\) 7.27897 9.12754i 0.564958 0.708435i
\(167\) −12.3998 + 5.97142i −0.959523 + 0.462082i −0.847015 0.531569i \(-0.821603\pi\)
−0.112508 + 0.993651i \(0.535888\pi\)
\(168\) 0 0
\(169\) −0.559802 + 2.45265i −0.0430617 + 0.188666i
\(170\) 0.519614 + 0.250233i 0.0398526 + 0.0191920i
\(171\) 0 0
\(172\) 1.48307 6.49777i 0.113083 0.495450i
\(173\) 0.119605 0.00909340 0.00454670 0.999990i \(-0.498553\pi\)
0.00454670 + 0.999990i \(0.498553\pi\)
\(174\) 0 0
\(175\) −0.545269 −0.0412185
\(176\) −0.297093 + 1.30165i −0.0223943 + 0.0981157i
\(177\) 0 0
\(178\) −10.3557 4.98704i −0.776192 0.373795i
\(179\) −2.82155 + 12.3620i −0.210893 + 0.923981i 0.753069 + 0.657941i \(0.228572\pi\)
−0.963962 + 0.266040i \(0.914285\pi\)
\(180\) 0 0
\(181\) −6.42812 + 3.09562i −0.477798 + 0.230095i −0.657252 0.753671i \(-0.728281\pi\)
0.179454 + 0.983766i \(0.442567\pi\)
\(182\) 0.269946 0.338502i 0.0200098 0.0250914i
\(183\) 0 0
\(184\) 7.01842 + 3.37989i 0.517405 + 0.249169i
\(185\) 0.373822 + 0.468758i 0.0274839 + 0.0344638i
\(186\) 0 0
\(187\) 2.42394 + 3.03952i 0.177256 + 0.222272i
\(188\) 0.178448 + 0.781831i 0.0130147 + 0.0570209i
\(189\) 0 0
\(190\) −0.160030 0.200671i −0.0116098 0.0145582i
\(191\) −3.19806 −0.231404 −0.115702 0.993284i \(-0.536912\pi\)
−0.115702 + 0.993284i \(0.536912\pi\)
\(192\) 0 0
\(193\) 13.5782 + 6.53893i 0.977382 + 0.470682i 0.853204 0.521578i \(-0.174656\pi\)
0.124178 + 0.992260i \(0.460371\pi\)
\(194\) −6.60388 + 8.28100i −0.474131 + 0.594541i
\(195\) 0 0
\(196\) 6.29590 3.03194i 0.449707 0.216567i
\(197\) −3.23072 14.1547i −0.230179 1.00848i −0.949491 0.313794i \(-0.898400\pi\)
0.719312 0.694687i \(-0.244457\pi\)
\(198\) 0 0
\(199\) −23.9013 11.5102i −1.69432 0.815939i −0.994860 0.101264i \(-0.967711\pi\)
−0.699456 0.714676i \(-0.746574\pi\)
\(200\) 4.46950 2.15240i 0.316041 0.152198i
\(201\) 0 0
\(202\) −5.97285 −0.420248
\(203\) −0.386199 0.448572i −0.0271058 0.0314835i
\(204\) 0 0
\(205\) −0.165834 + 0.726566i −0.0115823 + 0.0507455i
\(206\) 12.9683 6.24521i 0.903545 0.435124i
\(207\) 0 0
\(208\) −0.876510 + 3.84024i −0.0607750 + 0.266273i
\(209\) −0.385002 1.68681i −0.0266312 0.116679i
\(210\) 0 0
\(211\) −10.4743 + 13.1344i −0.721084 + 0.904210i −0.998399 0.0565688i \(-0.981984\pi\)
0.277315 + 0.960779i \(0.410555\pi\)
\(212\) −5.19687 + 6.51666i −0.356922 + 0.447566i
\(213\) 0 0
\(214\) 10.2823 + 12.8936i 0.702885 + 0.881390i
\(215\) 1.32006 0.0900274
\(216\) 0 0
\(217\) 0.228562 + 1.00139i 0.0155158 + 0.0679791i
\(218\) −0.632219 2.76993i −0.0428193 0.187603i
\(219\) 0 0
\(220\) −0.264438 −0.0178284
\(221\) 7.15130 + 8.96745i 0.481049 + 0.603216i
\(222\) 0 0
\(223\) −0.893436 + 1.12033i −0.0598289 + 0.0750231i −0.810846 0.585260i \(-0.800992\pi\)
0.751017 + 0.660283i \(0.229564\pi\)
\(224\) 0.0685317 0.0859360i 0.00457896 0.00574184i
\(225\) 0 0
\(226\) 3.48792 + 15.2816i 0.232013 + 1.01651i
\(227\) −2.98523 + 13.0791i −0.198137 + 0.868093i 0.773908 + 0.633298i \(0.218299\pi\)
−0.972045 + 0.234796i \(0.924558\pi\)
\(228\) 0 0
\(229\) −10.3693 + 4.99358i −0.685221 + 0.329985i −0.743899 0.668292i \(-0.767026\pi\)
0.0586782 + 0.998277i \(0.481311\pi\)
\(230\) −0.343322 + 1.50419i −0.0226380 + 0.0991836i
\(231\) 0 0
\(232\) 4.93631 + 2.15240i 0.324085 + 0.141312i
\(233\) 0.735562 0.0481883 0.0240941 0.999710i \(-0.492330\pi\)
0.0240941 + 0.999710i \(0.492330\pi\)
\(234\) 0 0
\(235\) −0.143104 + 0.0689153i −0.00933508 + 0.00449554i
\(236\) −4.58426 2.20766i −0.298410 0.143707i
\(237\) 0 0
\(238\) −0.0712201 0.312036i −0.00461651 0.0202263i
\(239\) 0.0794168 0.0382451i 0.00513705 0.00247387i −0.431313 0.902202i \(-0.641950\pi\)
0.436450 + 0.899728i \(0.356235\pi\)
\(240\) 0 0
\(241\) −3.87382 + 4.85762i −0.249535 + 0.312907i −0.890785 0.454425i \(-0.849845\pi\)
0.641250 + 0.767332i \(0.278416\pi\)
\(242\) 8.30463 + 3.99930i 0.533842 + 0.257085i
\(243\) 0 0
\(244\) −11.0586 −0.707955
\(245\) 0.862937 + 1.08209i 0.0551310 + 0.0691321i
\(246\) 0 0
\(247\) −1.13587 4.97656i −0.0722735 0.316651i
\(248\) −5.82640 7.30607i −0.369977 0.463936i
\(249\) 0 0
\(250\) 1.23005 + 1.54244i 0.0777954 + 0.0975524i
\(251\) 13.6869 + 6.59128i 0.863912 + 0.416038i 0.812723 0.582651i \(-0.197984\pi\)
0.0511894 + 0.998689i \(0.483699\pi\)
\(252\) 0 0
\(253\) −6.48457 + 8.13139i −0.407681 + 0.511216i
\(254\) 2.44020 1.17514i 0.153112 0.0737347i
\(255\) 0 0
\(256\) −0.222521 + 0.974928i −0.0139076 + 0.0609330i
\(257\) 4.98307 + 2.39972i 0.310836 + 0.149691i 0.582797 0.812618i \(-0.301958\pi\)
−0.271962 + 0.962308i \(0.587672\pi\)
\(258\) 0 0
\(259\) 0.0740400 0.324390i 0.00460062 0.0201566i
\(260\) −0.780167 −0.0483839
\(261\) 0 0
\(262\) 14.6136 0.902829
\(263\) 0.486959 2.13351i 0.0300272 0.131558i −0.957693 0.287793i \(-0.907079\pi\)
0.987720 + 0.156235i \(0.0499357\pi\)
\(264\) 0 0
\(265\) −1.48739 0.716287i −0.0913694 0.0440012i
\(266\) −0.0316959 + 0.138869i −0.00194340 + 0.00851460i
\(267\) 0 0
