Properties

Label 5202.2.a.n
Level $5202$
Weight $2$
Character orbit 5202.a
Self dual yes
Analytic conductor $41.538$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5202,2,Mod(1,5202)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5202.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5202, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,1,2,0,-2,1,0,2,0,0,-6,-2,0,1,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} + 2 q^{5} - 2 q^{7} + q^{8} + 2 q^{10} - 6 q^{13} - 2 q^{14} + q^{16} + 2 q^{20} - 6 q^{23} - q^{25} - 6 q^{26} - 2 q^{28} - 6 q^{29} + 10 q^{31} + q^{32} - 4 q^{35} + 2 q^{37}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 2.00000 0 −2.00000 1.00000 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5202.2.a.n 1
3.b odd 2 1 1734.2.a.e 1
17.b even 2 1 5202.2.a.h 1
17.c even 4 2 306.2.b.a 2
51.c odd 2 1 1734.2.a.d 1
51.f odd 4 2 102.2.b.a 2
51.g odd 8 4 1734.2.f.h 4
68.f odd 4 2 2448.2.c.a 2
204.l even 4 2 816.2.c.a 2
255.i odd 4 2 2550.2.c.f 2
255.k even 4 2 2550.2.f.e 2
255.r even 4 2 2550.2.f.j 2
408.q even 4 2 3264.2.c.i 2
408.t odd 4 2 3264.2.c.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.b.a 2 51.f odd 4 2
306.2.b.a 2 17.c even 4 2
816.2.c.a 2 204.l even 4 2
1734.2.a.d 1 51.c odd 2 1
1734.2.a.e 1 3.b odd 2 1
1734.2.f.h 4 51.g odd 8 4
2448.2.c.a 2 68.f odd 4 2
2550.2.c.f 2 255.i odd 4 2
2550.2.f.e 2 255.k even 4 2
2550.2.f.j 2 255.r even 4 2
3264.2.c.i 2 408.q even 4 2
3264.2.c.j 2 408.t odd 4 2
5202.2.a.h 1 17.b even 2 1
5202.2.a.n 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5202))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{23} + 6 \) Copy content Toggle raw display
\( T_{47} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 6 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 10 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T + 10 \) Copy content Toggle raw display
$73$ \( T + 16 \) Copy content Toggle raw display
$79$ \( T + 6 \) Copy content Toggle raw display
$83$ \( T + 16 \) Copy content Toggle raw display
$89$ \( T + 10 \) Copy content Toggle raw display
$97$ \( T - 12 \) Copy content Toggle raw display
show more
show less