Properties

Label 520.2.q.e.81.1
Level $520$
Weight $2$
Character 520.81
Analytic conductor $4.152$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(81,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 520.81
Dual form 520.2.q.e.321.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{3} -1.00000 q^{5} +(-1.50000 + 2.59808i) q^{7} +(-3.00000 + 5.19615i) q^{9} +O(q^{10})\) \(q+(1.50000 + 2.59808i) q^{3} -1.00000 q^{5} +(-1.50000 + 2.59808i) q^{7} +(-3.00000 + 5.19615i) q^{9} +(-2.50000 - 4.33013i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(-1.50000 - 2.59808i) q^{15} +(-1.50000 + 2.59808i) q^{17} +(2.50000 - 4.33013i) q^{19} -9.00000 q^{21} +(1.50000 + 2.59808i) q^{23} +1.00000 q^{25} -9.00000 q^{27} +(2.50000 + 4.33013i) q^{29} +8.00000 q^{31} +(7.50000 - 12.9904i) q^{33} +(1.50000 - 2.59808i) q^{35} +(4.50000 + 7.79423i) q^{37} +(-10.5000 + 2.59808i) q^{39} +(-1.50000 - 2.59808i) q^{41} +(0.500000 - 0.866025i) q^{43} +(3.00000 - 5.19615i) q^{45} -12.0000 q^{47} +(-1.00000 - 1.73205i) q^{49} -9.00000 q^{51} +2.00000 q^{53} +(2.50000 + 4.33013i) q^{55} +15.0000 q^{57} +(2.50000 - 4.33013i) q^{59} +(0.500000 - 0.866025i) q^{61} +(-9.00000 - 15.5885i) q^{63} +(1.00000 - 3.46410i) q^{65} +(7.50000 + 12.9904i) q^{67} +(-4.50000 + 7.79423i) q^{69} +(0.500000 - 0.866025i) q^{71} -10.0000 q^{73} +(1.50000 + 2.59808i) q^{75} +15.0000 q^{77} -4.00000 q^{79} +(-4.50000 - 7.79423i) q^{81} +12.0000 q^{83} +(1.50000 - 2.59808i) q^{85} +(-7.50000 + 12.9904i) q^{87} +(0.500000 + 0.866025i) q^{89} +(-7.50000 - 7.79423i) q^{91} +(12.0000 + 20.7846i) q^{93} +(-2.50000 + 4.33013i) q^{95} +(-3.50000 + 6.06218i) q^{97} +30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 2 q^{5} - 3 q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3 q^{3} - 2 q^{5} - 3 q^{7} - 6 q^{9} - 5 q^{11} - 2 q^{13} - 3 q^{15} - 3 q^{17} + 5 q^{19} - 18 q^{21} + 3 q^{23} + 2 q^{25} - 18 q^{27} + 5 q^{29} + 16 q^{31} + 15 q^{33} + 3 q^{35} + 9 q^{37} - 21 q^{39} - 3 q^{41} + q^{43} + 6 q^{45} - 24 q^{47} - 2 q^{49} - 18 q^{51} + 4 q^{53} + 5 q^{55} + 30 q^{57} + 5 q^{59} + q^{61} - 18 q^{63} + 2 q^{65} + 15 q^{67} - 9 q^{69} + q^{71} - 20 q^{73} + 3 q^{75} + 30 q^{77} - 8 q^{79} - 9 q^{81} + 24 q^{83} + 3 q^{85} - 15 q^{87} + q^{89} - 15 q^{91} + 24 q^{93} - 5 q^{95} - 7 q^{97} + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 2.59808i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.50000 + 2.59808i −0.566947 + 0.981981i 0.429919 + 0.902867i \(0.358542\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) 0 0
\(9\) −3.00000 + 5.19615i −1.00000 + 1.73205i
\(10\) 0 0
\(11\) −2.50000 4.33013i −0.753778 1.30558i −0.945979 0.324227i \(-0.894896\pi\)
0.192201 0.981356i \(-0.438437\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) −1.50000 2.59808i −0.387298 0.670820i
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 2.50000 4.33013i 0.573539 0.993399i −0.422659 0.906289i \(-0.638903\pi\)
0.996199 0.0871106i \(-0.0277634\pi\)
\(20\) 0 0
\(21\) −9.00000 −1.96396
\(22\) 0 0
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 0 0
\(29\) 2.50000 + 4.33013i 0.464238 + 0.804084i 0.999167 0.0408130i \(-0.0129948\pi\)
−0.534928 + 0.844897i \(0.679661\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 7.50000 12.9904i 1.30558 2.26134i
\(34\) 0 0
\(35\) 1.50000 2.59808i 0.253546 0.439155i
\(36\) 0 0
\(37\) 4.50000 + 7.79423i 0.739795 + 1.28136i 0.952587 + 0.304266i \(0.0984111\pi\)
−0.212792 + 0.977098i \(0.568256\pi\)
\(38\) 0 0
\(39\) −10.5000 + 2.59808i −1.68135 + 0.416025i
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0 0