\(268\) 9.91066 4.77272i 0.605390 0.291540i
\(269\) −18.9901 + 23.8128i −1.15785 + 1.45189i −0.288642 + 0.957437i \(0.593204\pi\)
−0.869203 + 0.494455i \(0.835368\pi\)
\(270\) 0 0
\(271\) −28.4218 13.6872i −1.72650 0.831440i −0.987477 0.157765i \(-0.949571\pi\)
−0.739027 0.673676i \(-0.764714\pi\)
\(272\) 1.81551 + 2.27658i 0.110082 + 0.138038i
\(273\) 0 0
\(274\) 0.993959 + 1.24639i 0.0600473 + 0.0752969i
\(275\) 1.47381 + 6.45719i 0.0888742 + 0.389383i
\(276\) 0 0
\(277\) 8.85504 + 11.1039i 0.532048 + 0.667166i 0.973118 0.230306i \(-0.0739727\pi\)
−0.441071 + 0.897472i \(0.645401\pi\)
\(278\) 1.29052 0.0774003
\(279\) 0 0
\(280\) 0.0196143 + 0.00944576i 0.00117218 + 0.000564492i
\(281\) −12.9453 + 16.2329i −0.772254 + 0.968376i −0.999986 0.00534795i \(-0.998298\pi\)
0.227732 + 0.973724i \(0.426869\pi\)
\(282\) 0 0
\(283\) 15.6293 7.52667i 0.929065 0.447414i 0.0927662 0.995688i \(-0.470429\pi\)
0.836299 + 0.548274i \(0.184715\pi\)
\(284\) 2.43631 + 10.6742i 0.144569 + 0.633396i
\(285\) 0 0
\(286\) −4.73825 2.28182i −0.280179 0.134927i
\(287\) 0.372625 0.179447i 0.0219954 0.0105924i
\(288\) 0 0
\(289\) −8.52111 −0.501242
\(290\) −0.198062 + 1.04805i −0.0116306 + 0.0615434i
\(291\) 0 0
\(292\) −1.76875 + 7.74940i −0.103508 + 0.453499i
\(293\) 15.7920 7.60503i 0.922579 0.444291i 0.0885879 0.996068i \(-0.471765\pi\)
0.833991 + 0.551778i \(0.186050\pi\)
\(294\) 0 0
\(295\) 0.224250 0.982503i 0.0130563 0.0572035i
\(296\) 0.673604 + 2.95125i 0.0391524 + 0.171538i
\(297\) 0 0
\(298\) 4.17576 5.23624i 0.241895 0.303327i
\(299\) −19.1313 + 23.9899i −1.10639 + 1.38737i
\(300\) 0 0
\(301\) −0.456755 0.572753i −0.0263269 0.0330129i
\(302\) −9.49396 −0.546316
\(303\) 0 0
\(304\) −0.288364 1.26341i −0.0165388 0.0724613i
\(305\) −0.487386 2.13538i −0.0279076 0.122271i
\(306\) 0 0
\(307\) 30.3618 1.73284 0.866420 0.499316i \(-0.166415\pi\)
0.866420 + 0.499316i \(0.166415\pi\)
\(308\) 0.0914984 + 0.114735i 0.00521360 + 0.00653765i
\(309\) 0 0
\(310\) 1.15399 1.44706i 0.0655422 0.0821873i
\(311\) 14.8312 18.5978i 0.841003 1.05458i −0.156754 0.987638i \(-0.550103\pi\)
0.997757 0.0669461i \(-0.0213256\pi\)
\(312\) 0 0
\(313\) 6.38069 + 27.9556i 0.360658 + 1.58015i 0.751529 + 0.659700i \(0.229317\pi\)
−0.390871 + 0.920446i \(0.627826\pi\)
\(314\) −2.09030 + 9.15821i −0.117963 + 0.516828i
\(315\) 0 0
\(316\) −4.40581 + 2.12173i −0.247846 + 0.119357i
\(317\) −1.68180 + 7.36845i −0.0944593 + 0.413853i −0.999945 0.0105243i \(-0.996650\pi\)
0.905485 + 0.424378i \(0.139507\pi\)
\(318\) 0 0
\(319\) −4.26822 + 5.78589i −0.238974 + 0.323948i
\(320\) −0.198062 −0.0110720
\(321\) 0 0
\(322\) 0.771438 0.371505i 0.0429906 0.0207032i
\(323\) −3.39977 1.63724i −0.189168 0.0910987i
\(324\) 0 0
\(325\) 4.34817 + 19.0506i 0.241193 + 1.05674i
\(326\) 14.6576 7.05875i 0.811811 0.390948i
\(327\) 0 0
\(328\) −2.34601 + 2.94180i −0.129537 + 0.162434i
\(329\) 0.0794168 + 0.0382451i 0.00437839 + 0.00210852i
\(330\) 0 0
\(331\) −11.1860 −0.614837 −0.307419 0.951574i \(-0.599465\pi\)
−0.307419 + 0.951574i \(0.599465\pi\)
\(332\) 7.27897 + 9.12754i 0.399485 + 0.500939i
\(333\) 0 0
\(334\) −3.06249 13.4176i −0.167572 0.734181i
\(335\) 1.35839 + 1.70336i 0.0742167 + 0.0930647i
\(336\) 0 0
\(337\) −12.9641 16.2565i −0.706201 0.885548i 0.291269 0.956641i \(-0.405923\pi\)
−0.997470 + 0.0710934i \(0.977351\pi\)
\(338\) −2.26659 1.09153i −0.123286 0.0593716i
\(339\) 0 0
\(340\) −0.359584 + 0.450904i −0.0195012 + 0.0244537i
\(341\) 11.2409 5.41335i 0.608731 0.293149i
\(342\) 0 0
\(343\) 0.342126 1.49895i 0.0184731 0.0809358i
\(344\) 6.00484 + 2.89178i 0.323760 + 0.155914i
\(345\) 0 0
\(346\) −0.0266146 + 0.116606i −0.00143081 + 0.00626879i
\(347\) −0.0193774 −0.00104023 −0.000520116 1.00000i \(-0.500166\pi\)
−0.000520116 1.00000i \(0.500166\pi\)
\(348\) 0 0
\(349\) 29.0315 1.55402 0.777009 0.629489i \(-0.216736\pi\)
0.777009 + 0.629489i \(0.216736\pi\)
\(350\) 0.121334 0.531598i 0.00648557 0.0284151i
\(351\) 0 0
\(352\) −1.20291 0.579289i −0.0641151 0.0308762i
\(353\) 4.58761 20.0996i 0.244174 1.06980i −0.693001 0.720937i \(-0.743712\pi\)
0.937175 0.348860i \(-0.113431\pi\)
\(354\) 0 0
\(355\) −1.95377 + 0.940887i −0.103695 + 0.0499371i
\(356\) 7.16637 8.98634i 0.379817 0.476275i
\(357\) 0 0
\(358\) −11.4242 5.50162i −0.603789 0.290770i
\(359\) −13.0248 16.3325i −0.687420 0.861998i 0.308594 0.951194i \(-0.400142\pi\)
−0.996014 + 0.0891962i \(0.971570\pi\)
\(360\) 0 0
\(361\) −10.7992 13.5418i −0.568382 0.712728i
\(362\) −1.58761 6.95579i −0.0834431 0.365588i
\(363\) 0 0
\(364\) 0.269946 + 0.338502i 0.0141490 + 0.0177423i
\(365\) −1.57434 −0.0824045
\(366\) 0 0
\(367\) −3.39008 1.63258i −0.176961 0.0852199i 0.343306 0.939224i \(-0.388453\pi\)
−0.520267 + 0.854004i \(0.674168\pi\)
\(368\) −4.85690 + 6.09035i −0.253183 + 0.317482i
\(369\) 0 0
\(370\) −0.540188 + 0.260141i −0.0280830 + 0.0135241i
\(371\) 0.203866 + 0.893196i 0.0105842 + 0.0463724i
