Defining parameters
Level: | \( N \) | \(=\) | \( 522 = 2 \cdot 3^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 522.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(522))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 98 | 13 | 85 |
Cusp forms | 83 | 13 | 70 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(29\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(14\) | \(2\) | \(12\) | \(12\) | \(2\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(13\) | \(1\) | \(12\) | \(11\) | \(1\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(12\) | \(2\) | \(10\) | \(10\) | \(2\) | \(8\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(11\) | \(2\) | \(9\) | \(9\) | \(2\) | \(7\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(13\) | \(1\) | \(12\) | \(11\) | \(1\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(12\) | \(1\) | \(11\) | \(10\) | \(1\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(13\) | \(3\) | \(10\) | \(11\) | \(3\) | \(8\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(47\) | \(5\) | \(42\) | \(40\) | \(5\) | \(35\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(51\) | \(8\) | \(43\) | \(43\) | \(8\) | \(35\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(522))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(522))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(522)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(58))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(174))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(261))\)\(^{\oplus 2}\)