\(45\) 3.00000 5.19615i 0.447214 0.774597i
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) 0 0
\(51\) −9.00000 −1.26025
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 2.50000 + 4.33013i 0.337100 + 0.583874i
\(56\) 0 0
\(57\) 15.0000 1.98680
\(58\) 0 0
\(59\) 2.50000 4.33013i 0.325472 0.563735i −0.656136 0.754643i \(-0.727810\pi\)
0.981608 + 0.190909i \(0.0611434\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) −9.00000 15.5885i −1.13389 1.96396i
\(64\) 0 0
\(65\) 1.00000 3.46410i 0.124035 0.429669i
\(66\) 0 0
\(67\) 7.50000 + 12.9904i 0.916271 + 1.58703i 0.805030 + 0.593234i \(0.202149\pi\)
0.111241 + 0.993793i \(0.464517\pi\)
\(68\) 0 0
\(69\) −4.50000 + 7.79423i −0.541736 + 0.938315i
\(70\) 0 0
\(71\) 0.500000 0.866025i 0.0593391 0.102778i −0.834830 0.550508i \(-0.814434\pi\)
0.894169 + 0.447730i \(0.147767\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 1.50000 + 2.59808i 0.173205 + 0.300000i
\(76\) 0 0
\(77\) 15.0000 1.70941
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 1.50000 2.59808i 0.162698 0.281801i
\(86\) 0 0
\(87\) −7.50000 + 12.9904i −0.804084 + 1.39272i
\(88\) 0 0
\(89\) 0.500000 + 0.866025i 0.0529999 + 0.0917985i 0.891308 0.453398i \(-0.149788\pi\)
−0.838308 + 0.545197i \(0.816455\pi\)
\(90\) 0 0
\(91\) −7.50000 7.79423i −0.786214 0.817057i
\(92\) 0 0
\(93\) 12.0000 + 20.7846i 1.24434 + 2.15526i
\(94\) 0 0
\(95\) −2.50000 + 4.33013i −0.256495 + 0.444262i
\(96\) 0 0
\(97\) −3.50000 + 6.06218i −0.355371 + 0.615521i −0.987181 0.159602i \(-0.948979\pi\)
0.631810 + 0.775123i \(0.282312\pi\)
\(98\) 0 0
\(99\) 30.0000 3.01511
\(100\) 0 0
\(101\) 8.50000 + 14.7224i 0.845782 + 1.46494i 0.884941 + 0.465704i \(0.154199\pi\)
−0.0391591 + 0.999233i \(0.512468\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 9.00000 0.878310
\(106\) 0 0
\(107\) −6.50000 11.2583i −0.628379 1.08838i −0.987877 0.155238i \(-0.950386\pi\)
0.359498 0.933146i \(-0.382948\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −13.5000 + 23.3827i −1.28136 + 2.21939i
\(112\) 0 0
\(113\) 10.5000 18.1865i 0.987757 1.71085i 0.358778 0.933423i \(-0.383194\pi\)
0.628979 0.777422i \(-0.283473\pi\)
\(114\) 0 0
\(115\) −1.50000 2.59808i −0.139876 0.242272i
\(116\) 0 0
\(117\) −15.0000 15.5885i −1.38675 1.44115i
\(118\) 0 0
\(119\) −4.50000 7.79423i −0.412514 0.714496i
\(120\) 0 0
\(121\) −7.00000 + 12.1244i −0.636364 + 1.10221i
\(122\) 0 0
\(123\) 4.50000 7.79423i 0.405751 0.702782i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.50000 14.7224i −0.754253 1.30640i −0.945745 0.324910i \(-0.894666\pi\)
0.191492 0.981494i \(-0.438667\pi\)
\(128\) 0 0
\(129\) 3.00000 0.264135
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 7.50000 + 12.9904i 0.650332 + 1.12641i
\(134\) 0 0
\(135\) 9.00000 0.774597
\(136\) 0 0
\(137\) 8.50000 14.7224i 0.726204 1.25782i −0.232273 0.972651i \(-0.574616\pi\)
0.958477 0.285171i \(-0.0920506\pi\)
\(138\) 0 0
\(139\) −5.50000 + 9.52628i −0.466504 + 0.808008i −0.999268 0.0382553i \(-0.987820\pi\)
0.532764 + 0.846264i \(0.321153\pi\)
\(140\) 0 0
\(141\) −18.0000 31.1769i −1.51587 2.62557i
\(142\) 0 0
\(143\) 17.5000 4.33013i 1.46342 0.362103i
\(144\) 0 0
\(145\) −2.50000 4.33013i −0.207614 0.359597i
\(146\) 0 0
\(147\) 3.00000 5.19615i 0.247436 0.428571i
\(148\) 0 0
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) −9.00000 15.5885i −0.727607 1.26025i
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 3.00000 + 5.19615i 0.237915 + 0.412082i
\(160\) 0 0
\(161\) −9.00000 −0.709299
\(162\) 0 0
\(163\) 8.50000 14.7224i 0.665771 1.15315i −0.313304 0.949653i \(-0.601436\pi\)