\(372\) 0 0
\(373\) −13.5271 6.51433i −0.700409 0.337299i 0.0495609 0.998771i \(-0.484218\pi\)
−0.749970 + 0.661472i \(0.769932\pi\)
\(374\) −3.50269 + 1.68681i −0.181120 + 0.0872227i
\(375\) 0 0
\(376\) −0.801938 −0.0413568
\(377\) −12.5925 + 17.0700i −0.648545 + 0.879152i
\(378\) 0 0
\(379\) −5.24363 + 22.9738i −0.269347 + 1.18009i 0.641428 + 0.767183i \(0.278342\pi\)
−0.910775 + 0.412903i \(0.864515\pi\)
\(380\) 0.231250 0.111364i 0.0118629 0.00571286i
\(381\) 0 0
\(382\) 0.711636 3.11788i 0.0364105 0.159525i
\(383\) −5.96830 26.1488i −0.304966 1.33614i −0.862528 0.506009i \(-0.831120\pi\)
0.557562 0.830135i \(-0.311737\pi\)
\(384\) 0 0
\(385\) −0.0181224 + 0.0227247i −0.000923602 + 0.00115816i
\(386\) −9.39642 + 11.7827i −0.478265 + 0.599726i
\(387\) 0 0
\(388\) −6.60388 8.28100i −0.335261 0.420404i
\(389\) 18.4034 0.933090 0.466545 0.884497i \(-0.345498\pi\)
0.466545 + 0.884497i \(0.345498\pi\)
\(390\) 0 0
\(391\) 5.04743 + 22.1142i 0.255259 + 1.11836i
\(392\) 1.55496 + 6.81272i 0.0785372 + 0.344094i
\(393\) 0 0
\(394\) 14.5187 0.731442
\(395\) −0.603875 0.757236i −0.0303843 0.0381007i
\(396\) 0 0
\(397\) 18.0233 22.6005i 0.904562 1.13428i −0.0858736 0.996306i \(-0.527368\pi\)
0.990435 0.137978i \(-0.0440604\pi\)
\(398\) 16.5402 20.7407i 0.829085 1.03964i
\(399\) 0 0
\(400\) 1.10388 + 4.83639i 0.0551938 + 0.241820i
\(401\) 3.41281 14.9525i 0.170428 0.746693i −0.815395 0.578905i \(-0.803480\pi\)
0.985823 0.167788i \(-0.0536625\pi\)
\(402\) 0 0
\(403\) 33.1640 15.9709i 1.65202 0.795569i
\(404\) 1.32908 5.82310i 0.0661244 0.289710i
\(405\) 0 0
\(406\) 0.523262 0.276700i 0.0259691 0.0137324i
\(407\) −4.04162 −0.200336
\(408\) 0 0
\(409\) 31.2913 15.0691i 1.54726 0.745120i 0.551246 0.834343i \(-0.314153\pi\)
0.996012 + 0.0892229i \(0.0284383\pi\)
\(410\) −0.671448 0.323352i −0.0331604 0.0159692i
\(411\) 0 0
\(412\) 3.20291 + 14.0329i 0.157796 + 0.691349i
\(413\) −0.503885 + 0.242658i −0.0247946 + 0.0119404i
\(414\) 0 0
\(415\) −1.44169 + 1.80782i −0.0707698 + 0.0887425i
\(416\) −3.54892 1.70907i −0.174000 0.0837940i
\(417\) 0 0
\(418\) 1.73019 0.0846261
\(419\) 13.6935 + 17.1711i 0.668972 + 0.838864i 0.994287 0.106742i \(-0.0340417\pi\)
−0.325315 + 0.945606i \(0.605470\pi\)
\(420\) 0 0
\(421\) −8.99761 39.4211i −0.438517 1.92127i −0.385596 0.922668i \(-0.626004\pi\)
−0.0529206 0.998599i \(-0.516853\pi\)
\(422\) −10.4743 13.1344i −0.509883 0.639373i
\(423\) 0 0
\(424\) −5.19687 6.51666i −0.252382 0.316477i
\(425\) 13.0145 + 6.26747i 0.631298 + 0.304017i
\(426\) 0 0
\(427\) −0.757865 + 0.950332i −0.0366756 + 0.0459898i
\(428\) −14.8584 + 7.15542i −0.718207 + 0.345870i
\(429\) 0 0
\(430\) −0.293741 + 1.28696i −0.0141654 + 0.0620629i
\(431\) −19.9121 9.58919i −0.959134 0.461895i −0.112255 0.993679i \(-0.535807\pi\)
−0.846880 + 0.531785i \(0.821522\pi\)
\(432\) 0 0
\(433\) 0.864961 3.78964i 0.0415674 0.182119i −0.949882 0.312607i \(-0.898798\pi\)
0.991450 + 0.130489i \(0.0416547\pi\)
\(434\) −1.02715 −0.0493046
\(435\) 0 0
\(436\) 2.84117 0.136067
\(437\) 2.24632 9.84175i 0.107456 0.470795i
\(438\) 0 0
\(439\) −9.15160 4.40718i −0.436782 0.210343i 0.202553 0.979271i \(-0.435076\pi\)
−0.639335 + 0.768928i \(0.720790\pi\)
\(440\) 0.0588430 0.257808i 0.00280523 0.0122905i
\(441\) 0 0
\(442\) −10.3339 + 4.97656i −0.491535 + 0.236711i
\(443\) −12.0312 + 15.0866i −0.571618 + 0.716786i −0.980658 0.195730i \(-0.937292\pi\)
0.409040 + 0.912516i \(0.365864\pi\)
\(444\) 0 0
\(445\) 2.05107 + 0.987745i 0.0972302 + 0.0468236i
\(446\) −0.893436 1.12033i −0.0423054 0.0530493i
\(447\) 0 0
\(448\) 0.0685317 + 0.0859360i 0.00323782 + 0.00406009i
\(449\) 4.81522 + 21.0968i 0.227244 + 0.995621i 0.951876 + 0.306485i \(0.0991529\pi\)
−0.724631 + 0.689137i \(0.757990\pi\)
\(450\) 0 0
\(451\) −3.13222 3.92768i −0.147490 0.184947i
\(452\) −15.6746 −0.737269
\(453\) 0 0
\(454\) −12.0869 5.82077i −0.567269 0.273182i
\(455\) −0.0534662 + 0.0670445i −0.00250653 + 0.00314309i
\(456\) 0 0
\(457\) −2.28017 + 1.09807i −0.106662 + 0.0513656i −0.486454 0.873706i \(-0.661710\pi\)
0.379792 + 0.925072i \(0.375996\pi\)
\(458\) −2.56100 11.2205i −0.119668 0.524298i
\(459\) 0 0
\(460\) −1.39008 0.669429i −0.0648130 0.0312123i
\(461\) 9.69687 4.66976i 0.451628 0.217493i −0.194221 0.980958i \(-0.562218\pi\)
0.645849 + 0.763465i \(0.276504\pi\)
\(462\) 0 0
\(463\) −6.12392 −0.284603 −0.142301 0.989823i \(-0.545450\pi\)
−0.142301 + 0.989823i \(0.545450\pi\)
\(464\) −3.19687 + 4.33360i −0.148411 + 0.201182i
\(465\) 0 0
\(466\) −0.163678 + 0.717120i −0.00758223 + 0.0332199i
\(467\) 31.5013 15.1702i 1.45770 0.701993i 0.473790 0.880638i \(-0.342885\pi\)
0.983914 + 0.178644i \(0.0571711\pi\)
\(468\) 0 0
\(469\) 0.269045 1.17876i 0.0124234 0.0544303i
\(470\) −0.0353438 0.154851i −0.00163029 0.00714276i
\(471\) 0 0
\(472\) 3.17241 3.97807i 0.146022 0.183106i
\(473\) −5.54809 + 6.95708i −0.255101 + 0.319887i
\(474\) 0 0
\(475\) −4.00820 5.02612i −0.183909 0.230614i
