Properties

Label 520.2.ca.b.381.4
Level $520$
Weight $2$
Character 520.381
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 381.4
Character \(\chi\) \(=\) 520.381
Dual form 520.2.ca.b.101.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32269 - 0.500493i) q^{2} +(0.815452 + 0.470802i) q^{3} +(1.49901 + 1.32399i) q^{4} +1.00000 q^{5} +(-0.842957 - 1.03085i) q^{6} +(-2.82007 + 1.62817i) q^{7} +(-1.32008 - 2.50148i) q^{8} +(-1.05669 - 1.83024i) q^{9} +O(q^{10})\) \(q+(-1.32269 - 0.500493i) q^{2} +(0.815452 + 0.470802i) q^{3} +(1.49901 + 1.32399i) q^{4} +1.00000 q^{5} +(-0.842957 - 1.03085i) q^{6} +(-2.82007 + 1.62817i) q^{7} +(-1.32008 - 2.50148i) q^{8} +(-1.05669 - 1.83024i) q^{9} +(-1.32269 - 0.500493i) q^{10} +(-2.28794 + 3.96283i) q^{11} +(0.599037 + 1.78539i) q^{12} +(2.20289 + 2.85434i) q^{13} +(4.54496 - 0.742136i) q^{14} +(0.815452 + 0.470802i) q^{15} +(0.494087 + 3.96937i) q^{16} +(3.64340 + 6.31055i) q^{17} +(0.481651 + 2.94971i) q^{18} +(-3.24655 - 5.62320i) q^{19} +(1.49901 + 1.32399i) q^{20} -3.06618 q^{21} +(5.00960 - 4.09650i) q^{22} +(-3.65810 + 6.33601i) q^{23} +(0.101236 - 2.66133i) q^{24} +1.00000 q^{25} +(-1.48516 - 4.87794i) q^{26} -4.81478i q^{27} +(-6.38301 - 1.29310i) q^{28} +(-3.33584 - 1.92595i) q^{29} +(-0.842957 - 1.03085i) q^{30} +2.78436i q^{31} +(1.33312 - 5.49753i) q^{32} +(-3.73142 + 2.15433i) q^{33} +(-1.66070 - 10.1704i) q^{34} +(-2.82007 + 1.62817i) q^{35} +(0.839233 - 4.14261i) q^{36} +(-2.57569 + 4.46122i) q^{37} +(1.47981 + 9.06262i) q^{38} +(0.452520 + 3.36471i) q^{39} +(-1.32008 - 2.50148i) q^{40} +(3.47276 + 2.00500i) q^{41} +(4.05560 + 1.53460i) q^{42} +(6.09210 - 3.51727i) q^{43} +(-8.67642 + 2.91112i) q^{44} +(-1.05669 - 1.83024i) q^{45} +(8.00965 - 6.54972i) q^{46} +7.32283i q^{47} +(-1.46588 + 3.46945i) q^{48} +(1.80186 - 3.12092i) q^{49} +(-1.32269 - 0.500493i) q^{50} +6.86127i q^{51} +(-0.476971 + 7.19531i) q^{52} +3.33709i q^{53} +(-2.40976 + 6.36846i) q^{54} +(-2.28794 + 3.96283i) q^{55} +(7.79555 + 4.90502i) q^{56} -6.11393i q^{57} +(3.44836 + 4.21699i) q^{58} +(-0.960988 - 1.66448i) q^{59} +(0.599037 + 1.78539i) q^{60} +(4.19212 - 2.42032i) q^{61} +(1.39355 - 3.68284i) q^{62} +(5.95989 + 3.44094i) q^{63} +(-4.51477 + 6.60431i) q^{64} +(2.20289 + 2.85434i) q^{65} +(6.01373 - 0.981968i) q^{66} +(-0.105635 + 0.182965i) q^{67} +(-2.89362 + 14.2834i) q^{68} +(-5.96601 + 3.44448i) q^{69} +(4.54496 - 0.742136i) q^{70} +(-5.29581 + 3.05754i) q^{71} +(-3.18339 + 5.05936i) q^{72} -7.65793i q^{73} +(5.63964 - 4.61170i) q^{74} +(0.815452 + 0.470802i) q^{75} +(2.57844 - 12.7277i) q^{76} -14.9006i q^{77} +(1.08547 - 4.67694i) q^{78} +14.7003 q^{79} +(0.494087 + 3.96937i) q^{80} +(-0.903270 + 1.56451i) q^{81} +(-3.58989 - 4.39008i) q^{82} -7.55031 q^{83} +(-4.59624 - 4.05959i) q^{84} +(3.64340 + 6.31055i) q^{85} +(-9.81832 + 1.60321i) q^{86} +(-1.81348 - 3.14104i) q^{87} +(12.9332 + 0.491972i) q^{88} +(-4.09878 - 2.36643i) q^{89} +(0.481651 + 2.94971i) q^{90} +(-10.8597 - 4.46278i) q^{91} +(-13.8724 + 4.65448i) q^{92} +(-1.31088 + 2.27051i) q^{93} +(3.66502 - 9.68583i) q^{94} +(-3.24655 - 5.62320i) q^{95} +(3.67534 - 3.85534i) q^{96} +(7.27269 - 4.19889i) q^{97} +(-3.94530 + 3.22618i) q^{98} +9.67060 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32269 0.500493i −0.935283 0.353902i
\(3\) 0.815452 + 0.470802i 0.470802 + 0.271817i 0.716575 0.697510i \(-0.245709\pi\)
−0.245774 + 0.969327i \(0.579042\pi\)
\(4\) 1.49901 + 1.32399i 0.749507 + 0.661996i
\(5\) 1.00000 0.447214
\(6\) −0.842957 1.03085i −0.344136 0.420844i
\(7\) −2.82007 + 1.62817i −1.06589 + 0.615390i −0.927055 0.374926i \(-0.877668\pi\)
−0.138832 + 0.990316i \(0.544335\pi\)
\(8\) −1.32008 2.50148i −0.466719 0.884405i
\(9\) −1.05669 1.83024i −0.352231 0.610081i
\(10\) −1.32269 0.500493i −0.418271 0.158270i
\(11\) −2.28794 + 3.96283i −0.689840 + 1.19484i 0.282049 + 0.959400i \(0.408986\pi\)
−0.971889 + 0.235439i \(0.924347\pi\)
\(12\) 0.599037 + 1.78539i 0.172927 + 0.515398i
\(13\) 2.20289 + 2.85434i 0.610971 + 0.791653i
\(14\) 4.54496 0.742136i 1.21469 0.198344i
\(15\) 0.815452 + 0.470802i 0.210549 + 0.121560i
\(16\) 0.494087 + 3.96937i 0.123522 + 0.992342i
\(17\) 3.64340 + 6.31055i 0.883654 + 1.53053i 0.847249 + 0.531196i \(0.178257\pi\)
0.0364049 + 0.999337i \(0.488409\pi\)
\(18\) 0.481651 + 2.94971i 0.113526 + 0.695253i
\(19\) −3.24655 5.62320i −0.744811 1.29005i −0.950283 0.311387i \(-0.899206\pi\)
0.205472 0.978663i \(-0.434127\pi\)
\(20\) 1.49901 + 1.32399i 0.335190 + 0.296054i
\(21\) −3.06618 −0.669095
\(22\) 5.00960 4.09650i 1.06805 0.873376i
\(23\) −3.65810 + 6.33601i −0.762766 + 1.32115i 0.178654 + 0.983912i \(0.442826\pi\)
−0.941420 + 0.337237i \(0.890507\pi\)
\(24\) 0.101236 2.66133i 0.0206646 0.543242i
\(25\) 1.00000 0.200000
\(26\) −1.48516 4.87794i −0.291263 0.956643i
\(27\) 4.81478i 0.926605i
\(28\) −6.38301 1.29310i −1.20627 0.244374i
\(29\) −3.33584 1.92595i −0.619450 0.357640i 0.157205 0.987566i \(-0.449752\pi\)
−0.776655 + 0.629926i \(0.783085\pi\)
\(30\) −0.842957 1.03085i −0.153902 0.188207i
\(31\) 2.78436i 0.500086i 0.968235 + 0.250043i \(0.0804448\pi\)
−0.968235 + 0.250043i \(0.919555\pi\)
\(32\) 1.33312 5.49753i 0.235664 0.971835i
\(33\) −3.73142 + 2.15433i −0.649556 + 0.375021i
\(34\) −1.66070 10.1704i −0.284808 1.74421i
\(35\) −2.82007 + 1.62817i −0.476679 + 0.275211i
\(36\) 0.839233 4.14261i 0.139872 0.690436i
\(37\) −2.57569 + 4.46122i −0.423440 + 0.733420i −0.996273 0.0862519i \(-0.972511\pi\)
0.572833 + 0.819672i \(0.305844\pi\)
\(38\) 1.47981 + 9.06262i 0.240058 + 1.47015i
\(39\) 0.452520 + 3.36471i 0.0724612 + 0.538784i
\(40\) −1.32008 2.50148i −0.208723 0.395518i
\(41\) 3.47276 + 2.00500i 0.542354 + 0.313128i 0.746032 0.665910i \(-0.231956\pi\)
−0.203679 + 0.979038i \(0.565290\pi\)
\(42\) 4.05560 + 1.53460i 0.625793 + 0.236794i
\(43\) 6.09210 3.51727i 0.929036 0.536379i 0.0425296 0.999095i \(-0.486458\pi\)