0.979076 0.203497i \(-0.0652307\pi\)
\(164\) 0 0
\(165\) −7.50000 + 12.9904i −0.583874 + 1.01130i
\(166\) 0 0
\(167\) −10.5000 18.1865i −0.812514 1.40732i −0.911099 0.412188i \(-0.864765\pi\)
0.0985846 0.995129i \(-0.468568\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 15.0000 + 25.9808i 1.14708 + 1.98680i
\(172\) 0 0
\(173\) −3.50000 + 6.06218i −0.266100 + 0.460899i −0.967851 0.251523i \(-0.919068\pi\)
0.701751 + 0.712422i \(0.252402\pi\)
\(174\) 0 0
\(175\) −1.50000 + 2.59808i −0.113389 + 0.196396i
\(176\) 0 0
\(177\) 15.0000 1.12747
\(178\) 0 0
\(179\) 1.50000 + 2.59808i 0.112115 + 0.194189i 0.916623 0.399753i \(-0.130904\pi\)
−0.804508 + 0.593942i \(0.797571\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 3.00000 0.221766
\(184\) 0 0
\(185\) −4.50000 7.79423i −0.330847 0.573043i
\(186\) 0 0
\(187\) 15.0000 1.09691
\(188\) 0 0
\(189\) 13.5000 23.3827i 0.981981 1.70084i
\(190\) 0 0
\(191\) −1.50000 + 2.59808i −0.108536 + 0.187990i −0.915177 0.403051i \(-0.867950\pi\)
0.806641 + 0.591041i \(0.201283\pi\)
\(192\) 0 0
\(193\) 10.5000 + 18.1865i 0.755807 + 1.30910i 0.944972 + 0.327150i \(0.106088\pi\)
−0.189166 + 0.981945i \(0.560578\pi\)
\(194\) 0 0
\(195\) 10.5000 2.59808i 0.751921 0.186052i
\(196\) 0 0
\(197\) −1.50000 2.59808i −0.106871 0.185105i 0.807630 0.589689i \(-0.200750\pi\)
−0.914501 + 0.404584i \(0.867416\pi\)
\(198\) 0 0
\(199\) 4.50000 7.79423i 0.318997 0.552518i −0.661282 0.750137i \(-0.729987\pi\)
0.980279 + 0.197619i \(0.0633208\pi\)
\(200\) 0 0
\(201\) −22.5000 + 38.9711i −1.58703 + 2.74881i
\(202\) 0 0
\(203\) −15.0000 −1.05279
\(204\) 0 0
\(205\) 1.50000 + 2.59808i 0.104765 + 0.181458i
\(206\) 0 0
\(207\) −18.0000 −1.25109
\(208\) 0 0
\(209\) −25.0000 −1.72929
\(210\) 0 0
\(211\) 5.50000 + 9.52628i 0.378636 + 0.655816i 0.990864 0.134865i \(-0.0430600\pi\)
−0.612228 + 0.790681i \(0.709727\pi\)
\(212\) 0 0
\(213\) 3.00000 0.205557
\(214\) 0 0
\(215\) −0.500000 + 0.866025i −0.0340997 + 0.0590624i
\(216\) 0 0
\(217\) −12.0000 + 20.7846i −0.814613 + 1.41095i
\(218\) 0 0
\(219\) −15.0000 25.9808i −1.01361 1.75562i
\(220\) 0 0
\(221\) −7.50000 7.79423i −0.504505 0.524297i
\(222\) 0 0
\(223\) −6.50000 11.2583i −0.435272 0.753914i 0.562046 0.827106i \(-0.310015\pi\)
−0.997318 + 0.0731927i \(0.976681\pi\)
\(224\) 0 0
\(225\) −3.00000 + 5.19615i −0.200000 + 0.346410i
\(226\) 0 0
\(227\) 2.50000 4.33013i 0.165931 0.287401i −0.771055 0.636769i \(-0.780270\pi\)
0.936985 + 0.349368i \(0.113604\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 22.5000 + 38.9711i 1.48039 + 2.56411i
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 12.0000 0.782794
\(236\) 0 0
\(237\) −6.00000 10.3923i −0.389742 0.675053i
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −9.50000 + 16.4545i −0.611949 + 1.05993i 0.378963 + 0.925412i \(0.376281\pi\)
−0.990912 + 0.134515i \(0.957053\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 + 1.73205i 0.0638877 + 0.110657i
\(246\) 0 0
\(247\) 12.5000 + 12.9904i 0.795356 + 0.826558i
\(248\) 0 0
\(249\) 18.0000 + 31.1769i 1.14070 + 1.97576i
\(250\) 0 0
\(251\) 0.500000 0.866025i 0.0315597 0.0546630i −0.849814 0.527082i \(-0.823286\pi\)
0.881374 + 0.472419i \(0.156619\pi\)
\(252\) 0 0
\(253\) 7.50000 12.9904i 0.471521 0.816698i
\(254\) 0 0
\(255\) 9.00000 0.563602
\(256\) 0 0
\(257\) 6.50000 + 11.2583i 0.405459 + 0.702275i 0.994375 0.105919i \(-0.0337784\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(258\) 0 0
\(259\) −27.0000 −1.67770
\(260\) 0 0
\(261\) −30.0000 −1.85695
\(262\) 0 0