\(476\) 0.320060 0.0146699
\(477\) 0 0
\(478\) 0.0196143 + 0.0859360i 0.000897139 + 0.00393062i
\(479\) −6.86994 30.0992i −0.313895 1.37527i −0.848067 0.529889i \(-0.822233\pi\)
0.534171 0.845376i \(-0.320624\pi\)
\(480\) 0 0
\(481\) −11.9239 −0.543685
\(482\) −3.87382 4.85762i −0.176448 0.221258i
\(483\) 0 0
\(484\) −5.74698 + 7.20648i −0.261226 + 0.327567i
\(485\) 1.30798 1.64015i 0.0593922 0.0744755i
\(486\) 0 0
\(487\) 0.0908344 + 0.397972i 0.00411610 + 0.0180338i 0.976944 0.213495i \(-0.0684845\pi\)
−0.972828 + 0.231528i \(0.925627\pi\)
\(488\) 2.46077 10.7813i 0.111394 0.488048i
\(489\) 0 0
\(490\) −1.24698 + 0.600514i −0.0563328 + 0.0271284i
\(491\) 4.48643 19.6563i 0.202470 0.887077i −0.766958 0.641698i \(-0.778230\pi\)
0.969427 0.245379i \(-0.0789125\pi\)
\(492\) 0 0
\(493\) 4.06183 + 15.1456i 0.182935 + 0.682124i
\(494\) 5.10454 0.229664
\(495\) 0 0
\(496\) 8.41939 4.05456i 0.378042 0.182055i
\(497\) 1.08426 + 0.522153i 0.0486358 + 0.0234217i
\(498\) 0 0
\(499\) 2.30947 + 10.1185i 0.103386 + 0.452964i 0.999950 + 0.0100487i \(0.00319865\pi\)
−0.896563 + 0.442915i \(0.853944\pi\)
\(500\) −1.77748 + 0.855989i −0.0794913 + 0.0382810i
\(501\) 0 0
\(502\) −9.47166 + 11.8771i −0.422741 + 0.530100i
\(503\) 20.7141 + 9.97538i 0.923596 + 0.444780i 0.834353 0.551230i \(-0.185841\pi\)
0.0892420 + 0.996010i \(0.471556\pi\)
\(504\) 0 0
\(505\) 1.18300 0.0526427
\(506\) −6.48457 8.13139i −0.288274 0.361484i
\(507\) 0 0
\(508\) 0.602679 + 2.64051i 0.0267396 + 0.117154i
\(509\) −16.0262 20.0963i −0.710351 0.890752i 0.287398 0.957811i \(-0.407210\pi\)
−0.997749 + 0.0670594i \(0.978638\pi\)
\(510\) 0 0
\(511\) 0.544737 + 0.683079i 0.0240977 + 0.0302176i
\(512\) −0.900969 0.433884i −0.0398176 0.0191751i
\(513\) 0 0
\(514\) −3.44839 + 4.32415i −0.152102 + 0.190730i
\(515\) −2.56853 + 1.23694i −0.113183 + 0.0545061i
\(516\) 0 0
\(517\) 0.238250 1.04384i 0.0104782 0.0459082i
\(518\) 0.299782 + 0.144367i 0.0131717 + 0.00634314i
\(519\) 0 0
\(520\) 0.173604 0.760607i 0.00761302 0.0333548i
\(521\) −17.1535 −0.751507 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(522\) 0 0
\(523\) 22.4494 0.981642 0.490821 0.871261i \(-0.336697\pi\)
0.490821 + 0.871261i \(0.336697\pi\)
\(524\) −3.25182 + 14.2472i −0.142057 + 0.622391i
\(525\) 0 0
\(526\) 1.97166 + 0.949500i 0.0859683 + 0.0414002i
\(527\) 6.05496 26.5285i 0.263758 1.15560i
\(528\) 0 0
\(529\) −33.9502 + 16.3495i −1.47609 + 0.710850i
\(530\) 1.02930 1.29071i 0.0447101 0.0560646i
\(531\) 0 0
\(532\) −0.128334 0.0618025i −0.00556399 0.00267948i
\(533\) −9.24094 11.5878i −0.400269 0.501922i
\(534\) 0 0
\(535\) −2.03654 2.55374i −0.0880473 0.110408i
\(536\) 2.44773 + 10.7242i 0.105726 + 0.463215i
\(537\) 0 0
\(538\) −18.9901 23.8128i −0.818720 1.02664i
\(539\) −9.32975 −0.401861
\(540\) 0 0
\(541\) 11.2104 + 5.39866i 0.481974 + 0.232107i 0.659062 0.752088i \(-0.270953\pi\)
−0.177088 + 0.984195i \(0.556668\pi\)
\(542\) 19.6685 24.6635i 0.844835 1.05939i
\(543\) 0 0
\(544\) −2.62349 + 1.26341i −0.112481 + 0.0541681i
\(545\) 0.125219 + 0.548619i 0.00536378 + 0.0235003i
\(546\) 0 0
\(547\) 10.5988 + 5.10411i 0.453172 + 0.218236i 0.646524 0.762893i \(-0.276222\pi\)
−0.193353 + 0.981129i \(0.561936\pi\)
\(548\) −1.43631 + 0.691692i −0.0613562 + 0.0295476i
\(549\) 0 0
\(550\) −6.62325 −0.282416
\(551\) 1.29590 6.85724i 0.0552071 0.292128i
\(552\) 0 0
\(553\) −0.119605 + 0.524023i −0.00508612 + 0.0222837i
\(554\) −12.7959 + 6.16218i −0.543646 + 0.261806i
\(555\) 0 0
\(556\) −0.287168 + 1.25816i −0.0121786 + 0.0533580i
\(557\) 7.28448 + 31.9154i 0.308653 + 1.35230i 0.856685 + 0.515841i \(0.172520\pi\)
−0.548031 + 0.836458i \(0.684623\pi\)
\(558\) 0 0
\(559\) −16.3684 + 20.5254i −0.692311 + 0.868131i
\(560\) −0.0135735 + 0.0170207i −0.000573587 + 0.000719255i
\(561\) 0 0
\(562\) −12.9453 16.2329i −0.546066 0.684745i
\(563\) 30.1105 1.26901 0.634503 0.772920i \(-0.281205\pi\)
0.634503 + 0.772920i \(0.281205\pi\)
\(564\) 0 0
\(565\) −0.690825 3.02670i −0.0290632 0.127334i
\(566\) 3.86012 + 16.9123i 0.162253 + 0.710876i
\(567\) 0 0
\(568\) −10.9487 −0.459397
\(569\) −9.71230 12.1788i −0.407161 0.510563i 0.535400 0.844599i \(-0.320161\pi\)
−0.942561 + 0.334035i \(0.891590\pi\)
\(570\) 0 0
\(571\) 4.20589 5.27402i 0.176011 0.220711i −0.685998 0.727603i \(-0.740634\pi\)
0.862009 + 0.506892i \(0.169206\pi\)
\(572\) 3.27897 4.11170i 0.137101 0.171919i
\(573\) 0 0
\(574\) 0.0920309 + 0.403214i 0.00384129 + 0.0168298i
\(575\) −8.59903 + 37.6748i −0.358604 + 1.57115i
\(576\) 0 0
\(577\) 16.8458 8.11250i 0.701299 0.337728i −0.0490256 0.998798i \(-0.515612\pi\)
0.750324 + 0.661070i \(0.229897\pi\)
\(578\) 1.89612 8.30746i 0.0788684 0.345545i
\(579\) 0 0
\(580\) −0.977697 0.426309i −0.0405967 0.0177015i
\(581\) 1.28322 0.0532371
\(582\) 0 0
\(583\) 10.0264 4.82845i 0.415250 0.199974i
\(584\) −7.16152 3.44881i −0.296346 0.142713i
\(585\) 0 0