0.886507 + 0.462716i \(0.153125\pi\)
\(44\) −8.67642 + 2.91112i −1.30802 + 0.438868i
\(45\) −1.05669 1.83024i −0.157522 0.272837i
\(46\) 8.00965 6.54972i 1.18096 0.965704i
\(47\) 7.32283i 1.06814i 0.845439 + 0.534072i \(0.179339\pi\)
−0.845439 + 0.534072i \(0.820661\pi\)
\(48\) −1.46588 + 3.46945i −0.211582 + 0.500772i
\(49\) 1.80186 3.12092i 0.257409 0.445845i
\(50\) −1.32269 0.500493i −0.187057 0.0707803i
\(51\) 6.86127i 0.960770i
\(52\) −0.476971 + 7.19531i −0.0661439 + 0.997810i
\(53\) 3.33709i 0.458385i 0.973381 + 0.229192i \(0.0736085\pi\)
−0.973381 + 0.229192i \(0.926392\pi\)
\(54\) −2.40976 + 6.36846i −0.327927 + 0.866637i
\(55\) −2.28794 + 3.96283i −0.308506 + 0.534348i
\(56\) 7.79555 + 4.90502i 1.04172 + 0.655461i
\(57\) 6.11393i 0.809810i
\(58\) 3.44836 + 4.21699i 0.452792 + 0.553719i
\(59\) −0.960988 1.66448i −0.125110 0.216697i 0.796666 0.604420i \(-0.206595\pi\)
−0.921776 + 0.387723i \(0.873262\pi\)
\(60\) 0.599037 + 1.78539i 0.0773353 + 0.230493i
\(61\) 4.19212 2.42032i 0.536745 0.309890i −0.207014 0.978338i \(-0.566374\pi\)
0.743759 + 0.668448i \(0.233041\pi\)
\(62\) 1.39355 3.68284i 0.176981 0.467722i
\(63\) 5.95989 + 3.44094i 0.750875 + 0.433518i
\(64\) −4.51477 + 6.60431i −0.564346 + 0.825538i
\(65\) 2.20289 + 2.85434i 0.273235 + 0.354038i
\(66\) 6.01373 0.981968i 0.740239 0.120872i
\(67\) −0.105635 + 0.182965i −0.0129054 + 0.0223528i −0.872406 0.488782i \(-0.837441\pi\)
0.859501 + 0.511135i \(0.170775\pi\)
\(68\) −2.89362 + 14.2834i −0.350903 + 1.73212i
\(69\) −5.96601 + 3.44448i −0.718223 + 0.414666i
\(70\) 4.54496 0.742136i 0.543227 0.0887023i
\(71\) −5.29581 + 3.05754i −0.628497 + 0.362863i −0.780170 0.625568i \(-0.784867\pi\)
0.151673 + 0.988431i \(0.451534\pi\)
\(72\) −3.18339 + 5.05936i −0.375166 + 0.596251i
\(73\) 7.65793i 0.896293i −0.893960 0.448146i \(-0.852084\pi\)
0.893960 0.448146i \(-0.147916\pi\)
\(74\) 5.63964 4.61170i 0.655595 0.536099i
\(75\) 0.815452 + 0.470802i 0.0941603 + 0.0543635i
\(76\) 2.57844 12.7277i 0.295767 1.45996i
\(77\) 14.9006i 1.69808i
\(78\) 1.08547 4.67694i 0.122905 0.529560i
\(79\) 14.7003 1.65392 0.826959 0.562262i \(-0.190069\pi\)
0.826959 + 0.562262i \(0.190069\pi\)
\(80\) 0.494087 + 3.96937i 0.0552407 + 0.443789i
\(81\) −0.903270 + 1.56451i −0.100363 + 0.173834i
\(82\) −3.58989 4.39008i −0.396437 0.484803i
\(83\) −7.55031 −0.828754 −0.414377 0.910105i \(-0.636001\pi\)
−0.414377 + 0.910105i \(0.636001\pi\)
\(84\) −4.59624 4.05959i −0.501491 0.442938i
\(85\) 3.64340 + 6.31055i 0.395182 + 0.684475i
\(86\) −9.81832 + 1.60321i −1.05874 + 0.172879i
\(87\) −1.81348 3.14104i −0.194425 0.336755i
\(88\) 12.9332 + 0.491972i 1.37868 + 0.0524443i
\(89\) −4.09878 2.36643i −0.434470 0.250841i 0.266779 0.963758i \(-0.414041\pi\)
−0.701249 + 0.712916i \(0.747374\pi\)
\(90\) 0.481651 + 2.94971i 0.0507705 + 0.310927i
\(91\) −10.8597 4.46278i −1.13840 0.467826i
\(92\) −13.8724 + 4.65448i −1.44629 + 0.485263i
\(93\) −1.31088 + 2.27051i −0.135932 + 0.235441i
\(94\) 3.66502 9.68583i 0.378018 0.999017i
\(95\) −3.24655 5.62320i −0.333089 0.576928i
\(96\) 3.67534 3.85534i 0.375112 0.393484i
\(97\) 7.27269 4.19889i 0.738430 0.426333i −0.0830682 0.996544i \(-0.526472\pi\)
0.821498 + 0.570211i \(0.193139\pi\)
\(98\) −3.94530 + 3.22618i −0.398535 + 0.325894i
\(99\) 9.67060 0.971932
\(100\) 1.49901 + 1.32399i 0.149901 + 0.132399i
\(101\) 8.39604 + 4.84746i 0.835437 + 0.482340i 0.855711 0.517455i \(-0.173120\pi\)
−0.0202735 + 0.999794i \(0.506454\pi\)
\(102\) 3.43402 9.07533i 0.340018 0.898592i
\(103\) −9.65843 −0.951673 −0.475837 0.879534i \(-0.657855\pi\)
−0.475837 + 0.879534i \(0.657855\pi\)
\(104\) 4.23208 9.27844i 0.414990 0.909826i
\(105\) −3.06618 −0.299228
\(106\) 1.67019 4.41393i 0.162223 0.428719i
\(107\) 2.53186 + 1.46177i 0.244764 + 0.141314i 0.617364 0.786677i \(-0.288200\pi\)
−0.372601 + 0.927992i \(0.621534\pi\)
\(108\) 6.37473 7.21742i 0.613409 0.694497i
\(109\) −1.12321 −0.107584 −0.0537921 0.998552i \(-0.517131\pi\)
−0.0537921 + 0.998552i \(0.517131\pi\)
\(110\) 5.00960 4.09650i 0.477647 0.390586i
\(111\) −4.20070 + 2.42528i −0.398713 + 0.230197i
\(112\) −7.85616 10.3894i −0.742337 0.981709i
\(113\) 4.10521 + 7.11043i 0.386186 + 0.668893i 0.991933 0.126764i \(-0.0404591\pi\)
−0.605747 + 0.795657i \(0.707126\pi\)
\(114\) −3.05998 + 8.08683i −0.286593 + 0.757401i
\(115\) −3.65810 + 6.33601i −0.341119 + 0.590836i
\(116\) −2.45053 7.30365i −0.227526 0.678127i
\(117\) 2.89637 7.04798i 0.267770 0.651586i
\(118\) 0.438029 + 2.68256i 0.0403238 + 0.246949i
\(119\) −20.5493 11.8641i −1.88375 1.08758i
\(120\) 0.101236 2.66133i 0.00924150 0.242945i
\(121\) −4.96936 8.60718i −0.451760 0.782471i
\(122\) −6.75622 + 1.10321i −0.611679 + 0.0998797i
\(123\) 1.88791 + 3.26996i 0.170227 + 0.294842i
\(124\) −3.68647 + 4.17380i −0.331055 + 0.374818i
\(125\) 1.00000 0.0894427
\(126\) −6.16091 7.53418i −0.548858 0.671198i
\(127\) −2.26541 + 3.92381i −0.201023 + 0.348182i −0.948858 0.315702i \(-0.897760\pi\)
0.747835 + 0.663884i \(0.231093\pi\)
\(128\) 9.27704 6.47584i 0.819983 0.572389i
\(129\) 6.62375 0.583189
\(130\) −1.48516 4.87794i −0.130257 0.427824i
\(131\) 18.1375i 1.58468i −0.610078 0.792342i \(-0.708862\pi\)
0.610078 0.792342i \(-0.291138\pi\)
\(132\) −8.44577 1.71099i −0.735110 0.148923i
\(133\) 18.3110 + 10.5719i 1.58777 + 0.916698i
\(134\) 0.231295 0.189137i 0.0199808 0.0163389i
\(135\) 4.81478i 0.414390i
\(136\) 10.9761 17.4443i 0.941194 1.49584i
\(137\) 10.3515 5.97644i 0.884389 0.510602i 0.0122856 0.999925i \(-0.496089\pi\)
0.872103 + 0.489323i \(0.162756\pi\)
\(138\) 9.61511 1.57003i 0.818493 0.133650i
\(139\) 17.3034 9.99011i 1.46765 0.847350i 0.468310 0.883564i \(-0.344863\pi\)
0.999344 + 0.0362139i \(0.0115298\pi\)
\(140\) −6.38301 1.29310i −0.539463 0.109287i
\(141\) −3.44760 + 5.97142i −0.290340 + 0.502884i
\(142\) 8.53498 1.39366i 0.716240 0.116953i
\(143\) −16.3514 + 2.19910i −1.36737 + 0.183898i
