Properties

Label 520.2.ca.b.381.23
Level $520$
Weight $2$
Character 520.381
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 381.23
Character \(\chi\) \(=\) 520.381
Dual form 520.2.ca.b.101.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.23752 - 0.684499i) q^{2} +(-1.48693 - 0.858477i) q^{3} +(1.06292 - 1.69417i) q^{4} +1.00000 q^{5} +(-2.42773 - 0.0445847i) q^{6} +(-3.27445 + 1.89050i) q^{7} +(0.155734 - 2.82414i) q^{8} +(-0.0260346 - 0.0450933i) q^{9} +O(q^{10})\) \(q+(1.23752 - 0.684499i) q^{2} +(-1.48693 - 0.858477i) q^{3} +(1.06292 - 1.69417i) q^{4} +1.00000 q^{5} +(-2.42773 - 0.0445847i) q^{6} +(-3.27445 + 1.89050i) q^{7} +(0.155734 - 2.82414i) q^{8} +(-0.0260346 - 0.0450933i) q^{9} +(1.23752 - 0.684499i) q^{10} +(1.16530 - 2.01837i) q^{11} +(-3.03489 + 1.60660i) q^{12} +(-0.0528676 - 3.60516i) q^{13} +(-2.75815 + 4.58090i) q^{14} +(-1.48693 - 0.858477i) q^{15} +(-1.74040 - 3.60153i) q^{16} +(-3.14614 - 5.44928i) q^{17} +(-0.0630847 - 0.0379832i) q^{18} +(-0.665809 - 1.15321i) q^{19} +(1.06292 - 1.69417i) q^{20} +6.49182 q^{21} +(0.0605196 - 3.29542i) q^{22} +(-2.99275 + 5.18359i) q^{23} +(-2.65602 + 4.06559i) q^{24} +1.00000 q^{25} +(-2.53316 - 4.42528i) q^{26} +5.24026i q^{27} +(-0.277656 + 7.55692i) q^{28} +(1.31297 + 0.758042i) q^{29} +(-2.42773 - 0.0445847i) q^{30} +0.175867i q^{31} +(-4.61902 - 3.26567i) q^{32} +(-3.46544 + 2.00077i) q^{33} +(-7.62345 - 4.59007i) q^{34} +(-3.27445 + 1.89050i) q^{35} +(-0.104068 - 0.00382366i) q^{36} +(2.04154 - 3.53606i) q^{37} +(-1.61333 - 0.971383i) q^{38} +(-3.01634 + 5.40600i) q^{39} +(0.155734 - 2.82414i) q^{40} +(10.9364 + 6.31412i) q^{41} +(8.03377 - 4.44364i) q^{42} +(7.71694 - 4.45538i) q^{43} +(-2.18082 - 4.11958i) q^{44} +(-0.0260346 - 0.0450933i) q^{45} +(-0.155427 + 8.46334i) q^{46} +3.15054i q^{47} +(-0.503993 + 6.84930i) q^{48} +(3.64801 - 6.31854i) q^{49} +(1.23752 - 0.684499i) q^{50} +10.8036i q^{51} +(-6.16394 - 3.74244i) q^{52} -0.254973i q^{53} +(3.58696 + 6.48494i) q^{54} +(1.16530 - 2.01837i) q^{55} +(4.82910 + 9.54191i) q^{56} +2.28633i q^{57} +(2.14371 + 0.0393686i) q^{58} +(-5.61545 - 9.72625i) q^{59} +(-3.03489 + 1.60660i) q^{60} +(0.168400 - 0.0972260i) q^{61} +(0.120381 + 0.217640i) q^{62} +(0.170498 + 0.0984370i) q^{63} +(-7.95149 - 0.879627i) q^{64} +(-0.0528676 - 3.60516i) q^{65} +(-2.91903 + 4.84809i) q^{66} +(2.63154 - 4.55797i) q^{67} +(-12.5761 - 0.462069i) q^{68} +(8.89998 - 5.13841i) q^{69} +(-2.75815 + 4.58090i) q^{70} +(11.0198 - 6.36229i) q^{71} +(-0.131404 + 0.0665027i) q^{72} -1.93736i q^{73} +(0.106027 - 5.77339i) q^{74} +(-1.48693 - 0.858477i) q^{75} +(-2.66144 - 0.0977864i) q^{76} +8.81205i q^{77} +(-0.0323869 + 8.75472i) q^{78} +6.68977 q^{79} +(-1.74040 - 3.60153i) q^{80} +(4.42054 - 7.65660i) q^{81} +(17.8560 + 0.327921i) q^{82} -6.27137 q^{83} +(6.90029 - 10.9982i) q^{84} +(-3.14614 - 5.44928i) q^{85} +(6.50018 - 10.7959i) q^{86} +(-1.30152 - 2.25431i) q^{87} +(-5.51866 - 3.60531i) q^{88} +(-9.69902 - 5.59973i) q^{89} +(-0.0630847 - 0.0379832i) q^{90} +(6.98869 + 11.7050i) q^{91} +(5.60080 + 10.5800i) q^{92} +(0.150978 - 0.261502i) q^{93} +(2.15654 + 3.89886i) q^{94} +(-0.665809 - 1.15321i) q^{95} +(4.06464 + 8.82114i) q^{96} +(-10.4194 + 6.01565i) q^{97} +(0.189458 - 10.3164i) q^{98} -0.121353 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23752 0.684499i 0.875060 0.484014i