\(586\) 3.90030 + 17.0884i 0.161120 + 0.705913i
\(587\) −14.6407 + 7.05059i −0.604287 + 0.291009i −0.710902 0.703291i \(-0.751713\pi\)
0.106615 + 0.994300i \(0.465999\pi\)
\(588\) 0 0
\(589\) −7.55041 + 9.46791i −0.311109 + 0.390119i
\(590\) 0.907969 + 0.437255i 0.0373805 + 0.0180015i
\(591\) 0 0
\(592\) −3.02715 −0.124415
\(593\) −19.4351 24.3709i −0.798105 1.00079i −0.999772 0.0213375i \(-0.993208\pi\)
0.201668 0.979454i \(-0.435364\pi\)
\(594\) 0 0
\(595\) 0.0141060 + 0.0618025i 0.000578290 + 0.00253365i
\(596\) 4.17576 + 5.23624i 0.171046 + 0.214485i
\(597\) 0 0
\(598\) −19.1313 23.9899i −0.782338 0.981021i
\(599\) 7.05280 + 3.39645i 0.288170 + 0.138775i 0.572384 0.819985i \(-0.306019\pi\)
−0.284215 + 0.958761i \(0.591733\pi\)
\(600\) 0 0
\(601\) 10.9566 13.7391i 0.446929 0.560431i −0.506426 0.862283i \(-0.669034\pi\)
0.953355 + 0.301853i \(0.0976051\pi\)
\(602\) 0.660030 0.317854i 0.0269008 0.0129548i
\(603\) 0 0
\(604\) 2.11260 9.25593i 0.0859607 0.376618i
\(605\) −1.64483 0.792110i −0.0668720 0.0322038i
\(606\) 0 0
\(607\) 8.75504 38.3584i 0.355356 1.55692i −0.409251 0.912422i \(-0.634210\pi\)
0.764608 0.644496i \(-0.222933\pi\)
\(608\) 1.29590 0.0525556
\(609\) 0 0
\(610\) 2.19029 0.0886824
\(611\) 0.702907 3.07964i 0.0284366 0.124589i
\(612\) 0 0
\(613\) −22.6429 10.9042i −0.914537 0.440418i −0.0834193 0.996515i \(-0.526584\pi\)
−0.831118 + 0.556097i \(0.812298\pi\)
\(614\) −6.75614 + 29.6006i −0.272655 + 1.19458i
\(615\) 0 0
\(616\) −0.132219 + 0.0636733i −0.00532726 + 0.00256547i
\(617\) 7.87047 9.86926i 0.316853 0.397321i −0.597744 0.801687i \(-0.703936\pi\)
0.914597 + 0.404366i \(0.132508\pi\)
\(618\) 0 0
\(619\) 19.5683 + 9.42359i 0.786516 + 0.378766i 0.783629 0.621230i \(-0.213367\pi\)
0.00288757 + 0.999996i \(0.499081\pi\)
\(620\) 1.15399 + 1.44706i 0.0463453 + 0.0581152i
\(621\) 0 0
\(622\) 14.8312 + 18.5978i 0.594679 + 0.745703i
\(623\) −0.281127 1.23170i −0.0112631 0.0493469i
\(624\) 0 0
\(625\) 15.2213 + 19.0869i 0.608853 + 0.763477i
\(626\) −28.6746 −1.14607
\(627\) 0 0
\(628\) −8.46346 4.07579i −0.337729 0.162642i
\(629\) −5.49582 + 6.89154i −0.219133 + 0.274784i
\(630\) 0 0
\(631\) 35.4616 17.0774i 1.41170 0.679841i 0.436206 0.899847i \(-0.356322\pi\)
0.975498 + 0.220006i \(0.0706078\pi\)
\(632\) −1.08815 4.76748i −0.0432841 0.189640i
\(633\) 0 0
\(634\) −6.80947 3.27927i −0.270439 0.130236i
\(635\) −0.483311 + 0.232750i −0.0191796 + 0.00923642i
\(636\) 0 0
\(637\) −27.5254 −1.09060
\(638\) −4.69106 5.44869i −0.185721 0.215716i
\(639\) 0 0
\(640\) 0.0440730 0.193096i 0.00174214 0.00763281i
\(641\) −4.44020 + 2.13829i −0.175377 + 0.0844572i −0.519512 0.854463i \(-0.673886\pi\)
0.344135 + 0.938920i \(0.388172\pi\)
\(642\) 0 0
\(643\) 1.56004 6.83498i 0.0615220 0.269545i −0.934807 0.355157i \(-0.884427\pi\)
0.996329 + 0.0856119i \(0.0272845\pi\)
\(644\) 0.190530 + 0.834764i 0.00750791 + 0.0328943i
\(645\) 0 0
\(646\) 2.35272 2.95021i 0.0925664 0.116075i
\(647\) 9.18329 11.5155i 0.361032 0.452720i −0.567830 0.823146i \(-0.692217\pi\)
0.928862 + 0.370426i \(0.120788\pi\)
\(648\) 0 0
\(649\) 4.23556 + 5.31123i 0.166260 + 0.208484i
\(650\) −19.5405 −0.766441
\(651\) 0 0
\(652\) 3.62014 + 15.8609i 0.141776 + 0.621159i
\(653\) −5.56691 24.3902i −0.217850 0.954463i −0.959063 0.283193i \(-0.908606\pi\)
0.741213 0.671270i \(-0.234251\pi\)
\(654\) 0 0
\(655\) −2.89440 −0.113093
\(656\) −2.34601 2.94180i −0.0915963 0.114858i
\(657\) 0 0
\(658\) −0.0549581 + 0.0689153i −0.00214249 + 0.00268660i
\(659\) −30.3384 + 38.0432i −1.18182 + 1.48195i −0.341477 + 0.939890i \(0.610927\pi\)
−0.840339 + 0.542061i \(0.817644\pi\)
\(660\) 0 0
\(661\) 6.40528 + 28.0634i 0.249137 + 1.09154i 0.932417 + 0.361383i \(0.117695\pi\)
−0.683281 + 0.730156i \(0.739448\pi\)
\(662\) 2.48911 10.9055i 0.0967422 0.423855i
\(663\) 0 0
\(664\) −10.5184 + 5.06540i −0.408194 + 0.196576i
\(665\) 0.00627776 0.0275047i 0.000243441 0.00106659i
\(666\) 0 0
\(667\) −37.0840 + 19.6099i −1.43590 + 0.759299i
\(668\) 13.7627 0.532495
\(669\) 0 0
\(670\) −1.96293 + 0.945296i −0.0758345 + 0.0365200i
\(671\) 13.3025 + 6.40613i 0.513536 + 0.247306i
\(672\) 0 0
\(673\) −5.14782 22.5541i −0.198434 0.869395i −0.971869 0.235520i \(-0.924321\pi\)
0.773436 0.633875i \(-0.218537\pi\)
\(674\) 18.7337 9.02168i 0.721595 0.347502i
\(675\) 0 0
\(676\) 1.56853 1.96688i 0.0603281 0.0756491i
\(677\) −16.2690 7.83476i −0.625270 0.301114i 0.0942895 0.995545i \(-0.469942\pi\)
−0.719560 + 0.694431i \(0.755656\pi\)
\(678\) 0 0
\(679\) −1.16421 −0.0446783
\(680\) −0.359584 0.450904i −0.0137894 0.0172914i
\(681\) 0 0
\(682\) 2.77628 + 12.1637i 0.106309 + 0.465772i
\(683\) 27.5127 + 34.4998i 1.05274 + 1.32010i 0.945413 + 0.325875i \(0.105659\pi\)
0.107330 + 0.994223i \(0.465770\pi\)
\(684\) 0 0
\(685\) −0.196866 0.246862i −0.00752186 0.00943211i
\(686\) 1.38524 + 0.667096i 0.0528887 + 0.0254698i
\(687\) 0 0
\(688\) −4.15548 + 5.21081i −0.158426 + 0.198660i
