Properties

Label 522.2.a
Level $522$
Weight $2$
Character orbit 522.a
Rep. character $\chi_{522}(1,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $13$
Sturm bound $180$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 522 = 2 \cdot 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 522.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(180\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(522))\).

Total New Old
Modular forms 98 13 85
Cusp forms 83 13 70
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(29\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(14\)\(2\)\(12\)\(12\)\(2\)\(10\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(13\)\(1\)\(12\)\(11\)\(1\)\(10\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(12\)\(2\)\(10\)\(10\)\(2\)\(8\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(11\)\(2\)\(9\)\(9\)\(2\)\(7\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(13\)\(1\)\(12\)\(11\)\(1\)\(10\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(12\)\(1\)\(11\)\(10\)\(1\)\(9\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(13\)\(3\)\(10\)\(11\)\(3\)\(8\)\(2\)\(0\)\(2\)
Plus space\(+\)\(47\)\(5\)\(42\)\(40\)\(5\)\(35\)\(7\)\(0\)\(7\)
Minus space\(-\)\(51\)\(8\)\(43\)\(43\)\(8\)\(35\)\(8\)\(0\)\(8\)

Trace form

\( 13 q + q^{2} + 13 q^{4} - 4 q^{7} + q^{8} - 2 q^{10} - 8 q^{11} - 4 q^{13} + 13 q^{16} - 2 q^{17} - 4 q^{19} + 2 q^{22} + 4 q^{23} + 13 q^{25} + 10 q^{26} - 4 q^{28} + 3 q^{29} - 8 q^{31} + q^{32} - 6 q^{34}+ \cdots + 25 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(522))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 29
522.2.a.a 522.a 1.a $1$ $4.168$ \(\Q\) None 522.2.a.a \(-1\) \(0\) \(-3\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-3q^{5}-q^{7}-q^{8}+3q^{10}+\cdots\)
522.2.a.b 522.a 1.a $1$ $4.168$ \(\Q\) None 58.2.a.b \(-1\) \(0\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\)
522.2.a.c 522.a 1.a $1$ $4.168$ \(\Q\) None 174.2.a.d \(-1\) \(0\) \(-1\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}+q^{10}+\cdots\)
522.2.a.d 522.a 1.a $1$ $4.168$ \(\Q\) None 174.2.a.e \(-1\) \(0\) \(1\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-q^{10}+\cdots\)
522.2.a.e 522.a 1.a $1$ $4.168$ \(\Q\) None 522.2.a.e \(-1\) \(0\) \(2\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}+4q^{7}-q^{8}-2q^{10}+\cdots\)
522.2.a.f 522.a 1.a $1$ $4.168$ \(\Q\) None 522.2.a.f \(-1\) \(0\) \(3\) \(-5\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+3q^{5}-5q^{7}-q^{8}-3q^{10}+\cdots\)
522.2.a.g 522.a 1.a $1$ $4.168$ \(\Q\) None 522.2.a.f \(1\) \(0\) \(-3\) \(-5\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}-5q^{7}+q^{8}-3q^{10}+\cdots\)
522.2.a.h 522.a 1.a $1$ $4.168$ \(\Q\) None 174.2.a.a \(1\) \(0\) \(-3\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-3q^{5}-3q^{7}+q^{8}-3q^{10}+\cdots\)
522.2.a.i 522.a 1.a $1$ $4.168$ \(\Q\) None 174.2.a.c \(1\) \(0\) \(-2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+q^{8}-2q^{10}+4q^{11}+\cdots\)
522.2.a.j 522.a 1.a $1$ $4.168$ \(\Q\) None 522.2.a.e \(1\) \(0\) \(-2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+4q^{7}+q^{8}-2q^{10}+\cdots\)
522.2.a.k 522.a 1.a $1$ $4.168$ \(\Q\) None 58.2.a.a \(1\) \(0\) \(3\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}-2q^{7}+q^{8}+3q^{10}+\cdots\)
522.2.a.l 522.a 1.a $1$ $4.168$ \(\Q\) None 522.2.a.a \(1\) \(0\) \(3\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}-q^{7}+q^{8}+3q^{10}+\cdots\)
522.2.a.m 522.a 1.a $1$ $4.168$ \(\Q\) None 174.2.a.b \(1\) \(0\) \(3\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+3q^{5}+5q^{7}+q^{8}+3q^{10}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(522))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(522)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(174))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(261))\)\(^{\oplus 2}\)