\(3\) −1.48693 0.858477i −0.858477 0.495642i 0.00502500 0.999987i \(-0.498400\pi\)
−0.863502 + 0.504345i \(0.831734\pi\)
\(4\) 1.06292 1.69417i 0.531461 0.847083i
\(5\) 1.00000 0.447214
\(6\) −2.42773 0.0445847i −0.991117 0.0182016i
\(7\) −3.27445 + 1.89050i −1.23763 + 0.714543i −0.968608 0.248592i \(-0.920032\pi\)
−0.269017 + 0.963135i \(0.586699\pi\)
\(8\) 0.155734 2.82414i 0.0550602 0.998483i
\(9\) −0.0260346 0.0450933i −0.00867820 0.0150311i
\(10\) 1.23752 0.684499i 0.391339 0.216458i
\(11\) 1.16530 2.01837i 0.351352 0.608560i −0.635134 0.772402i \(-0.719055\pi\)
0.986487 + 0.163842i \(0.0523886\pi\)
\(12\) −3.03489 + 1.60660i −0.876097 + 0.463787i
\(13\) −0.0528676 3.60516i −0.0146628 0.999892i
\(14\) −2.75815 + 4.58090i −0.737148 + 1.22430i
\(15\) −1.48693 0.858477i −0.383923 0.221658i
\(16\) −1.74040 3.60153i −0.435099 0.900383i
\(17\) −3.14614 5.44928i −0.763052 1.32164i −0.941270 0.337654i \(-0.890367\pi\)
0.178219 0.983991i \(-0.442967\pi\)
\(18\) −0.0630847 0.0379832i −0.0148692 0.00895273i
\(19\) −0.665809 1.15321i −0.152747 0.264566i 0.779489 0.626415i \(-0.215479\pi\)
−0.932236 + 0.361850i \(0.882145\pi\)
\(20\) 1.06292 1.69417i 0.237677 0.378827i
\(21\) 6.49182 1.41663
\(22\) 0.0605196 3.29542i 0.0129028 0.702586i
\(23\) −2.99275 + 5.18359i −0.624031 + 1.08085i 0.364697 + 0.931126i \(0.381173\pi\)
−0.988727 + 0.149727i \(0.952161\pi\)
\(24\) −2.65602 + 4.06559i −0.542158 + 0.829885i
\(25\) 1.00000 0.200000
\(26\) −2.53316 4.42528i −0.496793 0.867869i
\(27\) 5.24026i 1.00849i
\(28\) −0.277656 + 7.55692i −0.0524720 + 1.42812i
\(29\) 1.31297 + 0.758042i 0.243812 + 0.140765i 0.616928 0.787020i \(-0.288377\pi\)
−0.373116 + 0.927785i \(0.621710\pi\)
\(30\) −2.42773 0.0445847i −0.443241 0.00814001i
\(31\) 0.175867i 0.0315867i 0.999875 + 0.0157934i \(0.00502739\pi\)
−0.999875 + 0.0157934i \(0.994973\pi\)
\(32\) −4.61902 3.26567i −0.816536 0.577295i
\(33\) −3.46544 + 2.00077i −0.603256 + 0.348290i
\(34\) −7.62345 4.59007i −1.30741 0.787191i
\(35\) −3.27445 + 1.89050i −0.553483 + 0.319553i
\(36\) −0.104068 0.00382366i −0.0173447 0.000637277i
\(37\) 2.04154 3.53606i 0.335628 0.581325i −0.647977 0.761660i \(-0.724385\pi\)
0.983605 + 0.180335i \(0.0577182\pi\)
\(38\) −1.61333 0.971383i −0.261716 0.157579i
\(39\) −3.01634 + 5.40600i −0.483001 + 0.865652i
\(40\) 0.155734 2.82414i 0.0246237 0.446535i
\(41\) 10.9364 + 6.31412i 1.70797 + 0.986100i 0.937065 + 0.349155i \(0.113531\pi\)
0.770910 + 0.636944i \(0.219802\pi\)
\(42\) 8.03377 4.44364i 1.23964 0.685669i
\(43\) 7.71694 4.45538i 1.17682 0.679439i 0.221545 0.975150i \(-0.428890\pi\)
0.955277 + 0.295712i \(0.0955567\pi\)
\(44\) −2.18082 4.11958i −0.328771 0.621050i
\(45\) −0.0260346 0.0450933i −0.00388101 0.00672211i
\(46\) −0.155427 + 8.46334i −0.0229165 + 1.24785i