\(689\) 29.5807 14.2453i 1.12693 0.542703i
\(690\) 0 0
\(691\) −5.30702 + 23.2516i −0.201889 + 0.884531i 0.767897 + 0.640573i \(0.221303\pi\)
−0.969786 + 0.243958i \(0.921554\pi\)
\(692\) −0.107760 0.0518946i −0.00409643 0.00197274i
\(693\) 0 0
\(694\) 0.00431187 0.0188915i 0.000163676 0.000717113i
\(695\) −0.255603 −0.00969559
\(696\) 0 0
\(697\) −10.9565 −0.415005
\(698\) −6.46011 + 28.3036i −0.244519 + 1.07131i
\(699\) 0 0
\(700\) 0.491271 + 0.236584i 0.0185683 + 0.00894202i
\(701\) 0.249668 1.09387i 0.00942983 0.0413148i −0.969994 0.243128i \(-0.921826\pi\)
0.979424 + 0.201814i \(0.0646835\pi\)
\(702\) 0 0
\(703\) 3.53438 1.70207i 0.133302 0.0641948i
\(704\) 0.832437 1.04384i 0.0313737 0.0393413i
\(705\) 0 0
\(706\) 18.5749 + 8.94518i 0.699074 + 0.336656i
\(707\) −0.409330 0.513283i −0.0153944 0.0193040i
\(708\) 0 0
\(709\) 2.54623 + 3.19287i 0.0956256 + 0.119911i 0.827342 0.561698i \(-0.189852\pi\)
−0.731716 + 0.681609i \(0.761280\pi\)
\(710\) −0.482542 2.11415i −0.0181095 0.0793427i
\(711\) 0 0
\(712\) 7.16637 + 8.98634i 0.268571 + 0.336777i
\(713\) 72.7948 2.72619
\(714\) 0 0
\(715\) 0.938469 + 0.451943i 0.0350967 + 0.0169017i
\(716\) 7.90581 9.91358i 0.295454 0.370488i
\(717\) 0 0
\(718\) 18.8213 9.06387i 0.702405 0.338261i
\(719\) 6.48062 + 28.3935i 0.241686 + 1.05890i 0.939481 + 0.342600i \(0.111308\pi\)
−0.697795 + 0.716298i \(0.745835\pi\)
\(720\) 0 0
\(721\) 1.42543 + 0.686450i 0.0530857 + 0.0255647i
\(722\) 15.6054 7.51515i 0.580772 0.279685i
\(723\) 0 0
\(724\) 7.13467 0.265158
\(725\) −4.96077 + 26.2499i −0.184238 + 0.974898i
\(726\) 0 0
\(727\) 3.52888 15.4610i 0.130879 0.573417i −0.866377 0.499390i \(-0.833558\pi\)
0.997256 0.0740276i \(-0.0235853\pi\)
\(728\) −0.390084 + 0.187854i −0.0144575 + 0.00696235i
\(729\) 0 0
\(730\) 0.350323 1.53486i 0.0129660 0.0568079i
\(731\) 4.31850 + 18.9206i 0.159725 + 0.699802i
\(732\) 0 0
\(733\) −13.3490 + 16.7391i −0.493056 + 0.618273i −0.964647 0.263544i \(-0.915108\pi\)
0.471591 + 0.881817i \(0.343680\pi\)
\(734\) 2.34601 2.94180i 0.0865928 0.108584i
\(735\) 0 0
\(736\) −4.85690 6.09035i −0.179028 0.224493i
\(737\) −14.6864 −0.540980
\(738\) 0 0
\(739\) 7.48547 + 32.7960i 0.275357 + 1.20642i 0.903592 + 0.428395i \(0.140921\pi\)
−0.628234 + 0.778024i \(0.716222\pi\)
\(740\) −0.133415 0.584531i −0.00490445 0.0214878i
\(741\) 0 0
\(742\) −0.916166 −0.0336335
\(743\) −3.38972 4.25057i −0.124357 0.155938i 0.715756 0.698351i \(-0.246082\pi\)
−0.840112 + 0.542413i \(0.817511\pi\)
\(744\) 0 0
\(745\) −0.827060 + 1.03710i −0.0303011 + 0.0379964i
\(746\) 9.36108 11.7384i 0.342733 0.429774i
\(747\) 0 0
\(748\) −0.865093 3.79022i −0.0316309 0.138584i
\(749\) −0.403362 + 1.76724i −0.0147385 + 0.0645737i
\(750\) 0 0
\(751\) 15.1341 7.28822i 0.552253 0.265951i −0.136878 0.990588i \(-0.543707\pi\)
0.689131 + 0.724637i \(0.257993\pi\)
\(752\) 0.178448 0.781831i 0.00650733 0.0285105i
\(753\) 0 0
\(754\) −13.8400 16.0752i −0.504022 0.585423i
\(755\) 1.88040 0.0684346
\(756\) 0 0
\(757\) −2.26271 + 1.08966i −0.0822396 + 0.0396045i −0.474551 0.880228i \(-0.657390\pi\)
0.392312 + 0.919832i \(0.371675\pi\)
\(758\) −21.2310 10.2243i −0.771145 0.371364i
\(759\) 0 0
\(760\) 0.0571141 + 0.250233i 0.00207174 + 0.00907691i
\(761\) −48.2367 + 23.2296i −1.74858 + 0.842071i −0.769484 + 0.638666i \(0.779486\pi\)
−0.979095 + 0.203405i \(0.934799\pi\)
\(762\) 0 0
\(763\) 0.194710 0.244158i 0.00704897 0.00883913i
\(764\) 2.88135 + 1.38759i 0.104244 + 0.0502011i
\(765\) 0 0
\(766\) 26.8213 0.969094
\(767\) 12.4961 + 15.6696i 0.451209 + 0.565798i
\(768\) 0 0
\(769\) −2.05658 9.01047i −0.0741622 0.324926i 0.924215 0.381873i \(-0.124721\pi\)
−0.998377 + 0.0569466i \(0.981864\pi\)
\(770\) −0.0181224 0.0227247i −0.000653085 0.000818943i
\(771\) 0 0
\(772\) −9.39642 11.7827i −0.338185 0.424070i
\(773\) −33.7298 16.2434i −1.21318 0.584235i −0.285773 0.958297i \(-0.592250\pi\)
−0.927404 + 0.374062i \(0.877965\pi\)
\(774\) 0 0
\(775\) 28.9034 36.2437i 1.03824 1.30191i
\(776\) 9.54288 4.59561i 0.342569 0.164973i
\(777\) 0 0
\(778\) −4.09515 + 17.9420i −0.146818 + 0.643252i
\(779\) 4.39320 + 2.11565i 0.157403 + 0.0758011i
\(780\) 0 0
\(781\) 3.25278 14.2514i 0.116394 0.509954i
\(782\) −22.6829 −0.811140
\(783\) 0 0
\(784\) −6.98792 −0.249569
\(785\) 0.414010 1.81390i 0.0147766 0.0647407i
\(786\) 0 0
\(787\) −23.3686 11.2537i −0.833001 0.401152i −0.0317612 0.999495i \(-0.510112\pi\)
−0.801240 + 0.598343i \(0.795826\pi\)
\(788\) −3.23072 + 14.1547i −0.115090 + 0.504240i
\(789\) 0 0
\(790\) 0.872625 0.420234i 0.0310466 0.0149513i
\(791\) −1.07420 + 1.34701i −0.0381943 + 0.0478941i
\(792\) 0 0
\(793\) 39.2461 + 18.8999i 1.39367 + 0.671156i
\(794\) 18.0233 + 22.6005i 0.639622 + 0.802060i
\(795\) 0 0
\(796\) 16.5402 + 20.7407i 0.586251 + 0.735136i
\(797\) 4.49300 + 19.6851i 0.159150 + 0.697283i 0.990033 + 0.140835i \(0.0449788\pi\)
−0.830883 + 0.556447i \(0.812164\pi\)
\(798\) 0 0