\(144\) 6.74281 5.09870i 0.561901 0.424891i
\(145\) −3.33584 1.92595i −0.277026 0.159941i
\(146\) −3.83274 + 10.1291i −0.317200 + 0.838287i
\(147\) 2.93867 1.69664i 0.242377 0.139936i
\(148\) −9.76761 + 3.27724i −0.802893 + 0.269388i
\(149\) −6.07088 10.5151i −0.497346 0.861429i 0.502649 0.864491i \(-0.332359\pi\)
−0.999995 + 0.00306162i \(0.999025\pi\)
\(150\) −0.842957 1.03085i −0.0688272 0.0841687i
\(151\) 2.19357i 0.178510i 0.996009 + 0.0892550i \(0.0284486\pi\)
−0.996009 + 0.0892550i \(0.971551\pi\)
\(152\) −9.78058 + 15.5443i −0.793310 + 1.26081i
\(153\) 7.69990 13.3366i 0.622500 1.07820i
\(154\) −7.45765 + 19.7089i −0.600954 + 1.58819i
\(155\) 2.78436i 0.223645i
\(156\) −3.77651 + 5.64287i −0.302363 + 0.451792i
\(157\) 21.5797i 1.72225i −0.508395 0.861124i \(-0.669761\pi\)
0.508395 0.861124i \(-0.330239\pi\)
\(158\) −19.4440 7.35741i −1.54688 0.585324i
\(159\) −1.57111 + 2.72124i −0.124597 + 0.215808i
\(160\) 1.33312 5.49753i 0.105392 0.434618i
\(161\) 23.8240i 1.87759i
\(162\) 1.97777 1.61728i 0.155388 0.127065i
\(163\) 7.84916 + 13.5951i 0.614794 + 1.06485i 0.990421 + 0.138083i \(0.0440941\pi\)
−0.375627 + 0.926771i \(0.622573\pi\)
\(164\) 2.55111 + 7.60342i 0.199208 + 0.593728i
\(165\) −3.73142 + 2.15433i −0.290490 + 0.167715i
\(166\) 9.98672 + 3.77888i 0.775120 + 0.293298i
\(167\) 8.80939 + 5.08611i 0.681691 + 0.393575i 0.800492 0.599343i \(-0.204572\pi\)
−0.118801 + 0.992918i \(0.537905\pi\)
\(168\) 4.04760 + 7.66997i 0.312279 + 0.591751i
\(169\) −3.29457 + 12.5756i −0.253428 + 0.967354i
\(170\) −1.66070 10.1704i −0.127370 0.780033i
\(171\) −6.86121 + 11.8840i −0.524690 + 0.908790i
\(172\) 13.7890 + 2.79345i 1.05140 + 0.212998i
\(173\) −15.2799 + 8.82187i −1.16171 + 0.670714i −0.951714 0.306987i \(-0.900679\pi\)
−0.209998 + 0.977702i \(0.567346\pi\)
\(174\) 0.826603 + 5.06225i 0.0626646 + 0.383768i
\(175\) −2.82007 + 1.62817i −0.213177 + 0.123078i
\(176\) −16.8604 7.12370i −1.27090 0.536969i
\(177\) 1.80974i 0.136028i
\(178\) 4.23703 + 5.18146i 0.317579 + 0.388367i
\(179\) −1.09869 0.634330i −0.0821201 0.0474120i 0.458378 0.888758i \(-0.348431\pi\)
−0.540498 + 0.841345i \(0.681764\pi\)
\(180\) 0.839233 4.14261i 0.0625527 0.308772i
\(181\) 13.4062i 0.996473i −0.867041 0.498237i \(-0.833981\pi\)
0.867041 0.498237i \(-0.166019\pi\)
\(182\) 12.1304 + 11.3380i 0.899162 + 0.840432i
\(183\) 4.55796 0.336934
\(184\) 20.6784 + 0.786593i 1.52443 + 0.0579884i
\(185\) −2.57569 + 4.46122i −0.189368 + 0.327995i
\(186\) 2.87026 2.34710i 0.210458 0.172098i
\(187\) −33.3435 −2.43832
\(188\) −9.69537 + 10.9770i −0.707108 + 0.800582i
\(189\) 7.83927 + 13.5780i 0.570223 + 0.987655i
\(190\) 1.47981 + 9.06262i 0.107357 + 0.657472i
\(191\) 0.546815 + 0.947111i 0.0395661 + 0.0685306i 0.885130 0.465343i \(-0.154069\pi\)
−0.845564 + 0.533874i \(0.820736\pi\)
\(192\) −6.79090 + 3.25994i −0.490091 + 0.235266i
\(193\) −17.4409 10.0695i −1.25543 0.724821i −0.283244 0.959048i \(-0.591411\pi\)
−0.972182 + 0.234227i \(0.924744\pi\)
\(194\) −11.7210 + 1.91390i −0.841521 + 0.137410i
\(195\) 0.452520 + 3.36471i 0.0324056 + 0.240952i
\(196\) 6.83309 2.29265i 0.488078 0.163760i
\(197\) 6.49688 11.2529i 0.462884 0.801738i −0.536219 0.844079i \(-0.680148\pi\)
0.999103 + 0.0423403i \(0.0134814\pi\)
\(198\) −12.7912 4.84006i −0.909031 0.343968i
\(199\) −2.01275 3.48619i −0.142680 0.247130i 0.785825 0.618449i \(-0.212239\pi\)
−0.928505 + 0.371320i \(0.878905\pi\)
\(200\) −1.32008 2.50148i −0.0933439 0.176881i
\(201\) −0.172281 + 0.0994662i −0.0121517 + 0.00701581i
\(202\) −8.67924 10.6138i −0.610669 0.746787i
\(203\) 12.5431 0.880351
\(204\) −9.08427 + 10.2851i −0.636026 + 0.720104i
\(205\) 3.47276 + 2.00500i 0.242548 + 0.140035i
\(206\) 12.7751 + 4.83397i 0.890083 + 0.336799i
\(207\) 15.4619 1.07468
\(208\) −10.2415 + 10.1544i −0.710122 + 0.704079i
\(209\) 29.7117 2.05520
\(210\) 4.05560 + 1.53460i 0.279863 + 0.105897i
\(211\) 18.4537 + 10.6543i 1.27041 + 0.733469i 0.975064 0.221922i \(-0.0712332\pi\)
0.295342 + 0.955392i \(0.404566\pi\)
\(212\) −4.41828 + 5.00235i −0.303449 + 0.343563i
\(213\) −5.75797 −0.394530
\(214\) −2.61725 3.20064i −0.178912 0.218791i
\(215\) 6.09210 3.51727i 0.415478 0.239876i
\(216\) −12.0441 + 6.35590i −0.819494 + 0.432464i
\(217\) −4.53341 7.85209i −0.307748 0.533035i
\(218\) 1.48566 + 0.562159i 0.100622 + 0.0380742i
\(219\) 3.60537 6.24468i 0.243628 0.421976i
\(220\) −8.67642 + 2.91112i −0.584964 + 0.196268i
\(221\) −9.98649 + 24.3010i −0.671764 + 1.63466i
\(222\) 6.77005 1.10547i 0.454376 0.0741940i
\(223\) 8.44262 + 4.87435i 0.565359 + 0.326410i 0.755294 0.655386i \(-0.227494\pi\)
−0.189934 + 0.981797i \(0.560828\pi\)
\(224\) 5.19142 + 17.6739i 0.346866 + 1.18089i
\(225\) −1.05669 1.83024i −0.0704461 0.122016i
\(226\) −1.87120 11.4595i −0.124470 0.762276i
\(227\) 5.82595 + 10.0908i 0.386682 + 0.669753i 0.992001 0.126230i \(-0.0402878\pi\)
−0.605319 + 0.795983i \(0.706954\pi\)
\(228\) 8.09480 9.16487i 0.536091 0.606958i
\(229\) 21.6811 1.43273 0.716365 0.697726i \(-0.245805\pi\)
0.716365 + 0.697726i \(0.245805\pi\)
\(230\) 8.00965 6.54972i 0.528141 0.431876i
\(231\) 7.01523 12.1507i 0.461569 0.799460i
\(232\) −0.414133 + 10.8869i −0.0271891 + 0.714762i
\(233\) 16.1554 1.05838 0.529188 0.848505i \(-0.322497\pi\)
0.529188 + 0.848505i \(0.322497\pi\)
\(234\) −7.35847 + 7.87268i −0.481038 + 0.514653i
\(235\) 7.32283i 0.477689i
\(236\) 0.763224 3.76742i 0.0496817 0.245238i
\(237\) 11.9874 + 6.92095i 0.778667 + 0.449564i
\(238\) 21.2424 + 25.9773i 1.37694 + 1.68386i
\(239\) 0.979222i 0.0633406i 0.999498 + 0.0316703i \(0.0100827\pi\)
−0.999498 + 0.0316703i \(0.989917\pi\)
\(240\) −1.46588 + 3.46945i −0.0946221 + 0.223952i
\(241\) 9.26265 5.34779i 0.596660 0.344482i −0.171067 0.985259i \(-0.554721\pi\)
0.767726 + 0.640778i \(0.221388\pi\)
\(242\) 2.26509 + 13.8718i 0.145605 + 0.891710i
\(243\) −13.9823 + 8.07269i −0.896965 + 0.517863i
\(244\) 9.48852 + 1.92224i 0.607441 + 0.123059i