\(47\) 3.15054i 0.459553i 0.973243 + 0.229776i \(0.0737995\pi\)
−0.973243 + 0.229776i \(0.926200\pi\)
\(48\) −0.503993 + 6.84930i −0.0727451 + 0.988611i
\(49\) 3.64801 6.31854i 0.521144 0.902648i
\(50\) 1.23752 0.684499i 0.175012 0.0968028i
\(51\) 10.8036i 1.51280i
\(52\) −6.16394 3.74244i −0.854785 0.518983i
\(53\) 0.254973i 0.0350232i −0.999847 0.0175116i \(-0.994426\pi\)
0.999847 0.0175116i \(-0.00557440\pi\)
\(54\) 3.58696 + 6.48494i 0.488123 + 0.882489i
\(55\) 1.16530 2.01837i 0.157130 0.272156i
\(56\) 4.82910 + 9.54191i 0.645315 + 1.27509i
\(57\) 2.28633i 0.302831i
\(58\) 2.14371 + 0.0393686i 0.281482 + 0.00516936i
\(59\) −5.61545 9.72625i −0.731070 1.26625i −0.956426 0.291974i \(-0.905688\pi\)
0.225357 0.974276i \(-0.427645\pi\)
\(60\) −3.03489 + 1.60660i −0.391802 + 0.207412i
\(61\) 0.168400 0.0972260i 0.0215615 0.0124485i −0.489181 0.872183i \(-0.662704\pi\)
0.510742 + 0.859734i \(0.329371\pi\)
\(62\) 0.120381 + 0.217640i 0.0152884 + 0.0276403i
\(63\) 0.170498 + 0.0984370i 0.0214807 + 0.0124019i
\(64\) −7.95149 0.879627i −0.993937 0.109953i
\(65\) −0.0528676 3.60516i −0.00655741 0.447166i
\(66\) −2.91903 + 4.84809i −0.359308 + 0.596759i
\(67\) 2.63154 4.55797i 0.321494 0.556844i −0.659302 0.751878i \(-0.729148\pi\)
0.980797 + 0.195034i \(0.0624816\pi\)
\(68\) −12.5761 0.462069i −1.52507 0.0560342i
\(69\) 8.89998 5.13841i 1.07143 0.618592i
\(70\) −2.75815 + 4.58090i −0.329662 + 0.547522i
\(71\) 11.0198 6.36229i 1.30781 0.755064i 0.326080 0.945342i \(-0.394272\pi\)
0.981730 + 0.190278i \(0.0609389\pi\)
\(72\) −0.131404 + 0.0665027i −0.0154861 + 0.00783742i
\(73\) 1.93736i 0.226751i −0.993552 0.113376i \(-0.963834\pi\)
0.993552 0.113376i \(-0.0361663\pi\)
\(74\) 0.106027 5.77339i 0.0123254 0.671143i
\(75\) −1.48693 0.858477i −0.171695 0.0991284i
\(76\) −2.66144 0.0977864i −0.305288 0.0112169i
\(77\) 8.81205i 1.00423i
\(78\) −0.0323869 + 8.75472i −0.00366710 + 0.991277i
\(79\) 6.68977 0.752657 0.376329 0.926486i \(-0.377186\pi\)
0.376329 + 0.926486i \(0.377186\pi\)
\(80\) −1.74040 3.60153i −0.194582 0.402663i
\(81\) 4.42054 7.65660i 0.491171 0.850733i
\(82\) 17.8560 + 0.327921i 1.97187 + 0.0362129i
\(83\) −6.27137 −0.688372 −0.344186 0.938901i \(-0.611845\pi\)
−0.344186 + 0.938901i \(0.611845\pi\)
\(84\) 6.90029 10.9982i 0.752884 1.20000i
\(85\) −3.14614 5.44928i −0.341247 0.591057i
\(86\) 6.50018 10.7959i 0.700932 1.16415i
\(87\) −1.30152 2.25431i −0.139538 0.241687i
\(88\) −5.51866 3.60531i −0.588291 0.384327i
\(89\) −9.69902 5.59973i −1.02809 0.593570i −0.111656 0.993747i \(-0.535615\pi\)
−0.916438 + 0.400177i \(0.868949\pi\)
\(90\) −0.0630847 0.0379832i −0.00664971 0.00400378i
\(91\) 6.98869 + 11.7050i 0.732614 + 1.22702i
\(92\) 5.60080 + 10.5800i 0.583924 + 1.10304i
\(93\) 0.150978 0.261502i 0.0156557 0.0271165i
\(94\) 2.15654 + 3.89886i 0.222430 + 0.402136i
\(95\) −0.665809 1.15321i −0.0683106 0.118317i
\(96\) 4.06464 + 8.82114i 0.414845 + 0.900304i
\(97\) −10.4194 + 6.01565i −1.05793 + 0.610797i −0.924859 0.380310i \(-0.875817\pi\)
−0.133072 + 0.991106i \(0.542484\pi\)