\(799\) −1.45593 1.82567i −0.0515070 0.0645877i
\(800\) −4.96077 −0.175390
\(801\) 0 0
\(802\) 13.8182 + 6.65449i 0.487938 + 0.234978i
\(803\) 6.61679 8.29719i 0.233501 0.292801i
\(804\) 0 0
\(805\) −0.152793 + 0.0735811i −0.00538524 + 0.00259339i
\(806\) 8.19083 + 35.8863i 0.288510 + 1.26404i
\(807\) 0 0
\(808\) 5.38135 + 2.59152i 0.189315 + 0.0911695i
\(809\) 31.0306 14.9435i 1.09098 0.525387i 0.200166 0.979762i \(-0.435852\pi\)
0.890810 + 0.454375i \(0.150138\pi\)
\(810\) 0 0
\(811\) 32.7536 1.15013 0.575067 0.818106i \(-0.304976\pi\)
0.575067 + 0.818106i \(0.304976\pi\)
\(812\) 0.153325 + 0.571714i 0.00538066 + 0.0200632i
\(813\) 0 0
\(814\) 0.899345 3.94029i 0.0315220 0.138107i
\(815\) −2.90312 + 1.39807i −0.101692 + 0.0489723i
\(816\) 0 0
\(817\) 1.92191 8.42044i 0.0672392 0.294594i
\(818\) 7.72832 + 33.8600i 0.270215 + 1.18389i
\(819\) 0 0
\(820\) 0.464656 0.582660i 0.0162265 0.0203474i
\(821\) −2.70978 + 3.39795i −0.0945718 + 0.118589i −0.826866 0.562399i \(-0.809878\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(822\) 0 0
\(823\) 8.36108 + 10.4845i 0.291449 + 0.365465i 0.905902 0.423488i \(-0.139195\pi\)
−0.614453 + 0.788954i \(0.710623\pi\)
\(824\) −14.3937 −0.501429
\(825\) 0 0
\(826\) −0.124449 0.545248i −0.00433014 0.0189716i
\(827\) −5.86174 25.6820i −0.203833 0.893049i −0.968577 0.248715i \(-0.919992\pi\)
0.764744 0.644334i \(-0.222865\pi\)
\(828\) 0 0
\(829\) −10.3618 −0.359880 −0.179940 0.983678i \(-0.557590\pi\)
−0.179940 + 0.983678i \(0.557590\pi\)
\(830\) −1.44169 1.80782i −0.0500418 0.0627504i
\(831\) 0 0
\(832\) 2.45593 3.07964i 0.0851439 0.106767i
\(833\) −12.6866 + 15.9085i −0.439566 + 0.551199i
\(834\) 0 0
\(835\) 0.606564 + 2.65753i 0.0209910 + 0.0919676i
\(836\) −0.385002 + 1.68681i −0.0133156 + 0.0583394i
\(837\) 0 0
\(838\) −19.7877 + 9.52925i −0.683555 + 0.329183i
\(839\) −5.93578 + 26.0064i −0.204926 + 0.897839i 0.762959 + 0.646446i \(0.223746\pi\)
−0.967885 + 0.251393i \(0.919112\pi\)
\(840\) 0 0
\(841\) −25.1084 + 14.5111i −0.865805 + 0.500381i
\(842\) 40.4349 1.39348
\(843\) 0 0
\(844\) 15.1359 7.28905i 0.520998 0.250899i
\(845\) 0.448927 + 0.216192i 0.0154435 + 0.00743722i
\(846\) 0 0
\(847\) 0.225446 + 0.987745i 0.00774643 + 0.0339393i
\(848\) 7.50969 3.61648i 0.257884 0.124190i
\(849\) 0 0
\(850\) −9.00634 + 11.2936i −0.308915 + 0.387367i
\(851\) −21.2458 10.2314i −0.728296 0.350729i
\(852\) 0 0
\(853\) −19.7071 −0.674758 −0.337379 0.941369i \(-0.609540\pi\)
−0.337379 + 0.941369i \(0.609540\pi\)
\(854\) −0.757865 0.950332i −0.0259336 0.0325197i
\(855\) 0 0
\(856\) −3.66972 16.0781i −0.125428 0.549538i
\(857\) −1.34481 1.68634i −0.0459380 0.0576044i 0.758332 0.651869i \(-0.226015\pi\)
−0.804270 + 0.594264i \(0.797443\pi\)
\(858\) 0 0
\(859\) 21.4799 + 26.9349i 0.732883 + 0.919006i 0.998990 0.0449372i \(-0.0143088\pi\)
−0.266107 + 0.963944i \(0.585737\pi\)
\(860\) −1.18933 0.572753i −0.0405559 0.0195307i
\(861\) 0 0
\(862\) 13.7796 17.2791i 0.469336 0.588529i
\(863\) −8.63922 + 4.16043i −0.294082 + 0.141623i −0.575108 0.818078i \(-0.695040\pi\)
0.281025 + 0.959700i \(0.409326\pi\)
\(864\) 0 0
\(865\) 0.00527135 0.0230953i 0.000179231 0.000785263i
\(866\) 3.50216 + 1.68655i 0.119008 + 0.0573113i
\(867\) 0 0
\(868\) 0.228562 1.00139i 0.00775789 0.0339895i
\(869\) 6.52888 0.221477
\(870\) 0 0
\(871\) −43.3290 −1.46815
\(872\) −0.632219 + 2.76993i −0.0214096 + 0.0938017i
\(873\) 0 0
\(874\) 9.09515 + 4.37999i 0.307648 + 0.148155i
\(875\) −0.0482534 + 0.211412i −0.00163126 + 0.00714702i
\(876\) 0 0
\(877\) 0.758824 0.365430i 0.0256237 0.0123397i −0.421028 0.907048i \(-0.638331\pi\)
0.446652 + 0.894708i \(0.352616\pi\)
\(878\) 6.33310 7.94146i 0.213732 0.268011i
\(879\) 0 0
\(880\) 0.238250 + 0.114735i 0.00803142 + 0.00386773i
\(881\) 5.13019 + 6.43306i 0.172841 + 0.216735i 0.860705 0.509104i \(-0.170023\pi\)
−0.687864 + 0.725839i \(0.741452\pi\)
\(882\) 0 0
\(883\) 33.8568 + 42.4551i 1.13937 + 1.42873i 0.887404 + 0.460993i \(0.152507\pi\)
0.251969 + 0.967735i \(0.418922\pi\)
\(884\) −2.55227 11.1822i −0.0858421 0.376099i
\(885\) 0 0
\(886\) −12.0312 15.0866i −0.404195 0.506844i
\(887\) 13.5013 0.453328 0.226664 0.973973i \(-0.427218\pi\)
0.226664 + 0.973973i \(0.427218\pi\)
\(888\) 0 0
\(889\) 0.268217 + 0.129167i 0.00899572 + 0.00433211i
\(890\) −1.41939 + 1.77985i −0.0475780 + 0.0596609i
\(891\) 0 0
\(892\) 1.29105 0.621738i 0.0432276 0.0208173i
\(893\) 0.231250 + 1.01317i 0.00773849 + 0.0339045i
\(894\) 0 0
\(895\) 2.26271 + 1.08966i 0.0756340 + 0.0364234i
\(896\) −0.0990311 + 0.0476909i −0.00330840 + 0.00159324i
\(897\) 0 0
\(898\) −21.6394 −0.722116
\(899\) 50.2878 1.89272i 1.67719 0.0631257i
\(900\) 0 0
\(901\) 5.40073 23.6622i 0.179924 0.788301i
\(902\) 4.52619 2.17970i 0.150706 0.0725760i
\(903\) 0 0
\(904\) 3.48792 15.2816i 0.116006 0.508257i
\(905\) 0.314446 + 1.37768i 0.0104525 + 0.0457956i
\(906\) 0 0
\(907\) −28.9795 + 36.3391i −0.962248 + 1.20662i 0.0161456 + 0.999870i \(0.494860\pi\)