\(263\) 9.50000 + 16.4545i 0.585795 + 1.01463i 0.994776 + 0.102084i \(0.0325510\pi\)
−0.408981 + 0.912543i \(0.634116\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) −1.50000 + 2.59808i −0.0917985 + 0.159000i
\(268\) 0 0
\(269\) 2.50000 4.33013i 0.152428 0.264013i −0.779692 0.626164i \(-0.784624\pi\)
0.932119 + 0.362151i \(0.117958\pi\)
\(270\) 0 0
\(271\) −6.50000 11.2583i −0.394847 0.683895i 0.598235 0.801321i \(-0.295869\pi\)
−0.993082 + 0.117426i \(0.962536\pi\)
\(272\) 0 0
\(273\) 9.00000 31.1769i 0.544705 1.88691i
\(274\) 0 0
\(275\) −2.50000 4.33013i −0.150756 0.261116i
\(276\) 0 0
\(277\) 6.50000 11.2583i 0.390547 0.676448i −0.601975 0.798515i \(-0.705619\pi\)
0.992522 + 0.122068i \(0.0389525\pi\)
\(278\) 0 0
\(279\) −24.0000 + 41.5692i −1.43684 + 2.48868i
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 5.50000 + 9.52628i 0.326941 + 0.566279i 0.981903 0.189383i \(-0.0606488\pi\)
−0.654962 + 0.755662i \(0.727315\pi\)
\(284\) 0 0
\(285\) −15.0000 −0.888523
\(286\) 0 0
\(287\) 9.00000 0.531253
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) −21.0000 −1.23104
\(292\) 0 0
\(293\) 4.50000 7.79423i 0.262893 0.455344i −0.704117 0.710084i \(-0.748657\pi\)
0.967009 + 0.254741i \(0.0819901\pi\)
\(294\) 0 0
\(295\) −2.50000 + 4.33013i −0.145556 + 0.252110i
\(296\) 0 0
\(297\) 22.5000 + 38.9711i 1.30558 + 2.26134i
\(298\) 0 0
\(299\) −10.5000 + 2.59808i −0.607231 + 0.150251i
\(300\) 0 0
\(301\) 1.50000 + 2.59808i 0.0864586 + 0.149751i
\(302\) 0 0
\(303\) −25.5000 + 44.1673i −1.46494 + 2.53734i
\(304\) 0 0
\(305\) −0.500000 + 0.866025i −0.0286299 + 0.0495885i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 12.0000 + 20.7846i 0.682656 + 1.18240i
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 9.00000 + 15.5885i 0.507093 + 0.878310i
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 12.5000 21.6506i 0.699866 1.21220i
\(320\) 0 0
\(321\) 19.5000 33.7750i 1.08838 1.88514i
\(322\) 0 0
\(323\) 7.50000 + 12.9904i 0.417311 + 0.722804i
\(324\) 0 0
\(325\) −1.00000 + 3.46410i −0.0554700 + 0.192154i
\(326\) 0 0
\(327\) 3.00000 + 5.19615i 0.165900 + 0.287348i
\(328\) 0 0
\(329\) 18.0000 31.1769i 0.992372 1.71884i
\(330\) 0 0
\(331\) 12.5000 21.6506i 0.687062 1.19003i −0.285722 0.958313i \(-0.592233\pi\)
0.972784 0.231714i \(-0.0744333\pi\)
\(332\) 0 0
\(333\) −54.0000 −2.95918
\(334\) 0 0
\(335\) −7.50000 12.9904i −0.409769 0.709740i
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 63.0000 3.42169
\(340\) 0 0
\(341\) −20.0000 34.6410i −1.08306 1.87592i
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 4.50000 7.79423i 0.242272 0.419627i
\(346\) 0 0
\(347\) 8.50000 14.7224i 0.456304 0.790342i −0.542458 0.840083i \(-0.682506\pi\)
0.998762 + 0.0497412i \(0.0158397\pi\)
\(348\) 0 0
\(349\) −3.50000 6.06218i −0.187351 0.324501i 0.757015 0.653397i \(-0.226657\pi\)
−0.944366 + 0.328896i \(0.893323\pi\)
\(350\) 0 0
\(351\) 9.00000 31.1769i 0.480384 1.66410i
\(352\) 0 0
\(353\) −7.50000 12.9904i −0.399185 0.691408i 0.594441 0.804139i \(-0.297373\pi\)
−0.993626 + 0.112731i \(0.964040\pi\)
\(354\) 0 0
\(355\) −0.500000 + 0.866025i −0.0265372 + 0.0459639i
\(356\) 0 0
\(357\) 13.5000 23.3827i 0.714496 1.23754i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) 0 0
\(363\) −42.0000 −2.20443
\(364\) 0 0
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 1.50000 + 2.59808i 0.0782994 + 0.135618i 0.902516 0.430656i \(-0.141718\pi\)
−0.824217 + 0.566274i \(0.808384\pi\)
\(368\) 0 0
\(369\) 18.0000 0.937043
\(370\) 0 0
\(371\) −3.00000 + 5.19615i −0.155752 + 0.269771i
\(372\) 0 0