\(98\) 0.189458 10.3164i 0.0191382 1.04211i
\(99\) −0.121353 −0.0121964
\(100\) 1.06292 1.69417i 0.106292 0.169417i
\(101\) 14.5244 + 8.38564i 1.44523 + 0.834403i 0.998192 0.0601130i \(-0.0191461\pi\)
0.447036 + 0.894516i \(0.352479\pi\)
\(102\) 7.39503 + 13.3697i 0.732217 + 1.32379i
\(103\) 12.0728 1.18956 0.594782 0.803887i \(-0.297238\pi\)
0.594782 + 0.803887i \(0.297238\pi\)
\(104\) −10.1897 0.412141i −0.999183 0.0404137i
\(105\) 6.49182 0.633536
\(106\) −0.174529 0.315534i −0.0169517 0.0306474i
\(107\) 1.30443 + 0.753114i 0.126104 + 0.0728063i 0.561725 0.827324i \(-0.310138\pi\)
−0.435621 + 0.900130i \(0.643471\pi\)
\(108\) 8.87787 + 5.56999i 0.854274 + 0.535972i
\(109\) 9.53492 0.913280 0.456640 0.889652i \(-0.349053\pi\)
0.456640 + 0.889652i \(0.349053\pi\)
\(110\) 0.0605196 3.29542i 0.00577032 0.314206i
\(111\) −6.07125 + 3.50524i −0.576258 + 0.332702i
\(112\) 12.5075 + 8.50280i 1.18185 + 0.803440i
\(113\) 6.25763 + 10.8385i 0.588669 + 1.01960i 0.994407 + 0.105615i \(0.0336810\pi\)
−0.405739 + 0.913989i \(0.632986\pi\)
\(114\) 1.56499 + 2.82938i 0.146575 + 0.264996i
\(115\) −2.99275 + 5.18359i −0.279075 + 0.483372i
\(116\) 2.67983 1.41865i 0.248816 0.131718i
\(117\) −0.161192 + 0.0962430i −0.0149022 + 0.00889767i
\(118\) −13.6069 8.19268i −1.25261 0.754197i
\(119\) 20.6038 + 11.8956i 1.88874 + 1.09047i
\(120\) −2.65602 + 4.06559i −0.242460 + 0.371136i
\(121\) 2.78413 + 4.82226i 0.253103 + 0.438387i
\(122\) 0.141848 0.235589i 0.0128423 0.0213292i
\(123\) −10.8411 18.7773i −0.977505 1.69309i
\(124\) 0.297949 + 0.186933i 0.0267566 + 0.0167871i
\(125\) 1.00000 0.0894427
\(126\) 0.278375 + 0.00511229i 0.0247996 + 0.000455439i
\(127\) −7.06335 + 12.2341i −0.626771 + 1.08560i 0.361424 + 0.932401i \(0.382291\pi\)
−0.988195 + 0.153198i \(0.951043\pi\)
\(128\) −10.4423 + 4.35423i −0.922974 + 0.384863i
\(129\) −15.2994 −1.34703
\(130\) −2.53316 4.42528i −0.222173 0.388123i
\(131\) 20.5359i 1.79423i −0.441794 0.897117i \(-0.645658\pi\)
0.441794 0.897117i \(-0.354342\pi\)
\(132\) −0.293851 + 7.99770i −0.0255764 + 0.696110i
\(133\) 4.36031 + 2.51743i 0.378087 + 0.218289i
\(134\) 0.136668 7.44188i 0.0118063 0.642880i
\(135\) 5.24026i 0.451010i
\(136\) −15.8795 + 8.03650i −1.36165 + 0.689124i
\(137\) 12.9467 7.47477i 1.10611 0.638613i 0.168290 0.985737i \(-0.446175\pi\)
0.937819 + 0.347125i \(0.112842\pi\)
\(138\) 7.49669 12.4509i 0.638161 1.05989i
\(139\) −10.5767 + 6.10645i −0.897102 + 0.517942i −0.876259 0.481841i \(-0.839968\pi\)
−0.0208432 + 0.999783i \(0.506635\pi\)
\(140\) −0.277656 + 7.55692i −0.0234662 + 0.638676i
\(141\) 2.70466 4.68461i 0.227774 0.394516i
\(142\) 9.28227 15.4165i 0.778951 1.29373i
\(143\) −7.33815 4.09441i −0.613647 0.342391i
\(144\) −0.117094 + 0.172245i −0.00975785 + 0.0143537i
\(145\) 1.31297 + 0.758042i 0.109036 + 0.0629520i
\(146\) −1.32612 2.39753i −0.109751 0.198421i
\(147\) −10.8486 + 6.26346i −0.894781 + 0.516602i
\(148\) −3.82067 7.21727i −0.314057 0.593256i
\(149\) 5.01036 + 8.67820i 0.410465 + 0.710945i 0.994941 0.100466i \(-0.0320332\pi\)
−0.584476 + 0.811411i \(0.698700\pi\)