\(245\) 1.80186 3.12092i 0.115117 0.199388i
\(246\) −0.860530 5.27003i −0.0548654 0.336005i
\(247\) 8.89875 21.6541i 0.566214 1.37781i
\(248\) 6.96501 3.67558i 0.442279 0.233400i
\(249\) −6.15692 3.55470i −0.390179 0.225270i
\(250\) −1.32269 0.500493i −0.0836542 0.0316539i
\(251\) −1.41559 + 0.817291i −0.0893512 + 0.0515869i −0.544010 0.839079i \(-0.683095\pi\)
0.454659 + 0.890666i \(0.349761\pi\)
\(252\) 4.37817 + 13.0489i 0.275799 + 0.822002i
\(253\) −16.7390 28.9928i −1.05237 1.82276i
\(254\) 4.96028 4.05616i 0.311235 0.254506i
\(255\) 6.86127i 0.429669i
\(256\) −15.5118 + 3.92243i −0.969485 + 0.245152i
\(257\) −14.2913 + 24.7533i −0.891469 + 1.54407i −0.0533543 + 0.998576i \(0.516991\pi\)
−0.838115 + 0.545494i \(0.816342\pi\)
\(258\) −8.76117 3.31514i −0.545447 0.206392i
\(259\) 16.7746i 1.04232i
\(260\) −0.476971 + 7.19531i −0.0295805 + 0.446234i
\(261\) 8.14053i 0.503886i
\(262\) −9.07770 + 23.9903i −0.560822 + 1.48213i
\(263\) −0.592661 + 1.02652i −0.0365451 + 0.0632979i −0.883719 0.468017i \(-0.844969\pi\)
0.847174 + 0.531315i \(0.178302\pi\)
\(264\) 10.3148 + 6.49015i 0.634831 + 0.399441i
\(265\) 3.33709i 0.204996i
\(266\) −18.9286 23.1478i −1.16059 1.41928i
\(267\) −2.22824 3.85943i −0.136366 0.236193i
\(268\) −0.400593 + 0.134407i −0.0244701 + 0.00821024i
\(269\) −17.9663 + 10.3729i −1.09543 + 0.632444i −0.935016 0.354607i \(-0.884615\pi\)
−0.160410 + 0.987051i \(0.551281\pi\)
\(270\) −2.40976 + 6.36846i −0.146653 + 0.387572i
\(271\) −3.99411 2.30600i −0.242625 0.140079i 0.373758 0.927526i \(-0.378069\pi\)
−0.616383 + 0.787447i \(0.711402\pi\)
\(272\) −23.2487 + 17.5799i −1.40966 + 1.06594i
\(273\) −6.75444 8.75192i −0.408798 0.529691i
\(274\) −16.6830 + 2.72413i −1.00786 + 0.164570i
\(275\) −2.28794 + 3.96283i −0.137968 + 0.238968i
\(276\) −13.5036 2.73563i −0.812821 0.164666i
\(277\) 17.0409 9.83855i 1.02389 0.591141i 0.108659 0.994079i \(-0.465344\pi\)
0.915227 + 0.402938i \(0.132011\pi\)
\(278\) −27.8870 + 4.55360i −1.67255 + 0.273107i
\(279\) 5.09606 2.94221i 0.305093 0.176146i
\(280\) 7.79555 + 4.90502i 0.465873 + 0.293131i
\(281\) 22.9775i 1.37072i 0.728203 + 0.685361i \(0.240356\pi\)
−0.728203 + 0.685361i \(0.759644\pi\)
\(282\) 7.54876 6.17283i 0.449522 0.367587i
\(283\) −15.4338 8.91072i −0.917446 0.529688i −0.0346264 0.999400i \(-0.511024\pi\)
−0.882819 + 0.469713i \(0.844357\pi\)
\(284\) −11.9866 2.42832i −0.711276 0.144094i
\(285\) 6.11393i 0.362158i
\(286\) 22.7284 + 5.27501i 1.34396 + 0.311918i
\(287\) −13.0579 −0.770783
\(288\) −11.4705 + 3.36927i −0.675906 + 0.198536i
\(289\) −18.0487 + 31.2613i −1.06169 + 1.83890i
\(290\) 3.44836 + 4.21699i 0.202495 + 0.247630i
\(291\) 7.90738 0.463539
\(292\) 10.1390 11.4793i 0.593343 0.671778i
\(293\) 1.92052 + 3.32644i 0.112198 + 0.194333i 0.916656 0.399677i \(-0.130878\pi\)
−0.804458 + 0.594009i \(0.797544\pi\)
\(294\) −4.73610 + 0.773346i −0.276215 + 0.0451025i
\(295\) −0.960988 1.66448i −0.0559509 0.0969098i
\(296\) 14.5598 + 0.553845i 0.846269 + 0.0321916i
\(297\) 19.0802 + 11.0159i 1.10714 + 0.639209i
\(298\) 2.76717 + 16.9466i 0.160298 + 0.981691i
\(299\) −26.1435 + 3.51605i −1.51192 + 0.203339i
\(300\) 0.599037 + 1.78539i 0.0345854 + 0.103080i
\(301\) −11.4534 + 19.8379i −0.660165 + 1.14344i
\(302\) 1.09786 2.90141i 0.0631750 0.166957i
\(303\) 4.56438 + 7.90574i 0.262217 + 0.454173i
\(304\) 20.7165 15.6651i 1.18817 0.898456i
\(305\) 4.19212 2.42032i 0.240040 0.138587i
\(306\) −16.8594 + 13.7865i −0.963790 + 0.788119i
\(307\) 0.0398307 0.00227326 0.00113663 0.999999i \(-0.499638\pi\)
0.00113663 + 0.999999i \(0.499638\pi\)
\(308\) 19.7283 22.3362i 1.12412 1.27273i
\(309\) −7.87599 4.54720i −0.448049 0.258681i
\(310\) 1.39355 3.68284i 0.0791484 0.209172i
\(311\) 11.5568 0.655328 0.327664 0.944794i \(-0.393739\pi\)
0.327664 + 0.944794i \(0.393739\pi\)
\(312\) 7.81937 5.57365i 0.442685 0.315546i
\(313\) −15.1522 −0.856451 −0.428226 0.903672i \(-0.640861\pi\)
−0.428226 + 0.903672i \(0.640861\pi\)
\(314\) −10.8005 + 28.5432i −0.609506 + 1.61079i
\(315\) 5.95989 + 3.44094i 0.335802 + 0.193875i
\(316\) 22.0360 + 19.4631i 1.23962 + 1.09489i
\(317\) 21.4371 1.20403 0.602013 0.798486i \(-0.294365\pi\)
0.602013 + 0.798486i \(0.294365\pi\)
\(318\) 3.44005 2.81302i 0.192908 0.157747i
\(319\) 15.2644 8.81292i 0.854643 0.493429i
\(320\) −4.51477 + 6.60431i −0.252383 + 0.369192i
\(321\) 1.37640 + 2.38400i 0.0768234 + 0.133062i
\(322\) −11.9237 + 31.5117i −0.664484 + 1.75608i
\(323\) 23.6570 40.9751i 1.31631 2.27992i
\(324\) −3.42541 + 1.14930i −0.190301 + 0.0638499i
\(325\) 2.20289 + 2.85434i 0.122194 + 0.158331i
\(326\) −3.57773 21.9106i −0.198152 1.21352i
\(327\) −0.915926 0.528810i −0.0506508 0.0292433i
\(328\) 0.431131 11.3338i 0.0238052 0.625803i
\(329\) −11.9228 20.6509i −0.657325 1.13852i
\(330\) 6.01373 0.981968i 0.331045 0.0540556i
\(331\) 11.6860 + 20.2407i 0.642319 + 1.11253i 0.984914 + 0.173046i \(0.0553609\pi\)
−0.342595 + 0.939483i \(0.611306\pi\)
\(332\) −11.3180 9.99656i −0.621157 0.548632i
\(333\) 10.8868 0.596594
\(334\) −9.10653 11.1364i −0.498287 0.609355i
\(335\) −0.105635 + 0.182965i −0.00577146 + 0.00999645i
\(336\) −1.51496 12.1708i −0.0826478 0.663971i
\(337\) −32.2953 −1.75924 −0.879619 0.475680i \(-0.842202\pi\)
−0.879619 + 0.475680i \(0.842202\pi\)
\(338\) 10.6517 14.9847i 0.579375 0.815061i
\(339\) 7.73096i 0.419888i
\(340\) −2.89362 + 14.2834i −0.156928 + 0.774628i
\(341\) −11.0340 6.37046i −0.597522 0.344980i
\(342\) 15.0231 12.2848i 0.812356 0.664287i
\(343\) 11.0594i 0.597152i
\(344\) −16.8404 10.5962i −0.907976 0.571306i
\(345\) −5.96601 + 3.44448i −0.321199 + 0.185444i
\(346\) 24.6259 4.02110i 1.32390 0.216176i
\(347\) −4.10416 + 2.36954i −0.220323 + 0.127203i −0.606100 0.795389i \(-0.707267\pi\)
0.385777 + 0.922592i \(0.373933\pi\)
\(348\) 1.44028 7.10949i 0.0772071 0.381109i
\(349\) −11.1002 + 19.2260i −0.594177 + 1.02915i 0.399485 + 0.916740i \(0.369189\pi\)