\(373\) 6.50000 11.2583i 0.336557 0.582934i −0.647225 0.762299i \(-0.724071\pi\)
0.983783 + 0.179364i \(0.0574041\pi\)
\(374\) 0 0
\(375\) −1.50000 2.59808i −0.0774597 0.134164i
\(376\) 0 0
\(377\) −17.5000 + 4.33013i −0.901296 + 0.223013i
\(378\) 0 0
\(379\) −10.5000 18.1865i −0.539349 0.934179i −0.998939 0.0460485i \(-0.985337\pi\)
0.459590 0.888131i \(-0.347996\pi\)
\(380\) 0 0
\(381\) 25.5000 44.1673i 1.30640 2.26276i
\(382\) 0 0
\(383\) −9.50000 + 16.4545i −0.485427 + 0.840785i −0.999860 0.0167461i \(-0.994669\pi\)
0.514432 + 0.857531i \(0.328003\pi\)
\(384\) 0 0
\(385\) −15.0000 −0.764471
\(386\) 0 0
\(387\) 3.00000 + 5.19615i 0.152499 + 0.264135i
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 18.0000 + 31.1769i 0.907980 + 1.57267i
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −13.5000 + 23.3827i −0.677546 + 1.17354i 0.298172 + 0.954512i \(0.403623\pi\)
−0.975718 + 0.219031i \(0.929710\pi\)
\(398\) 0 0
\(399\) −22.5000 + 38.9711i −1.12641 + 1.95100i
\(400\) 0 0
\(401\) 14.5000 + 25.1147i 0.724095 + 1.25417i 0.959345 + 0.282235i \(0.0910758\pi\)
−0.235250 + 0.971935i \(0.575591\pi\)
\(402\) 0 0
\(403\) −8.00000 + 27.7128i −0.398508 + 1.38047i
\(404\) 0 0
\(405\) 4.50000 + 7.79423i 0.223607 + 0.387298i
\(406\) 0 0
\(407\) 22.5000 38.9711i 1.11528 1.93173i
\(408\) 0 0
\(409\) 2.50000 4.33013i 0.123617 0.214111i −0.797574 0.603220i \(-0.793884\pi\)
0.921192 + 0.389109i \(0.127217\pi\)
\(410\) 0 0
\(411\) 51.0000 2.51564
\(412\) 0 0
\(413\) 7.50000 + 12.9904i 0.369051 + 0.639215i
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) −33.0000 −1.61602
\(418\) 0 0
\(419\) −0.500000 0.866025i −0.0244266 0.0423081i 0.853554 0.521005i \(-0.174443\pi\)
−0.877980 + 0.478697i \(0.841109\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 0 0
\(423\) 36.0000 62.3538i 1.75038 3.03175i
\(424\) 0 0
\(425\) −1.50000 + 2.59808i −0.0727607 + 0.126025i
\(426\) 0 0
\(427\) 1.50000 + 2.59808i 0.0725901 + 0.125730i
\(428\) 0 0
\(429\) 37.5000 + 38.9711i 1.81052 + 1.88154i
\(430\) 0 0
\(431\) −16.5000 28.5788i −0.794777 1.37659i −0.922981 0.384846i \(-0.874254\pi\)
0.128204 0.991748i \(-0.459079\pi\)
\(432\) 0 0
\(433\) 14.5000 25.1147i 0.696826 1.20694i −0.272736 0.962089i \(-0.587929\pi\)
0.969561 0.244848i \(-0.0787382\pi\)
\(434\) 0 0
\(435\) 7.50000 12.9904i 0.359597 0.622841i
\(436\) 0 0
\(437\) 15.0000 0.717547
\(438\) 0 0
\(439\) −4.50000 7.79423i −0.214773 0.371998i 0.738429 0.674331i \(-0.235568\pi\)
−0.953202 + 0.302333i \(0.902235\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) −20.0000 −0.950229 −0.475114 0.879924i \(-0.657593\pi\)
−0.475114 + 0.879924i \(0.657593\pi\)
\(444\) 0 0
\(445\) −0.500000 0.866025i −0.0237023 0.0410535i
\(446\) 0 0
\(447\) 27.0000 1.27706
\(448\) 0 0
\(449\) −9.50000 + 16.4545i −0.448333 + 0.776535i −0.998278 0.0586659i \(-0.981315\pi\)
0.549945 + 0.835201i \(0.314649\pi\)
\(450\) 0 0
\(451\) −7.50000 + 12.9904i −0.353161 + 0.611693i
\(452\) 0 0
\(453\) 24.0000 + 41.5692i 1.12762 + 1.95309i
\(454\) 0 0
\(455\) 7.50000 + 7.79423i 0.351605 + 0.365399i
\(456\) 0 0
\(457\) 0.500000 + 0.866025i 0.0233890 + 0.0405110i 0.877483 0.479608i \(-0.159221\pi\)
−0.854094 + 0.520119i \(0.825888\pi\)
\(458\) 0 0
\(459\) 13.5000 23.3827i 0.630126 1.09141i
\(460\) 0 0
\(461\) −9.50000 + 16.4545i −0.442459 + 0.766362i −0.997871 0.0652135i \(-0.979227\pi\)
0.555412 + 0.831575i \(0.312560\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) −12.0000 20.7846i −0.556487 0.963863i
\(466\) 0 0
\(467\) −16.0000 −0.740392 −0.370196 0.928954i \(-0.620709\pi\)
−0.370196 + 0.928954i \(0.620709\pi\)
\(468\) 0 0