\(150\) −2.42773 0.0445847i −0.198223 0.00364032i
\(151\) 8.71512i 0.709226i 0.935013 + 0.354613i \(0.115387\pi\)
−0.935013 + 0.354613i \(0.884613\pi\)
\(152\) −3.36053 + 1.70074i −0.272575 + 0.137948i
\(153\) −0.163817 + 0.283740i −0.0132438 + 0.0229390i
\(154\) 6.03184 + 10.9051i 0.486059 + 0.878758i
\(155\) 0.175867i 0.0141260i
\(156\) 5.95252 + 10.8563i 0.476583 + 0.869202i
\(157\) 6.14509i 0.490432i −0.969469 0.245216i \(-0.921141\pi\)
0.969469 0.245216i \(-0.0788588\pi\)
\(158\) 8.27873 4.57914i 0.658621 0.364297i
\(159\) −0.218888 + 0.379125i −0.0173590 + 0.0300666i
\(160\) −4.61902 3.26567i −0.365166 0.258174i
\(161\) 22.6312i 1.78359i
\(162\) 0.229579 12.5011i 0.0180374 0.982177i
\(163\) −0.384950 0.666754i −0.0301516 0.0522242i 0.850556 0.525885i \(-0.176266\pi\)
−0.880707 + 0.473661i \(0.842932\pi\)
\(164\) 22.3217 11.8166i 1.74303 0.922723i
\(165\) −3.46544 + 2.00077i −0.269784 + 0.155760i
\(166\) −7.76096 + 4.29275i −0.602367 + 0.333182i
\(167\) −13.5832 7.84229i −1.05110 0.606854i −0.128145 0.991755i \(-0.540902\pi\)
−0.922958 + 0.384901i \(0.874236\pi\)
\(168\) 1.01100 18.3338i 0.0780000 1.41448i
\(169\) −12.9944 + 0.381192i −0.999570 + 0.0293225i
\(170\) −7.62345 4.59007i −0.584692 0.352042i
\(171\) −0.0346681 + 0.0600470i −0.00265114 + 0.00459191i
\(172\) 0.654355 17.8095i 0.0498941 1.35796i
\(173\) −18.1984 + 10.5068i −1.38360 + 0.798821i −0.992584 0.121564i \(-0.961209\pi\)
−0.391014 + 0.920385i \(0.627876\pi\)
\(174\) −3.15373 1.89886i −0.239084 0.143952i
\(175\) −3.27445 + 1.89050i −0.247525 + 0.142909i
\(176\) −9.29730 0.684124i −0.700810 0.0515678i
\(177\) 19.2829i 1.44940i
\(178\) −15.8358 0.290820i −1.18694 0.0217979i
\(179\) −9.05923 5.23035i −0.677119 0.390935i 0.121650 0.992573i \(-0.461182\pi\)
−0.798769 + 0.601638i \(0.794515\pi\)
\(180\) −0.104068 0.00382366i −0.00775678 0.000284999i
\(181\) 7.70297i 0.572557i 0.958146 + 0.286279i \(0.0924183\pi\)
−0.958146 + 0.286279i \(0.907582\pi\)
\(182\) 16.6607 + 9.70142i 1.23497 + 0.719117i
\(183\) −0.333865 −0.0246800
\(184\) 14.1731 + 9.25918i 1.04485 + 0.682596i
\(185\) 2.04154 3.53606i 0.150097 0.259976i
\(186\) 0.00784099 0.426959i 0.000574930 0.0313061i
\(187\) −14.6649 −1.07240
\(188\) 5.33753 + 3.34877i 0.389279 + 0.244234i
\(189\) −9.90674 17.1590i −0.720609 1.24813i
\(190\) −1.61333 0.971383i −0.117043 0.0704715i
\(191\) −9.37985 16.2464i −0.678702 1.17555i −0.975372 0.220566i \(-0.929209\pi\)
0.296670 0.954980i \(-0.404124\pi\)
\(192\) 11.0681 + 8.13411i 0.798774 + 0.587029i
\(193\) −3.47863 2.00839i −0.250397 0.144567i 0.369549 0.929211i \(-0.379512\pi\)
−0.619946 + 0.784644i \(0.712846\pi\)
\(194\) −8.77655 + 14.5766i −0.630119 + 1.04654i
\(195\) −3.01634 + 5.40600i −0.216005 + 0.387131i
\(196\) −6.82710 12.8964i −0.487650 0.921175i
\(197\) 1.39166 2.41042i 0.0991513 0.171735i −0.812182 0.583404i \(-0.801721\pi\)
0.911334 + 0.411669i \(0.135054\pi\)
\(198\) −0.150177 + 0.0830660i −0.0106726 + 0.00590324i
\(199\) −6.10093 10.5671i −0.432483 0.749083i 0.564603 0.825362i \(-0.309029\pi\)
−0.997086 + 0.0762796i \(0.975696\pi\)