−0.993662 + 0.112406i \(0.964144\pi\)
\(350\) 4.54496 0.742136i 0.242938 0.0396689i
\(351\) 13.7430 10.6064i 0.733549 0.566129i
\(352\) 18.7357 + 17.8609i 0.998615 + 0.951991i
\(353\) 17.2525 + 9.96076i 0.918260 + 0.530158i 0.883080 0.469223i \(-0.155466\pi\)
0.0351807 + 0.999381i \(0.488799\pi\)
\(354\) −0.905761 + 2.39372i −0.0481407 + 0.127225i
\(355\) −5.29581 + 3.05754i −0.281072 + 0.162277i
\(356\) −3.01099 8.97407i −0.159582 0.475625i
\(357\) −11.1713 19.3493i −0.591248 1.02407i
\(358\) 1.13575 + 1.38891i 0.0600263 + 0.0734061i
\(359\) 8.08438i 0.426677i 0.976978 + 0.213339i \(0.0684337\pi\)
−0.976978 + 0.213339i \(0.931566\pi\)
\(360\) −3.18339 + 5.05936i −0.167779 + 0.266652i
\(361\) −11.5802 + 20.0576i −0.609486 + 1.05566i
\(362\) −6.70969 + 17.7322i −0.352654 + 0.931984i
\(363\) 9.35833i 0.491185i
\(364\) −10.3701 21.0679i −0.543540 1.10426i
\(365\) 7.65793i 0.400834i
\(366\) −6.02877 2.28123i −0.315129 0.119242i
\(367\) 0.926465 1.60468i 0.0483611 0.0837638i −0.840832 0.541297i \(-0.817934\pi\)
0.889193 + 0.457533i \(0.151267\pi\)
\(368\) −26.9574 11.3898i −1.40525 0.593734i
\(369\) 8.47466i 0.441173i
\(370\) 5.63964 4.61170i 0.293191 0.239751i
\(371\) −5.43334 9.41083i −0.282085 0.488586i
\(372\) −4.97117 + 1.66793i −0.257743 + 0.0864784i
\(373\) −11.6966 + 6.75302i −0.605625 + 0.349658i −0.771251 0.636531i \(-0.780369\pi\)
0.165626 + 0.986189i \(0.447036\pi\)
\(374\) 44.1031 + 16.6882i 2.28052 + 0.862926i
\(375\) 0.815452 + 0.470802i 0.0421098 + 0.0243121i
\(376\) 18.3179 9.66673i 0.944673 0.498524i
\(377\) −1.85116 13.7643i −0.0953397 0.708897i
\(378\) −3.57322 21.8830i −0.183787 1.12554i
\(379\) 16.0577 27.8128i 0.824830 1.42865i −0.0772193 0.997014i \(-0.524604\pi\)
0.902049 0.431633i \(-0.142063\pi\)
\(380\) 2.57844 12.7277i 0.132271 0.652916i
\(381\) −3.69467 + 2.13312i −0.189284 + 0.109283i
\(382\) −0.249244 1.52641i −0.0127524 0.0780980i
\(383\) 31.7402 18.3252i 1.62185 0.936375i 0.635424 0.772163i \(-0.280825\pi\)
0.986425 0.164212i \(-0.0525082\pi\)
\(384\) 10.6138 0.913089i 0.541634 0.0465959i
\(385\) 14.9006i 0.759406i
\(386\) 18.0292 + 22.0479i 0.917663 + 1.12221i
\(387\) −12.8749 7.43335i −0.654470 0.377858i
\(388\) 16.4612 + 3.33479i 0.835689 + 0.169298i
\(389\) 19.7184i 0.999763i 0.866094 + 0.499881i \(0.166623\pi\)
−0.866094 + 0.499881i \(0.833377\pi\)
\(390\) 1.08547 4.67694i 0.0549647 0.236826i
\(391\) −53.3116 −2.69608
\(392\) −10.1855 0.387451i −0.514446 0.0195692i
\(393\) 8.53918 14.7903i 0.430745 0.746072i
\(394\) −14.2254 + 11.6325i −0.716664 + 0.586036i
\(395\) 14.7003 0.739655
\(396\) 14.4964 + 12.8038i 0.728470 + 0.643415i
\(397\) −5.90055 10.2200i −0.296140 0.512929i 0.679109 0.734037i \(-0.262366\pi\)
−0.975249 + 0.221108i \(0.929033\pi\)
\(398\) 0.917435 + 5.61852i 0.0459869 + 0.281631i
\(399\) 9.95451 + 17.2417i 0.498349 + 0.863165i
\(400\) 0.494087 + 3.96937i 0.0247044 + 0.198468i
\(401\) −15.0742 8.70308i −0.752769 0.434611i 0.0739247 0.997264i \(-0.476448\pi\)
−0.826693 + 0.562653i \(0.809781\pi\)
\(402\) 0.277656 0.0453378i 0.0138482 0.00226124i
\(403\) −7.94753 + 6.13364i −0.395894 + 0.305538i
\(404\) 6.16779 + 18.3827i 0.306859 + 0.914573i
\(405\) −0.903270 + 1.56451i −0.0448838 + 0.0777411i
\(406\) −16.5906 6.27771i −0.823377 0.311558i
\(407\) −11.7860 20.4140i −0.584213 1.01189i
\(408\) 17.1633 9.05744i 0.849710 0.448410i
\(409\) −5.92031 + 3.41809i −0.292740 + 0.169014i −0.639177 0.769060i \(-0.720725\pi\)
0.346437 + 0.938073i \(0.387392\pi\)
\(410\) −3.58989 4.39008i −0.177292 0.216811i
\(411\) 11.2549 0.555162
\(412\) −14.4781 12.7877i −0.713286 0.630004i
\(413\) 5.42011 + 3.12930i 0.266706 + 0.153983i
\(414\) −20.4513 7.73858i −1.00513 0.380330i
\(415\) −7.55031 −0.370630
\(416\) 18.6285 8.30527i 0.913339 0.407199i
\(417\) 18.8134 0.921298
\(418\) −39.2994 14.8705i −1.92220 0.727340i
\(419\) 19.7820 + 11.4211i 0.966412 + 0.557958i 0.898140 0.439709i \(-0.144918\pi\)
0.0682714 + 0.997667i \(0.478252\pi\)
\(420\) −4.59624 4.05959i −0.224274 0.198088i
\(421\) −30.1915 −1.47144 −0.735722 0.677283i \(-0.763157\pi\)
−0.735722 + 0.677283i \(0.763157\pi\)
\(422\) −19.0762 23.3282i −0.928613 1.13560i
\(423\) 13.4026 7.73797i 0.651655 0.376233i
\(424\) 8.34765 4.40523i 0.405398 0.213937i
\(425\) 3.64340 + 6.31055i 0.176731 + 0.306107i
\(426\) 7.61601 + 2.88182i 0.368997 + 0.139625i
\(427\) −7.88137 + 13.6509i −0.381406 + 0.660615i
\(428\) 1.85992 + 5.54337i 0.0899025 + 0.267949i
\(429\) −14.3691 5.90499i −0.693747 0.285096i
\(430\) −9.81832 + 1.60321i −0.473482 + 0.0773137i
\(431\) 6.22337 + 3.59306i 0.299769 + 0.173072i 0.642339 0.766421i \(-0.277964\pi\)
−0.342570 + 0.939492i \(0.611297\pi\)
\(432\) 19.1116 2.37892i 0.919508 0.114456i
\(433\) 17.2895 + 29.9463i 0.830882 + 1.43913i 0.897340 + 0.441340i \(0.145497\pi\)
−0.0664584 + 0.997789i \(0.521170\pi\)
\(434\) 2.06638 + 12.6548i 0.0991892 + 0.607451i
\(435\) −1.81348 3.14104i −0.0869497 0.150601i
\(436\) −1.68371 1.48712i −0.0806351 0.0712203i
\(437\) 47.5049 2.27247
\(438\) −7.89419 + 6.45531i −0.377199 + 0.308447i
\(439\) 1.44165 2.49701i 0.0688063 0.119176i −0.829570 0.558403i \(-0.811414\pi\)
0.898376 + 0.439227i \(0.144748\pi\)
\(440\) 12.9332 + 0.491972i 0.616566 + 0.0234538i
\(441\) −7.61605 −0.362669
\(442\) 25.3715 27.1444i 1.20680 1.29113i
\(443\) 1.83786i 0.0873193i −0.999046 0.0436596i \(-0.986098\pi\)
0.999046 0.0436596i \(-0.0139017\pi\)
\(444\) −9.50795 1.92617i −0.451228 0.0914121i
\(445\) −4.09878 2.36643i −0.194301 0.112180i
\(446\) −8.72738 10.6727i −0.413254 0.505368i
\(447\) 11.4327i 0.540750i
\(448\) 1.97904 25.9754i 0.0935010 1.22722i
\(449\) −9.68862 + 5.59373i −0.457234 + 0.263984i −0.710881 0.703313i \(-0.751703\pi\)
0.253646 + 0.967297i \(0.418370\pi\)
\(450\) 0.481651 + 2.94971i 0.0227053 + 0.139051i
\(451\) −15.8909 + 9.17464i −0.748275 + 0.432017i
\(452\) −3.26039 + 16.0939i −0.153356 + 0.756994i