\(469\) −45.0000 −2.07791
\(470\) 0 0
\(471\) −21.0000 36.3731i −0.967629 1.67598i
\(472\) 0 0
\(473\) −5.00000 −0.229900
\(474\) 0 0
\(475\) 2.50000 4.33013i 0.114708 0.198680i
\(476\) 0 0
\(477\) −6.00000 + 10.3923i −0.274721 + 0.475831i
\(478\) 0 0
\(479\) 7.50000 + 12.9904i 0.342684 + 0.593546i 0.984930 0.172953i \(-0.0553307\pi\)
−0.642246 + 0.766498i \(0.721997\pi\)
\(480\) 0 0
\(481\) −31.5000 + 7.79423i −1.43628 + 0.355386i
\(482\) 0 0
\(483\) −13.5000 23.3827i −0.614271 1.06395i
\(484\) 0 0
\(485\) 3.50000 6.06218i 0.158927 0.275269i
\(486\) 0 0
\(487\) −15.5000 + 26.8468i −0.702372 + 1.21654i 0.265260 + 0.964177i \(0.414542\pi\)
−0.967632 + 0.252367i \(0.918791\pi\)
\(488\) 0 0
\(489\) 51.0000 2.30630
\(490\) 0 0
\(491\) 3.50000 + 6.06218i 0.157953 + 0.273582i 0.934130 0.356932i \(-0.116177\pi\)
−0.776178 + 0.630514i \(0.782844\pi\)
\(492\) 0 0
\(493\) −15.0000 −0.675566
\(494\) 0 0
\(495\) −30.0000 −1.34840
\(496\) 0 0
\(497\) 1.50000 + 2.59808i 0.0672842 + 0.116540i
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 31.5000 54.5596i 1.40732 2.43754i
\(502\) 0 0
\(503\) 10.5000 18.1865i 0.468172 0.810897i −0.531167 0.847267i \(-0.678246\pi\)
0.999338 + 0.0363700i \(0.0115795\pi\)
\(504\) 0 0
\(505\) −8.50000 14.7224i −0.378245 0.655140i
\(506\) 0 0
\(507\) 1.50000 38.9711i 0.0666173 1.73077i
\(508\) 0 0
\(509\) −7.50000 12.9904i −0.332432 0.575789i 0.650556 0.759458i \(-0.274536\pi\)
−0.982988 + 0.183669i \(0.941202\pi\)
\(510\) 0 0
\(511\) 15.0000 25.9808i 0.663561 1.14932i
\(512\) 0 0
\(513\) −22.5000 + 38.9711i −0.993399 + 1.72062i
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 30.0000 + 51.9615i 1.31940 + 2.28527i
\(518\) 0 0
\(519\) −21.0000 −0.921798
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 15.5000 + 26.8468i 0.677768 + 1.17393i 0.975652 + 0.219326i \(0.0703858\pi\)
−0.297884 + 0.954602i \(0.596281\pi\)
\(524\) 0 0
\(525\) −9.00000 −0.392792
\(526\) 0 0
\(527\) −12.0000 + 20.7846i −0.522728 + 0.905392i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 15.0000 + 25.9808i 0.650945 + 1.12747i
\(532\) 0 0
\(533\) 10.5000 2.59808i 0.454805 0.112535i
\(534\) 0 0
\(535\) 6.50000 + 11.2583i 0.281020 + 0.486740i
\(536\) 0 0
\(537\) −4.50000 + 7.79423i −0.194189 + 0.336346i
\(538\) 0 0
\(539\) −5.00000 + 8.66025i −0.215365 + 0.373024i
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) 15.0000 + 25.9808i 0.643712 + 1.11494i
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 3.00000 + 5.19615i 0.128037 + 0.221766i
\(550\) 0 0
\(551\) 25.0000 1.06504
\(552\) 0 0
\(553\) 6.00000 10.3923i 0.255146 0.441926i
\(554\) 0 0
\(555\) 13.5000 23.3827i 0.573043 0.992540i
\(556\) 0 0
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) 0 0
\(559\) 2.50000 + 2.59808i 0.105739 + 0.109887i
\(560\) 0 0
\(561\) 22.5000 + 38.9711i 0.949951 + 1.64536i
\(562\) 0 0
\(563\) −1.50000 + 2.59808i −0.0632175 + 0.109496i −0.895902 0.444252i \(-0.853470\pi\)
0.832684 + 0.553748i \(0.186803\pi\)
\(564\) 0 0
\(565\) −10.5000 + 18.1865i −0.441738 + 0.765113i
\(566\) 0 0
\(567\) 27.0000 1.13389
\(568\) 0 0
\(569\) −7.50000 12.9904i −0.314416 0.544585i 0.664897 0.746935i \(-0.268475\pi\)
−0.979313 + 0.202350i \(0.935142\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) −9.00000 −0.375980
\(574\) 0 0
\(575\) 1.50000 + 2.59808i 0.0625543 + 0.108347i
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 0 0
\(579\) −31.5000 + 54.5596i −1.30910 + 2.26742i
\(580\) 0 0
\(581\) −18.0000 + 31.1769i −0.746766 + 1.29344i
\(582\) 0 0
\(583\) −5.00000 8.66025i −0.207079 0.358671i
\(584\) 0 0