−0.978394 + 0.206751i \(0.933711\pi\)
\(908\) 8.36443 10.4887i 0.277583 0.348078i
\(909\) 0 0
\(910\) −0.0534662 0.0670445i −0.00177239 0.00222250i
\(911\) −21.1685 −0.701344 −0.350672 0.936498i \(-0.614047\pi\)
−0.350672 + 0.936498i \(0.614047\pi\)
\(912\) 0 0
\(913\) −3.46844 15.1962i −0.114788 0.502921i
\(914\) −0.563155 2.46734i −0.0186275 0.0816124i
\(915\) 0 0
\(916\) 11.5090 0.380269
\(917\) 1.00149 + 1.25583i 0.0330722 + 0.0414712i
\(918\) 0 0
\(919\) −12.5699 + 15.7621i −0.414641 + 0.519944i −0.944664 0.328040i \(-0.893612\pi\)
0.530023 + 0.847984i \(0.322183\pi\)
\(920\) 0.961968 1.20627i 0.0317151 0.0397695i
\(921\) 0 0
\(922\) 2.39493 + 10.4929i 0.0788728 + 0.345564i
\(923\) 9.59664 42.0456i 0.315877 1.38395i
\(924\) 0 0
\(925\) −13.5298 + 6.51563i −0.444858 + 0.214232i
\(926\) 1.36270 5.97038i 0.0447811 0.196199i
\(927\) 0 0
\(928\) −3.51357 4.08103i −0.115339 0.133966i
\(929\) −19.7952 −0.649461 −0.324730 0.945807i \(-0.605274\pi\)
−0.324730 + 0.945807i \(0.605274\pi\)
\(930\) 0 0
\(931\) 8.15883 3.92909i 0.267395 0.128771i
\(932\) −0.662718 0.319148i −0.0217081 0.0104541i
\(933\) 0 0
\(934\) 7.78017 + 34.0871i 0.254575 + 1.11537i
\(935\) 0.693750 0.334093i 0.0226881 0.0109260i
\(936\) 0 0
\(937\) −34.9705 + 43.8516i −1.14244 + 1.43257i −0.257853 + 0.966184i \(0.583015\pi\)
−0.884582 + 0.466384i \(0.845556\pi\)
\(938\) 1.08934 + 0.524600i 0.0355683 + 0.0171288i
\(939\) 0 0
\(940\) 0.158834 0.00518058
\(941\) 1.50066 + 1.88177i 0.0489202 + 0.0613441i 0.805690 0.592338i \(-0.201795\pi\)
−0.756769 + 0.653682i \(0.773223\pi\)
\(942\) 0 0
\(943\) −6.52230 28.5761i −0.212395 0.930565i
\(944\) 3.17241 + 3.97807i 0.103253 + 0.129475i
\(945\) 0 0
\(946\) −5.54809 6.95708i −0.180384 0.226194i
\(947\) 2.16003 + 1.04022i 0.0701915 + 0.0338025i 0.468650 0.883384i \(-0.344740\pi\)
−0.398459 + 0.917186i \(0.630455\pi\)
\(948\) 0 0
\(949\) 19.5214 24.4791i 0.633692 0.794624i
\(950\) 5.79201 2.78929i 0.187918 0.0904964i
\(951\) 0 0
\(952\) −0.0712201 + 0.312036i −0.00230826 + 0.0101131i
\(953\) −30.1634 14.5259i −0.977090 0.470542i −0.123987 0.992284i \(-0.539568\pi\)
−0.853103 + 0.521742i \(0.825282\pi\)
\(954\) 0 0
\(955\) −0.140948 + 0.617534i −0.00456098 + 0.0199829i
\(956\) −0.0881460 −0.00285085
\(957\) 0 0
\(958\) 30.8732 0.997468
\(959\) −0.0389917 + 0.170834i −0.00125911 + 0.00551651i
\(960\) 0 0
\(961\) −50.7476 24.4387i −1.63702 0.788347i
\(962\) 2.65333 11.6250i 0.0855466 0.374804i
\(963\) 0 0
\(964\) 5.59783 2.69578i 0.180294 0.0868251i
\(965\) 1.86108 2.33372i 0.0599102 0.0751250i
\(966\) 0 0
\(967\) −31.6906 15.2614i −1.01910 0.490773i −0.151723 0.988423i \(-0.548482\pi\)
−0.867378 + 0.497650i \(0.834196\pi\)
\(968\) −5.74698 7.20648i −0.184715 0.231625i
\(969\) 0 0
\(970\) 1.30798 + 1.64015i 0.0419967 + 0.0526621i
\(971\) −6.12671 26.8429i −0.196616 0.861429i −0.972933 0.231087i \(-0.925772\pi\)
0.776318 0.630342i \(-0.217085\pi\)
\(972\) 0 0
\(973\) 0.0884415 + 0.110902i 0.00283530 + 0.00355536i
\(974\) −0.408206 −0.0130798
\(975\) 0 0
\(976\) 9.96346 + 4.79815i 0.318923 + 0.153585i
\(977\) 7.08240 8.88105i 0.226586 0.284130i −0.655523 0.755175i \(-0.727552\pi\)
0.882109 + 0.471045i \(0.156123\pi\)
\(978\) 0 0
\(979\) −13.8262 + 6.65833i −0.441886 + 0.212801i
\(980\) −0.307979 1.34934i −0.00983801 0.0431032i
\(981\) 0 0
\(982\) 18.1652 + 8.74788i 0.579674 + 0.279156i
\(983\) −29.6589 + 14.2830i −0.945972 + 0.455556i −0.842272 0.539053i \(-0.818782\pi\)
−0.103700 + 0.994609i \(0.533068\pi\)
\(984\) 0 0
\(985\) −2.87561 −0.0916245
\(986\) −15.6697 + 0.589773i −0.499026 + 0.0187822i
\(987\) 0 0
\(988\) −1.13587 + 4.97656i −0.0361367 + 0.158325i
\(989\) −46.7769 + 22.5266i −1.48742 + 0.716303i
\(990\) 0 0
\(991\) −5.00258 + 21.9177i −0.158912 + 0.696240i 0.831201 + 0.555972i \(0.187654\pi\)
−0.990114 + 0.140269i \(0.955203\pi\)
\(992\) 2.07942 + 9.11052i 0.0660215 + 0.289259i
\(993\) 0 0
\(994\) −0.750332 + 0.940887i −0.0237991 + 0.0298431i
\(995\) −3.27599 + 4.10796i −0.103856 + 0.130231i
\(996\) 0 0
\(997\) −13.7943 17.2975i −0.436871 0.547819i 0.513845 0.857883i \(-0.328221\pi\)
−0.950716 + 0.310065i \(0.899649\pi\)
\(998\) −10.3787 −0.328531
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 522.2.k.c.199.1 6
3.2 odd 2 58.2.d.a.25.1 yes 6
12.11 even 2 464.2.u.b.257.1 6
29.7 even 7 inner 522.2.k.c.181.1 6
87.14 even 28 1682.2.b.g.1681.5 6
87.23 odd 14 1682.2.a.m.1.2 3
87.35 odd 14 1682.2.a.n.1.2 3
87.44 even 28 1682.2.b.g.1681.2 6
87.65 odd 14 58.2.d.a.7.1 6
348.239 even 14 464.2.u.b.65.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.a.7.1 6 87.65 odd 14
58.2.d.a.25.1 yes 6 3.2 odd 2
464.2.u.b.65.1 6 348.239 even 14
464.2.u.b.257.1 6 12.11 even 2
522.2.k.c.181.1 6 29.7 even 7 inner
522.2.k.c.199.1 6 1.1 even 1 trivial
1682.2.a.m.1.2 3 87.23 odd 14
1682.2.a.n.1.2 3 87.35 odd 14
1682.2.b.g.1681.2 6 87.44 even 28
1682.2.b.g.1681.5 6 87.14 even 28