\(453\) −1.03273 + 1.78875i −0.0485221 + 0.0840428i
\(454\) −2.65553 16.2629i −0.124630 0.763256i
\(455\) −10.8597 4.46278i −0.509108 0.209218i
\(456\) −15.2939 + 8.07089i −0.716201 + 0.377954i
\(457\) 16.7719 + 9.68325i 0.784555 + 0.452963i 0.838042 0.545605i \(-0.183700\pi\)
−0.0534869 + 0.998569i \(0.517034\pi\)
\(458\) −28.6774 10.8512i −1.34001 0.507046i
\(459\) 30.3839 17.5422i 1.41820 0.818798i
\(460\) −13.8724 + 4.65448i −0.646803 + 0.217016i
\(461\) 10.7162 + 18.5611i 0.499105 + 0.864476i 0.999999 0.00103265i \(-0.000328703\pi\)
−0.500894 + 0.865509i \(0.666995\pi\)
\(462\) −15.3603 + 12.5606i −0.714627 + 0.584371i
\(463\) 23.6913i 1.10103i 0.834825 + 0.550515i \(0.185569\pi\)
−0.834825 + 0.550515i \(0.814431\pi\)
\(464\) 5.99660 14.1928i 0.278385 0.658882i
\(465\) −1.31088 + 2.27051i −0.0607907 + 0.105293i
\(466\) −21.3686 8.08566i −0.989880 0.374561i
\(467\) 1.19692i 0.0553869i 0.999616 + 0.0276934i \(0.00881622\pi\)
−0.999616 + 0.0276934i \(0.991184\pi\)
\(468\) 13.6732 6.73025i 0.632043 0.311106i
\(469\) 0.687966i 0.0317673i
\(470\) 3.66502 9.68583i 0.169055 0.446774i
\(471\) 10.1598 17.5972i 0.468137 0.810837i
\(472\) −2.89507 + 4.60114i −0.133257 + 0.211785i
\(473\) 32.1893i 1.48006i
\(474\) −12.3918 15.1539i −0.569173 0.696041i
\(475\) −3.24655 5.62320i −0.148962 0.258010i
\(476\) −15.0956 44.9916i −0.691907 2.06219i
\(477\) 6.10769 3.52628i 0.279652 0.161457i
\(478\) 0.490093 1.29521i 0.0224163 0.0592413i
\(479\) 9.74703 + 5.62745i 0.445353 + 0.257125i 0.705866 0.708346i \(-0.250558\pi\)
−0.260513 + 0.965470i \(0.583892\pi\)
\(480\) 3.67534 3.85534i 0.167755 0.175971i
\(481\) −18.4078 + 2.47567i −0.839324 + 0.112881i
\(482\) −14.9281 + 2.43758i −0.679958 + 0.111029i
\(483\) 11.2164 19.4273i 0.510363 0.883974i
\(484\) 3.94670 19.4817i 0.179396 0.885531i
\(485\) 7.27269 4.19889i 0.330236 0.190662i
\(486\) 22.5346 3.67962i 1.02219 0.166911i
\(487\) −10.4861 + 6.05415i −0.475170 + 0.274340i −0.718401 0.695629i \(-0.755126\pi\)
0.243231 + 0.969968i \(0.421793\pi\)
\(488\) −11.5883 7.29146i −0.524578 0.330069i
\(489\) 14.7816i 0.668447i
\(490\) −3.94530 + 3.22618i −0.178230 + 0.145744i
\(491\) 2.03007 + 1.17206i 0.0916159 + 0.0528945i 0.545108 0.838366i \(-0.316489\pi\)
−0.453492 + 0.891260i \(0.649822\pi\)
\(492\) −1.49940 + 7.40130i −0.0675980 + 0.333676i
\(493\) 28.0680i 1.26412i
\(494\) −22.6080 + 24.1878i −1.01718 + 1.08826i
\(495\) 9.67060 0.434661
\(496\) −11.0522 + 1.37572i −0.496256 + 0.0617715i
\(497\) 9.95636 17.2449i 0.446604 0.773541i
\(498\) 6.36459 + 7.78326i 0.285204 + 0.348776i
\(499\) −0.0649069 −0.00290563 −0.00145282 0.999999i \(-0.500462\pi\)
−0.00145282 + 0.999999i \(0.500462\pi\)
\(500\) 1.49901 + 1.32399i 0.0670380 + 0.0592107i
\(501\) 4.78909 + 8.29495i 0.213961 + 0.370591i
\(502\) 2.28143 0.372530i 0.101825 0.0166268i
\(503\) −17.2819 29.9331i −0.770560 1.33465i −0.937256 0.348641i \(-0.886643\pi\)
0.166697 0.986008i \(-0.446690\pi\)
\(504\) 0.739899 19.4508i 0.0329577 0.866410i
\(505\) 8.39604 + 4.84746i 0.373619 + 0.215709i
\(506\) 7.62983 + 46.7263i 0.339187 + 2.07724i
\(507\) −8.60718 + 8.70372i −0.382258 + 0.386546i
\(508\) −8.59098 + 2.88246i −0.381163 + 0.127888i
\(509\) 4.66463 8.07937i 0.206756 0.358112i −0.743935 0.668252i \(-0.767043\pi\)
0.950691 + 0.310140i \(0.100376\pi\)
\(510\) 3.43402 9.07533i 0.152061 0.401862i
\(511\) 12.4684 + 21.5959i 0.551569 + 0.955346i
\(512\) 22.4804 + 2.57536i 0.993502 + 0.113816i
\(513\) −27.0745 + 15.6314i −1.19537 + 0.690145i
\(514\) 31.2919 25.5882i 1.38022 1.12865i
\(515\) −9.65843 −0.425601
\(516\) 9.92910 + 8.76980i 0.437104 + 0.386069i
\(517\) −29.0191 16.7542i −1.27626 0.736849i
\(518\) −8.39557 + 22.1876i −0.368880 + 0.974867i
\(519\) −16.6134 −0.729247
\(520\) 4.23208 9.27844i 0.185589 0.406887i
\(521\) 12.9021 0.565251 0.282626 0.959230i \(-0.408795\pi\)
0.282626 + 0.959230i \(0.408795\pi\)
\(522\) 4.07428 10.7674i 0.178326 0.471276i
\(523\) 6.38548 + 3.68666i 0.279218 + 0.161206i 0.633069 0.774095i \(-0.281795\pi\)
−0.353852 + 0.935302i \(0.615128\pi\)
\(524\) 24.0140 27.1884i 1.04905 1.18773i
\(525\) −3.06618 −0.133819
\(526\) 1.29767 1.06114i 0.0565812 0.0462681i
\(527\) −17.5708 + 10.1445i −0.765398 + 0.441903i
\(528\) −10.3950 13.7469i −0.452384 0.598258i
\(529\) −15.2634 26.4369i −0.663624 1.14943i
\(530\) 1.67019 4.41393i 0.0725484 0.191729i
\(531\) −2.03094 + 3.51768i −0.0881351 + 0.152654i
\(532\) 13.4514 + 40.0910i 0.583192 + 1.73817i
\(533\) 1.92714 + 14.3292i 0.0834738 + 0.620668i
\(534\) 1.01566 + 6.22004i 0.0439517 + 0.269167i
\(535\) 2.53186 + 1.46177i 0.109462 + 0.0631977i
\(536\) 0.597130 + 0.0227145i 0.0257921 + 0.000981116i
\(537\) −0.597287 1.03453i −0.0257748 0.0446433i
\(538\) 28.9554 4.72806i 1.24836 0.203841i
\(539\) 8.24511 + 14.2810i 0.355142 + 0.615124i
\(540\) 6.37473 7.21742i 0.274325 0.310588i
\(541\) 10.9267 0.469775 0.234888 0.972023i \(-0.424528\pi\)
0.234888 + 0.972023i \(0.424528\pi\)
\(542\) 4.12883 + 5.04914i 0.177348 + 0.216879i
\(543\) 6.31165 10.9321i 0.270859 0.469141i
\(544\) 39.5495 11.6170i 1.69567 0.498074i
\(545\) −1.12321 −0.0481131
\(546\) 4.55376 + 14.9566i 0.194883 + 0.640085i
\(547\) 37.9154i 1.62114i 0.585639 + 0.810572i \(0.300843\pi\)
−0.585639 + 0.810572i \(0.699157\pi\)
\(548\) 23.4298 + 4.74654i 1.00087 + 0.202762i
\(549\) −8.85955 5.11506i −0.378116 0.218306i
\(550\) 5.00960 4.09650i 0.213610 0.174675i
\(551\) 25.0108i 1.06550i
\(552\) 16.4919 + 10.3768i 0.701942 + 0.441668i
\(553\) −41.4560 + 23.9346i −1.76289 + 1.01780i
\(554\) −27.4639 + 4.48451i −1.16683 + 0.190529i
\(555\) −4.20070 + 2.42528i −0.178310 + 0.102947i
\(556\) 39.1649 + 7.93423i 1.66096 + 0.336486i
\(557\) −7.58932 + 13.1451i −0.321570 + 0.556975i −0.980812 0.194955i \(-0.937544\pi\)
0.659242 + 0.751931i \(0.270877\pi\)
\(558\) −8.21306 + 1.34109i −0.347686 + 0.0567729i
\(559\) 23.4597 + 9.64079i 0.992241 + 0.407762i
\(560\) −7.85616 10.3894i −0.331983 0.439034i