\(585\) 15.0000 + 15.5885i 0.620174 + 0.644503i
\(586\) 0 0
\(587\) 19.5000 + 33.7750i 0.804851 + 1.39404i 0.916392 + 0.400283i \(0.131088\pi\)
−0.111540 + 0.993760i \(0.535578\pi\)
\(588\) 0 0
\(589\) 20.0000 34.6410i 0.824086 1.42736i
\(590\) 0 0
\(591\) 4.50000 7.79423i 0.185105 0.320612i
\(592\) 0 0
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) 0 0
\(595\) 4.50000 + 7.79423i 0.184482 + 0.319532i
\(596\) 0 0
\(597\) 27.0000 1.10504
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) 0 0
\(603\) −90.0000 −3.66508
\(604\) 0 0
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) 16.5000 28.5788i 0.669714 1.15998i −0.308270 0.951299i \(-0.599750\pi\)
0.977984 0.208680i \(-0.0669168\pi\)
\(608\) 0 0
\(609\) −22.5000 38.9711i −0.911746 1.57919i
\(610\) 0 0
\(611\) 12.0000 41.5692i 0.485468 1.68171i
\(612\) 0 0
\(613\) 0.500000 + 0.866025i 0.0201948 + 0.0349784i 0.875946 0.482409i \(-0.160238\pi\)
−0.855751 + 0.517387i \(0.826905\pi\)
\(614\) 0 0
\(615\) −4.50000 + 7.79423i −0.181458 + 0.314294i
\(616\) 0 0
\(617\) −11.5000 + 19.9186i −0.462973 + 0.801892i −0.999107 0.0422403i \(-0.986550\pi\)
0.536135 + 0.844132i \(0.319884\pi\)
\(618\) 0 0
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) 0 0
\(621\) −13.5000 23.3827i −0.541736 0.938315i
\(622\) 0 0
\(623\) −3.00000 −0.120192
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −37.5000 64.9519i −1.49761 2.59393i
\(628\) 0 0
\(629\) −27.0000 −1.07656
\(630\) 0 0
\(631\) −7.50000 + 12.9904i −0.298570 + 0.517139i −0.975809 0.218624i \(-0.929843\pi\)
0.677239 + 0.735763i \(0.263176\pi\)
\(632\) 0 0
\(633\) −16.5000 + 28.5788i −0.655816 + 1.13591i
\(634\) 0 0
\(635\) 8.50000 + 14.7224i 0.337312 + 0.584242i
\(636\) 0 0
\(637\) 7.00000 1.73205i 0.277350 0.0686264i
\(638\) 0 0
\(639\) 3.00000 + 5.19615i 0.118678 + 0.205557i
\(640\) 0 0
\(641\) 22.5000 38.9711i 0.888697 1.53927i 0.0472793 0.998882i \(-0.484945\pi\)
0.841417 0.540386i \(-0.181722\pi\)
\(642\) 0 0
\(643\) −3.50000 + 6.06218i −0.138027 + 0.239069i −0.926750 0.375680i \(-0.877409\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 0 0
\(645\) −3.00000 −0.118125
\(646\) 0 0
\(647\) 23.5000 + 40.7032i 0.923880 + 1.60021i 0.793352 + 0.608763i \(0.208334\pi\)
0.130528 + 0.991445i \(0.458333\pi\)
\(648\) 0 0
\(649\) −25.0000 −0.981336
\(650\) 0 0
\(651\) −72.0000 −2.82190
\(652\) 0 0
\(653\) 0.500000 + 0.866025i 0.0195665 + 0.0338902i 0.875643 0.482959i \(-0.160438\pi\)
−0.856076 + 0.516849i \(0.827105\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) 30.0000 51.9615i 1.17041 2.02721i
\(658\) 0 0
\(659\) 8.50000 14.7224i 0.331113 0.573505i −0.651617 0.758548i \(-0.725909\pi\)
0.982730 + 0.185043i \(0.0592425\pi\)
\(660\) 0 0
\(661\) 12.5000 + 21.6506i 0.486194 + 0.842112i 0.999874 0.0158695i \(-0.00505163\pi\)
−0.513680 + 0.857982i \(0.671718\pi\)
\(662\) 0 0
\(663\) 9.00000 31.1769i 0.349531 1.21081i
\(664\) 0 0
\(665\) −7.50000 12.9904i −0.290838 0.503745i
\(666\) 0 0
\(667\) −7.50000 + 12.9904i −0.290401 + 0.502990i
\(668\) 0 0
\(669\) 19.5000 33.7750i 0.753914 1.30582i
\(670\) 0 0
\(671\) −5.00000 −0.193023
\(672\) 0 0
\(673\) −23.5000 40.7032i −0.905858 1.56899i −0.819761 0.572706i \(-0.805894\pi\)
−0.0860977 0.996287i \(-0.527440\pi\)
\(674\) 0 0
\(675\) −9.00000 −0.346410
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) −10.5000 18.1865i −0.402953 0.697935i
\(680\) 0 0
\(681\) 15.0000 0.574801
\(682\) 0 0
\(683\) 6.50000 11.2583i 0.248716 0.430788i −0.714454 0.699682i \(-0.753325\pi\)
0.963170 + 0.268894i \(0.0866582\pi\)
\(684\) 0 0
\(685\) −8.50000 + 14.7224i −0.324768 + 0.562515i