\(200\) 0.155734 2.82414i 0.0110120 0.199697i
\(201\) −7.82582 + 4.51824i −0.551991 + 0.318692i
\(202\) 23.7142 + 0.435505i 1.66852 + 0.0306420i
\(203\) −5.73233 −0.402331
\(204\) 18.3030 + 11.4833i 1.28147 + 0.803995i
\(205\) 10.9364 + 6.31412i 0.763830 + 0.440997i
\(206\) 14.9403 8.26380i 1.04094 0.575766i
\(207\) 0.311660 0.0216619
\(208\) −12.8921 + 6.46481i −0.893906 + 0.448254i
\(209\) −3.10348 −0.214672
\(210\) 8.03377 4.44364i 0.554382 0.306641i
\(211\) 7.42770 + 4.28838i 0.511344 + 0.295224i 0.733386 0.679813i \(-0.237939\pi\)
−0.222042 + 0.975037i \(0.571272\pi\)
\(212\) −0.431966 0.271016i −0.0296675 0.0186135i
\(213\) −21.8475 −1.49697
\(214\) 2.12977 + 0.0391127i 0.145588 + 0.00267369i
\(215\) 7.71694 4.45538i 0.526291 0.303854i
\(216\) 14.7992 + 0.816086i 1.00696 + 0.0555276i
\(217\) −0.332478 0.575869i −0.0225701 0.0390925i
\(218\) 11.7997 6.52664i 0.799175 0.442040i
\(219\) −1.66318 + 2.88071i −0.112387 + 0.194661i
\(220\) −2.18082 4.11958i −0.147031 0.277742i
\(221\) −19.4792 + 11.6305i −1.31031 + 0.782349i
\(222\) −5.11397 + 8.49358i −0.343227 + 0.570051i
\(223\) 9.18226 + 5.30138i 0.614889 + 0.355007i 0.774877 0.632113i \(-0.217812\pi\)
−0.159987 + 0.987119i \(0.551145\pi\)
\(224\) 21.2985 + 1.96100i 1.42307 + 0.131025i
\(225\) −0.0260346 0.0450933i −0.00173564 0.00300622i
\(226\) 15.1629 + 9.12958i 1.00862 + 0.607291i
\(227\) −4.65600 8.06442i −0.309029 0.535255i 0.669121 0.743154i \(-0.266671\pi\)
−0.978150 + 0.207899i \(0.933337\pi\)
\(228\) 3.87342 + 2.43019i 0.256523 + 0.160943i
\(229\) 21.7598 1.43793 0.718964 0.695048i \(-0.244617\pi\)
0.718964 + 0.695048i \(0.244617\pi\)
\(230\) −0.155427 + 8.46334i −0.0102486 + 0.558056i
\(231\) 7.56494 13.1029i 0.497736 0.862105i
\(232\) 2.34529 3.58995i 0.153976 0.235692i
\(233\) −3.12022 −0.204413 −0.102206 0.994763i \(-0.532590\pi\)
−0.102206 + 0.994763i \(0.532590\pi\)
\(234\) −0.133601 + 0.229439i −0.00873375 + 0.0149989i
\(235\) 3.15054i 0.205518i
\(236\) −22.4467 0.824733i −1.46115 0.0536856i
\(237\) −9.94718 5.74301i −0.646139 0.373049i
\(238\) 33.6401 + 0.617793i 2.18057 + 0.0400456i
\(239\) 4.36798i 0.282541i 0.989971 + 0.141271i \(0.0451188\pi\)
−0.989971 + 0.141271i \(0.954881\pi\)
\(240\) −0.503993 + 6.84930i −0.0325326 + 0.442120i
\(241\) −11.2602 + 6.50109i −0.725334 + 0.418772i −0.816713 0.577044i \(-0.804206\pi\)
0.0913788 + 0.995816i \(0.470873\pi\)
\(242\) 6.74626 + 4.06192i 0.433666 + 0.261110i
\(243\) 0.468570 0.270529i 0.0300588 0.0173544i
\(244\) 0.0142794 0.388642i 0.000914148 0.0248802i
\(245\) 3.64801 6.31854i 0.233063 0.403677i
\(246\) −26.2691 15.8166i −1.67485 1.00843i
\(247\) −4.12233 + 2.46132i −0.262298 + 0.156610i
\(248\) 0.496674 + 0.0273885i 0.0315388 + 0.00173917i
\(249\) 9.32506 + 5.38383i 0.590952 + 0.341186i
\(250\) 1.23752 0.684499i 0.0782678 0.0432915i
\(251\) −13.3490 + 7.70706i −0.842583 + 0.486465i −0.858141 0.513414i \(-0.828381\pi\)
0.0155586 + 0.999879i \(0.495047\pi\)
\(252\) 0.347995 0.184221i 0.0219216 0.0116048i
\(253\) 6.97492 + 12.0809i 0.438509 + 0.759520i
\(254\) −0.366833 + 19.9748i −0.0230171 + 1.25333i