\(561\) −27.1901 15.6982i −1.14797 0.662778i
\(562\) 11.5001 30.3921i 0.485101 1.28201i
\(563\) −9.61390 + 5.55059i −0.405178 + 0.233929i −0.688716 0.725032i \(-0.741825\pi\)
0.283538 + 0.958961i \(0.408492\pi\)
\(564\) −13.0741 + 4.38664i −0.550520 + 0.184711i
\(565\) 4.10521 + 7.11043i 0.172707 + 0.299138i
\(566\) 15.9544 + 19.5106i 0.670614 + 0.820093i
\(567\) 5.88270i 0.247050i
\(568\) 14.6393 + 9.21114i 0.614249 + 0.386491i
\(569\) −2.01815 + 3.49553i −0.0846051 + 0.146540i −0.905223 0.424937i \(-0.860296\pi\)
0.820618 + 0.571477i \(0.193630\pi\)
\(570\) −3.05998 + 8.08683i −0.128168 + 0.338720i
\(571\) 12.7832i 0.534960i 0.963563 + 0.267480i \(0.0861909\pi\)
−0.963563 + 0.267480i \(0.913809\pi\)
\(572\) −27.4225 18.3526i −1.14659 0.767361i
\(573\) 1.02977i 0.0430191i
\(574\) 17.2715 + 6.53538i 0.720900 + 0.272781i
\(575\) −3.65810 + 6.33601i −0.152553 + 0.264230i
\(576\) 16.8582 + 1.28441i 0.702425 + 0.0535172i
\(577\) 25.9751i 1.08136i 0.841229 + 0.540679i \(0.181832\pi\)
−0.841229 + 0.540679i \(0.818168\pi\)
\(578\) 39.5188 32.3157i 1.64377 1.34416i
\(579\) −9.48150 16.4224i −0.394038 0.682493i
\(580\) −2.45053 7.30365i −0.101753 0.303268i
\(581\) 21.2924 12.2932i 0.883358 0.510007i
\(582\) −10.4590 3.95758i −0.433540 0.164047i
\(583\) −13.2243 7.63507i −0.547696 0.316212i
\(584\) −19.1561 + 10.1091i −0.792686 + 0.418317i
\(585\) 2.89637 7.04798i 0.119750 0.291398i
\(586\) −0.875393 5.36105i −0.0361622 0.221463i
\(587\) −14.5416 + 25.1867i −0.600194 + 1.03957i 0.392597 + 0.919711i \(0.371577\pi\)
−0.992791 + 0.119856i \(0.961757\pi\)
\(588\) 6.65144 + 1.34748i 0.274301 + 0.0555693i
\(589\) 15.6570 9.03958i 0.645136 0.372469i
\(590\) 0.438029 + 2.68256i 0.0180334 + 0.110439i
\(591\) 10.5958 6.11749i 0.435853 0.251640i
\(592\) −18.9808 8.01961i −0.780108 0.329604i
\(593\) 25.3253i 1.03998i −0.854171 0.519992i \(-0.825935\pi\)
0.854171 0.519992i \(-0.174065\pi\)
\(594\) −19.7237 24.1201i −0.809274 0.989661i
\(595\) −20.5493 11.8641i −0.842438 0.486382i
\(596\) 4.82155 23.8001i 0.197498 0.974888i
\(597\) 3.79043i 0.155132i
\(598\) 36.3395 + 8.43400i 1.48603 + 0.344892i
\(599\) 17.8764 0.730409 0.365205 0.930927i \(-0.380999\pi\)
0.365205 + 0.930927i \(0.380999\pi\)
\(600\) 0.101236 2.66133i 0.00413292 0.108648i
\(601\) −10.6079 + 18.3734i −0.432705 + 0.749467i −0.997105 0.0760342i \(-0.975774\pi\)
0.564400 + 0.825501i \(0.309108\pi\)
\(602\) 25.0781 20.5070i 1.02211 0.835805i
\(603\) 0.446494 0.0181827
\(604\) −2.90427 + 3.28819i −0.118173 + 0.133794i
\(605\) −4.96936 8.60718i −0.202033 0.349932i
\(606\) −2.08049 12.7413i −0.0845142 0.517579i
\(607\) 3.60796 + 6.24918i 0.146443 + 0.253646i 0.929910 0.367786i \(-0.119884\pi\)
−0.783468 + 0.621433i \(0.786551\pi\)
\(608\) −35.2417 + 10.3517i −1.42924 + 0.419815i
\(609\) 10.2283 + 5.90530i 0.414471 + 0.239295i
\(610\) −6.75622 + 1.10321i −0.273551 + 0.0446676i
\(611\) −20.9019 + 16.1314i −0.845600 + 0.652606i
\(612\) 29.1998 9.79717i 1.18033 0.396027i
\(613\) −6.41919 + 11.1184i −0.259269 + 0.449067i −0.966046 0.258369i \(-0.916815\pi\)
0.706777 + 0.707436i \(0.250148\pi\)
\(614\) −0.0526836 0.0199350i −0.00212614 0.000804510i
\(615\) 1.88791 + 3.26996i 0.0761280 + 0.131858i
\(616\) −37.2735 + 19.6700i −1.50179 + 0.792528i
\(617\) −15.5078 + 8.95345i −0.624322 + 0.360452i −0.778550 0.627583i \(-0.784044\pi\)
0.154228 + 0.988035i \(0.450711\pi\)
\(618\) 8.14164 + 9.95641i 0.327505 + 0.400506i
\(619\) −21.6358 −0.869618 −0.434809 0.900523i \(-0.643184\pi\)
−0.434809 + 0.900523i \(0.643184\pi\)
\(620\) −3.68647 + 4.17380i −0.148052 + 0.167624i
\(621\) 30.5065 + 17.6129i 1.22418 + 0.706782i
\(622\) −15.2861 5.78411i −0.612916 0.231922i
\(623\) 15.4118 0.617461
\(624\) −13.1322 + 3.45868i −0.525707 + 0.138458i
\(625\) 1.00000 0.0400000
\(626\) 20.0416 + 7.58355i 0.801024 + 0.303100i
\(627\) 24.2285 + 13.9883i 0.967593 + 0.558640i
\(628\) 28.5714 32.3483i 1.14012 1.29084i
\(629\) −37.5370 −1.49670
\(630\) −6.16091 7.53418i −0.245457 0.300169i
\(631\) 11.0070 6.35490i 0.438182 0.252985i −0.264644 0.964346i \(-0.585254\pi\)
0.702826 + 0.711361i \(0.251921\pi\)
\(632\) −19.4057 36.7726i −0.771916 1.46273i
\(633\) 10.0321 + 17.3761i 0.398739 + 0.690637i
\(634\) −28.3546 10.7291i −1.12610 0.426107i
\(635\) −2.26541 + 3.92381i −0.0899002 + 0.155712i
\(636\) −5.95801 + 1.99904i −0.236251 + 0.0792671i
\(637\) 12.8775 1.73189i 0.510224 0.0686202i
\(638\) −24.6009 + 4.01702i −0.973958 + 0.159035i
\(639\) 11.1921 + 6.46174i 0.442751 + 0.255623i
\(640\) 9.27704 6.47584i 0.366707 0.255980i
\(641\) 23.4415 + 40.6018i 0.925882 + 1.60367i 0.790137 + 0.612931i \(0.210009\pi\)
0.135745 + 0.990744i \(0.456657\pi\)
\(642\) −0.627380 3.84218i −0.0247607 0.151639i
\(643\) −4.08952 7.08325i −0.161275 0.279336i 0.774051 0.633123i \(-0.218227\pi\)
−0.935326 + 0.353787i \(0.884894\pi\)
\(644\) 31.5428 35.7125i 1.24296 1.40727i
\(645\) 6.62375 0.260810
\(646\) −51.7986 + 42.3572i −2.03799 + 1.66652i
\(647\) 0.875253 1.51598i 0.0344097 0.0595994i −0.848308 0.529504i \(-0.822378\pi\)
0.882717 + 0.469904i \(0.155712\pi\)
\(648\) 5.10597 + 0.194228i 0.200582 + 0.00763001i
\(649\) 8.79474 0.345224
\(650\) −1.48516 4.87794i −0.0582527 0.191329i
\(651\) 8.53734i 0.334605i
\(652\) −6.23387 + 30.7716i −0.244137 + 1.20511i
\(653\) −28.9507 16.7147i −1.13293 0.654096i −0.188258 0.982120i \(-0.560284\pi\)
−0.944669 + 0.328024i \(0.893617\pi\)
\(654\) 0.946820 + 1.15787i 0.0370236 + 0.0452761i
\(655\) 18.1375i 0.708692i
\(656\) −6.24273 + 14.7753i −0.243737 + 0.576878i
\(657\) −14.0159 + 8.09207i −0.546811 + 0.315702i
\(658\) 5.43454 + 33.2820i 0.211860 + 1.29747i
\(659\) −24.5902 + 14.1972i −0.957899 + 0.553043i −0.895526 0.445010i \(-0.853200\pi\)
−0.0623733 + 0.998053i \(0.519867\pi\)
\(660\) −8.44577 1.71099i −0.328751 0.0666002i
\(661\) −16.0451 + 27.7908i −0.624080 + 1.08094i 0.364638 + 0.931149i \(0.381193\pi\)