\(686\) 0 0
\(687\) −21.0000 36.3731i −0.801200 1.38772i
\(688\) 0 0
\(689\) −2.00000 + 6.92820i −0.0761939 + 0.263944i
\(690\) 0 0
\(691\) −6.50000 11.2583i −0.247272 0.428287i 0.715496 0.698617i \(-0.246201\pi\)
−0.962768 + 0.270330i \(0.912867\pi\)
\(692\) 0 0
\(693\) −45.0000 + 77.9423i −1.70941 + 2.96078i
\(694\) 0 0
\(695\) 5.50000 9.52628i 0.208627 0.361352i
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 0 0
\(699\) −27.0000 46.7654i −1.02123 1.76883i
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 45.0000 1.69721
\(704\) 0 0
\(705\) 18.0000 + 31.1769i 0.677919 + 1.17419i
\(706\) 0 0
\(707\) −51.0000 −1.91805
\(708\) 0 0
\(709\) −17.5000 + 30.3109i −0.657226 + 1.13835i 0.324104 + 0.946021i \(0.394937\pi\)
−0.981331 + 0.192328i \(0.938396\pi\)
\(710\) 0 0
\(711\) 12.0000 20.7846i 0.450035 0.779484i
\(712\) 0 0
\(713\) 12.0000 + 20.7846i 0.449404 + 0.778390i
\(714\) 0 0
\(715\) −17.5000 + 4.33013i −0.654463 + 0.161938i
\(716\) 0 0
\(717\) −12.0000 20.7846i −0.448148 0.776215i
\(718\) 0 0
\(719\) −17.5000 + 30.3109i −0.652640 + 1.13041i 0.329840 + 0.944037i \(0.393005\pi\)
−0.982480 + 0.186369i \(0.940328\pi\)
\(720\) 0 0
\(721\) −12.0000 + 20.7846i −0.446903 + 0.774059i
\(722\) 0 0
\(723\) −57.0000 −2.11985
\(724\) 0 0
\(725\) 2.50000 + 4.33013i 0.0928477 + 0.160817i
\(726\) 0 0
\(727\) 24.0000 0.890111 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 1.50000 + 2.59808i 0.0554795 + 0.0960933i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) −3.00000 + 5.19615i −0.110657 + 0.191663i
\(736\) 0 0
\(737\) 37.5000 64.9519i 1.38133 2.39253i
\(738\) 0 0
\(739\) −16.5000 28.5788i −0.606962 1.05129i −0.991738 0.128279i \(-0.959055\pi\)
0.384776 0.923010i \(-0.374279\pi\)
\(740\) 0 0
\(741\) −15.0000 + 51.9615i −0.551039 + 1.90885i
\(742\) 0 0
\(743\) 7.50000 + 12.9904i 0.275148 + 0.476571i 0.970173 0.242415i \(-0.0779397\pi\)
−0.695024 + 0.718986i \(0.744606\pi\)
\(744\) 0 0
\(745\) −4.50000 + 7.79423i −0.164867 + 0.285558i
\(746\) 0 0
\(747\) −36.0000 + 62.3538i −1.31717 + 2.28141i
\(748\) 0 0
\(749\) 39.0000 1.42503
\(750\) 0 0
\(751\) 13.5000 + 23.3827i 0.492622 + 0.853246i 0.999964 0.00849853i \(-0.00270520\pi\)
−0.507342 + 0.861745i \(0.669372\pi\)
\(752\) 0 0
\(753\) 3.00000 0.109326
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −3.50000 6.06218i −0.127210 0.220334i 0.795385 0.606105i \(-0.207269\pi\)
−0.922595 + 0.385771i \(0.873935\pi\)
\(758\) 0 0
\(759\) 45.0000 1.63340
\(760\) 0 0
\(761\) 2.50000 4.33013i 0.0906249 0.156967i −0.817149 0.576426i \(-0.804447\pi\)
0.907774 + 0.419459i \(0.137780\pi\)
\(762\) 0 0
\(763\) −3.00000 + 5.19615i −0.108607 + 0.188113i
\(764\) 0 0
\(765\) 9.00000 + 15.5885i 0.325396 + 0.563602i
\(766\) 0 0
\(767\) 12.5000 + 12.9904i 0.451349 + 0.469055i
\(768\) 0 0
\(769\) 6.50000 + 11.2583i 0.234396 + 0.405986i 0.959097 0.283078i \(-0.0913554\pi\)
−0.724701 + 0.689063i \(0.758022\pi\)
\(770\) 0 0
\(771\) −19.5000 + 33.7750i −0.702275 + 1.21638i
\(772\) 0 0
\(773\) 18.5000 32.0429i 0.665399 1.15250i −0.313778 0.949496i \(-0.601595\pi\)
0.979177 0.203008i \(-0.0650718\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) −40.5000 70.1481i −1.45293 2.51655i
\(778\) 0 0
\(779\) −15.0000 −0.537431
\(780\) 0 0
\(781\) −5.00000 −0.178914
\(782\) 0 0
\(783\) −22.5000 38.9711i −0.804084 1.39272i
\(784\) 0 0
\(785\) 14.0000 0.499681
\(786\) 0 0
\(787\) −15.5000 + 26.8468i −0.552515 + 0.956985i 0.445577 + 0.895244i \(0.352999\pi\)
−0.998092 + 0.0617409i \(0.980335\pi\)
\(788\) 0 0
\(789\) −28.5000 + 49.3634i −1.01463 + 1.75739i