\(255\) 10.8036i 0.676546i
\(256\) −9.94205 + 12.5362i −0.621378 + 0.783511i
\(257\) 7.95763 13.7830i 0.496383 0.859761i −0.503608 0.863932i \(-0.667994\pi\)
0.999991 + 0.00417130i \(0.00132777\pi\)
\(258\) −18.9333 + 10.4724i −1.17874 + 0.651983i
\(259\) 15.4382i 0.959283i
\(260\) −6.16394 3.74244i −0.382271 0.232096i
\(261\) 0.0789413i 0.00488634i
\(262\) −14.0568 25.4137i −0.868434 1.57006i
\(263\) 8.32944 14.4270i 0.513615 0.889607i −0.486260 0.873814i \(-0.661639\pi\)
0.999875 0.0157934i \(-0.00502740\pi\)
\(264\) 5.11077 + 10.0985i 0.314546 + 0.621518i
\(265\) 0.254973i 0.0156628i
\(266\) 7.11916 + 0.130742i 0.436504 + 0.00801629i
\(267\) 9.61448 + 16.6528i 0.588397 + 1.01913i
\(268\) −4.92483 9.30304i −0.300832 0.568273i
\(269\) −17.4012 + 10.0466i −1.06097 + 0.612550i −0.925700 0.378259i \(-0.876523\pi\)
−0.135268 + 0.990809i \(0.543189\pi\)
\(270\) 3.58696 + 6.48494i 0.218295 + 0.394661i
\(271\) 1.29637 + 0.748460i 0.0787489 + 0.0454657i 0.538857 0.842397i \(-0.318856\pi\)
−0.460108 + 0.887863i \(0.652189\pi\)
\(272\) −14.1502 + 20.8148i −0.857983 + 1.26208i
\(273\) −0.343206 23.4041i −0.0207718 1.41648i
\(274\) 10.9053 18.1122i 0.658815 1.09420i
\(275\) 1.16530 2.01837i 0.0702705 0.121712i
\(276\) 0.754670 20.5398i 0.0454258 1.23635i
\(277\) 22.6270 13.0637i 1.35953 0.784923i 0.369967 0.929045i \(-0.379369\pi\)
0.989560 + 0.144122i \(0.0460356\pi\)
\(278\) −8.90901 + 14.7966i −0.534327 + 0.887440i
\(279\) 0.00793043 0.00457864i 0.000474783 0.000274116i
\(280\) 4.82910 + 9.54191i 0.288594 + 0.570238i
\(281\) 9.22327i 0.550214i −0.961414 0.275107i \(-0.911287\pi\)
0.961414 0.275107i \(-0.0887133\pi\)
\(282\) 0.140466 7.64865i 0.00836461 0.455471i
\(283\) 25.5241 + 14.7364i 1.51725 + 0.875987i 0.999794 + 0.0202784i \(0.00645525\pi\)
0.517459 + 0.855708i \(0.326878\pi\)
\(284\) 0.934420 25.4320i 0.0554476 1.50911i
\(285\) 2.28633i 0.135430i
\(286\) −11.8837 0.0439623i −0.702700 0.00259954i
\(287\) −47.7475 −2.81844
\(288\) −0.0270055 + 0.293307i −0.00159131 + 0.0172833i
\(289\) −11.2964 + 19.5660i −0.664496 + 1.15094i
\(290\) 2.14371 + 0.0393686i 0.125883 + 0.00231181i
\(291\) 20.6572 1.21095
\(292\) −3.28221 2.05926i −0.192077 0.120509i
\(293\) −10.4257 18.0578i −0.609074 1.05495i −0.991393 0.130916i \(-0.958208\pi\)
0.382320 0.924030i \(-0.375125\pi\)
\(294\) −9.13809 + 15.1771i −0.532944 + 0.885144i
\(295\) −5.61545 9.72625i −0.326944 0.566284i
\(296\) −9.66838 6.31629i −0.561963 0.367127i
\(297\) 10.5768 + 6.10650i 0.613726 + 0.354335i
\(298\) 12.1406 + 7.30987i 0.703289 + 0.423449i
\(299\) 18.8459 + 10.5153i 1.08989 + 0.608115i
\(300\) −3.03489 + 1.60660i −0.175219 + 0.0927574i
\(301\) −16.8458 + 29.1778i −0.970977 + 1.68178i
\(302\) 5.96549 + 10.7852i 0.343275 + 0.620616i
\(303\) −14.3978 24.9377i −0.827130 1.43263i
\(304\) −2.99457 + 4.40498i −0.171750 + 0.252643i
\(305\) 0.168400 0.0972260i 0.00964258 0.00556715i
\(306\) −0.00850778 + 0.463267i −0.000486358 + 0.0264832i
\(307\) 4.20382 0.239925 0.119962 0.992778i \(-0.461723\pi\)
0.119962 + 0.992778i \(0.461723\pi\)