−0.988718 + 0.149789i \(0.952140\pi\)
\(662\) −5.32659 32.6209i −0.207024 1.26785i
\(663\) −19.5844 + 15.1146i −0.760596 + 0.587003i
\(664\) 9.96703 + 18.8869i 0.386796 + 0.732955i
\(665\) 18.3110 + 10.5719i 0.710071 + 0.409960i
\(666\) −14.3999 5.44878i −0.557984 0.211136i
\(667\) 24.4057 14.0906i 0.944991 0.545591i
\(668\) 6.47144 + 19.2877i 0.250388 + 0.746264i
\(669\) 4.58970 + 7.94959i 0.177448 + 0.307349i
\(670\) 0.231295 0.189137i 0.00893570 0.00730698i
\(671\) 22.1502i 0.855099i
\(672\) −4.08757 + 16.8564i −0.157681 + 0.650249i
\(673\) 22.3377 38.6901i 0.861056 1.49139i −0.00985491 0.999951i \(-0.503137\pi\)
0.870911 0.491441i \(-0.163530\pi\)
\(674\) 42.7166 + 16.1636i 1.64538 + 0.622597i
\(675\) 4.81478i 0.185321i
\(676\) −21.5886 + 14.4890i −0.830331 + 0.557270i
\(677\) 38.4184i 1.47654i −0.674506 0.738270i \(-0.735643\pi\)
0.674506 0.738270i \(-0.264357\pi\)
\(678\) 3.86929 10.2257i 0.148599 0.392714i
\(679\) −13.6730 + 23.6823i −0.524722 + 0.908844i
\(680\) 10.9761 17.4443i 0.420915 0.668959i
\(681\) 10.9715i 0.420428i
\(682\) 11.4061 + 13.9485i 0.436763 + 0.534117i
\(683\) −11.6110 20.1108i −0.444281 0.769518i 0.553721 0.832703i \(-0.313208\pi\)
−0.998002 + 0.0631848i \(0.979874\pi\)
\(684\) −26.0193 + 8.73005i −0.994875 + 0.333802i
\(685\) 10.3515 5.97644i 0.395511 0.228348i
\(686\) −5.53516 + 14.6282i −0.211333 + 0.558506i
\(687\) 17.6799 + 10.2075i 0.674531 + 0.389441i
\(688\) 16.9714 + 22.4439i 0.647028 + 0.855667i
\(689\) −9.52521 + 7.35124i −0.362881 + 0.280060i
\(690\) 9.61511 1.57003i 0.366041 0.0597700i
\(691\) 24.0825 41.7121i 0.916140 1.58680i 0.110917 0.993830i \(-0.464621\pi\)
0.805223 0.592972i \(-0.202045\pi\)
\(692\) −34.5849 7.00640i −1.31472 0.266343i
\(693\) −27.2718 + 15.7454i −1.03597 + 0.598117i
\(694\) 6.61446 1.08006i 0.251081 0.0409985i
\(695\) 17.3034 9.99011i 0.656355 0.378947i
\(696\) −5.46329 + 8.68280i −0.207086 + 0.329121i
\(697\) 29.2200i 1.10679i
\(698\) 24.3045 19.8745i 0.919940 0.752262i
\(699\) 13.1740 + 7.60599i 0.498285 + 0.287685i
\(700\) −6.38301 1.29310i −0.241255 0.0488747i
\(701\) 40.5311i 1.53084i −0.643533 0.765419i \(-0.722532\pi\)
0.643533 0.765419i \(-0.277468\pi\)
\(702\) −23.4862 + 7.15071i −0.886430 + 0.269886i
\(703\) 33.4484 1.26153
\(704\) −15.8422 33.0015i −0.597076 1.24379i
\(705\) −3.44760 + 5.97142i −0.129844 + 0.224897i
\(706\) −17.8345 21.8098i −0.671209 0.820821i
\(707\) −31.5699 −1.18731
\(708\) 2.39608 2.71282i 0.0900502 0.101954i
\(709\) 18.1735 + 31.4774i 0.682520 + 1.18216i 0.974209 + 0.225646i \(0.0724491\pi\)
−0.291690 + 0.956513i \(0.594218\pi\)
\(710\) 8.53498 1.39366i 0.320312 0.0523030i
\(711\) −15.5337 26.9052i −0.582560 1.00902i
\(712\) −0.508849 + 13.3769i −0.0190699 + 0.501320i
\(713\) −17.6417 10.1855i −0.660688 0.381449i
\(714\) 5.09200 + 31.1842i 0.190563 + 1.16704i
\(715\) −16.3514 + 2.19910i −0.611507 + 0.0822417i
\(716\) −0.807106 2.40553i −0.0301630 0.0898988i
\(717\) −0.461019 + 0.798509i −0.0172171 + 0.0298208i
\(718\) 4.04617 10.6931i 0.151002 0.399064i
\(719\) −21.8623 37.8667i −0.815327 1.41219i −0.909093 0.416594i \(-0.863224\pi\)
0.0937658 0.995594i \(-0.470110\pi\)
\(720\) 6.74281 5.09870i 0.251290 0.190017i
\(721\) 27.2374 15.7255i 1.01438 0.585650i
\(722\) 25.3557 20.7341i 0.943642 0.771643i
\(723\) 10.0710 0.374544
\(724\) 17.7497 20.0960i 0.659662 0.746864i
\(725\) −3.33584 1.92595i −0.123890 0.0715279i
\(726\) −4.68377 + 12.3782i −0.173831 + 0.459397i
\(727\) −4.55677 −0.169001 −0.0845005 0.996423i \(-0.526929\pi\)
−0.0845005 + 0.996423i \(0.526929\pi\)
\(728\) 3.17209 + 33.0564i 0.117565 + 1.22515i
\(729\) −9.78292 −0.362330
\(730\) −3.83274 + 10.1291i −0.141856 + 0.374893i
\(731\) 44.3919 + 25.6297i 1.64189 + 0.947947i
\(732\) 6.83245 + 6.03471i 0.252535 + 0.223049i
\(733\) −12.6156 −0.465968 −0.232984 0.972481i \(-0.574849\pi\)
−0.232984 + 0.972481i \(0.574849\pi\)
\(734\) −2.02856 + 1.65881i −0.0748754 + 0.0612278i
\(735\) 2.93867 1.69664i 0.108394 0.0625815i
\(736\) 29.9557 + 28.5571i 1.10418 + 1.05263i
\(737\) −0.483373 0.837227i −0.0178053 0.0308397i
\(738\) −4.24150 + 11.2093i −0.156132 + 0.412621i
\(739\) 16.5996 28.7514i 0.610626 1.05764i −0.380509 0.924777i \(-0.624251\pi\)
0.991135 0.132858i \(-0.0424156\pi\)
\(740\) −9.76761 + 3.27724i −0.359065 + 0.120474i
\(741\) 17.4513 13.4683i 0.641088 0.494771i
\(742\) 2.47658 + 15.1670i 0.0909180 + 0.556796i
\(743\) −11.7877 6.80565i −0.432450 0.249675i 0.267940 0.963436i \(-0.413657\pi\)
−0.700390 + 0.713760i \(0.746991\pi\)
\(744\) 7.41011 + 0.281876i 0.271668 + 0.0103341i
\(745\) −6.07088 10.5151i −0.222420 0.385243i
\(746\) 18.8508 3.07810i 0.690175 0.112697i
\(747\) 7.97835 + 13.8189i 0.291913 + 0.505607i
\(748\) −49.9824 44.1466i −1.82754 1.61416i
\(749\) −9.52001 −0.347854
\(750\) −0.842957 1.03085i −0.0307805 0.0376414i
\(751\) 1.60795 2.78505i 0.0586748 0.101628i −0.835196 0.549952i \(-0.814646\pi\)
0.893871 + 0.448325i \(0.147979\pi\)
\(752\) −29.0670 + 3.61812i −1.05996 + 0.131939i
\(753\) −1.53913 −0.0560889
\(754\) −4.44041 + 19.1324i −0.161710 + 0.696760i
\(755\) 2.19357i 0.0798321i
\(756\) −6.22601 + 30.7328i −0.226438 + 1.11774i
\(757\) −18.8023 10.8555i −0.683381 0.394550i 0.117746 0.993044i \(-0.462433\pi\)
−0.801128 + 0.598493i \(0.795766\pi\)
\(758\) −35.1595 + 28.7509i −1.27705 + 1.04428i
\(759\) 31.5230i 1.14421i
\(760\) −9.78058 + 15.5443i −0.354779 + 0.563850i
\(761\) 9.68269 5.59031i 0.350997 0.202648i −0.314127 0.949381i \(-0.601712\pi\)
0.665124 + 0.746733i \(0.268378\pi\)
\(762\) 5.95452 0.972299i 0.215709 0.0352227i
\(763\) 3.16754 1.82878i 0.114672 0.0662062i
\(764\) −0.434285 + 2.14371i −0.0157119 + 0.0775568i
\(765\) 7.69990 13.3366i 0.278390 0.482186i
\(766\) −51.1541 + 8.35283i −1.84827 + 0.301800i
\(767\) 2.63405 6.40965i 0.0951101 0.231439i
\(768\) −14.4958 4.10441i −0.523072 0.148105i
\(769\) 17.5967 + 10.1595i 0.634553 + 0.366360i 0.782513 0.622634i \(-0.213937\pi\)