\(308\) 14.9291 + 9.36652i 0.850663 + 0.533707i
\(309\) −17.9513 10.3642i −1.02121 0.589598i
\(310\) 0.120381 + 0.217640i 0.00683719 + 0.0123611i
\(311\) 29.6280 1.68005 0.840025 0.542548i \(-0.182540\pi\)
0.840025 + 0.542548i \(0.182540\pi\)
\(312\) 14.7975 + 9.36045i 0.837745 + 0.529931i
\(313\) −4.15520 −0.234866 −0.117433 0.993081i \(-0.537467\pi\)
−0.117433 + 0.993081i \(0.537467\pi\)
\(314\) −4.20631 7.60469i −0.237376 0.429157i
\(315\) 0.170498 + 0.0984370i 0.00960647 + 0.00554630i
\(316\) 7.11070 11.3336i 0.400008 0.637563i
\(317\) −5.79226 −0.325326 −0.162663 0.986682i \(-0.552008\pi\)
−0.162663 + 0.986682i \(0.552008\pi\)
\(318\) −0.0113679 + 0.619005i −0.000637479 + 0.0347121i
\(319\) 3.06001 1.76670i 0.171328 0.0989162i
\(320\) −7.95149 0.879627i −0.444502 0.0491727i
\(321\) −1.29306 2.23965i −0.0721717 0.125005i
\(322\) −15.4910 28.0066i −0.863282 1.56075i
\(323\) −4.18946 + 7.25636i −0.233108 + 0.403755i
\(324\) −8.27286 15.6275i −0.459603 0.868194i
\(325\) −0.0528676 3.60516i −0.00293256 0.199978i
\(326\) −0.932777 0.561624i −0.0516617 0.0311055i
\(327\) −14.1777 8.18551i −0.784029 0.452660i
\(328\) 19.5351 29.9025i 1.07865 1.65109i
\(329\) −5.95610 10.3163i −0.328370 0.568754i
\(330\) −2.91903 + 4.84809i −0.160687 + 0.266879i
\(331\) 3.64686 + 6.31655i 0.200450 + 0.347189i 0.948673 0.316257i \(-0.102426\pi\)
−0.748224 + 0.663447i \(0.769093\pi\)
\(332\) −6.66597 + 10.6247i −0.365843 + 0.583108i
\(333\) −0.212603 −0.0116506
\(334\) −22.1776 0.407286i −1.21350 0.0222857i
\(335\) 2.63154 4.55797i 0.143777 0.249028i
\(336\) −11.2983 23.3805i −0.616374 1.27551i
\(337\) 26.1617 1.42512 0.712560 0.701612i \(-0.247536\pi\)
0.712560 + 0.701612i \(0.247536\pi\)
\(338\) −15.8199 + 9.36640i −0.860491 + 0.509465i
\(339\) 21.4881i 1.16708i
\(340\) −12.5761 0.462069i −0.682034 0.0250592i
\(341\) 0.354965 + 0.204939i 0.0192224 + 0.0110981i
\(342\) −0.00180048 + 0.0980398i −9.73587e−5 + 0.00530138i
\(343\) 1.11925i 0.0604340i
\(344\) −11.3808 22.4875i −0.613612 1.21245i
\(345\) 8.89998 5.13841i 0.479159 0.276643i
\(346\) −15.3290 + 25.4592i −0.824091 + 1.36870i
\(347\) 18.2571 10.5407i 0.980092 0.565856i 0.0777939 0.996969i \(-0.475212\pi\)
0.902298 + 0.431113i \(0.141879\pi\)
\(348\) −5.20258 0.191153i −0.278888 0.0102469i
\(349\) −9.12646 + 15.8075i −0.488528 + 0.846155i −0.999913 0.0131965i \(-0.995799\pi\)
0.511385 + 0.859352i \(0.329133\pi\)
\(350\) −2.75815 + 4.58090i −0.147430 + 0.244859i
\(351\) 18.8920 0.277040i 1.00838 0.0147873i
\(352\) −11.9739 + 5.51737i −0.638211 + 0.294077i
\(353\) −19.4403 11.2239i −1.03470 0.597387i −0.116376 0.993205i \(-0.537128\pi\)
−0.918329 + 0.395818i \(0.870461\pi\)
\(354\) 13.1992 + 23.8631i 0.701528 + 1.26831i
\(355\) 11.0198 6.36229i 0.584870 0.337675i
\(356\) −19.7962 + 10.4797i −1.04920 + 0.555421i
\(357\) −20.4242 35.3757i −1.08096 1.87228i
\(358\) −14.7912 0.271636i −0.781738 0.0143564i
\(359\) 19.0335i 1.00455i 0.864708 + 0.502274i \(0.167503\pi\)
−0.864708 + 0.502274i \(0.832497\pi\)
\(360\) −0.131404 + 0.0665027i −0.00692560 + 0.00350500i
\(361\) 8.61340 14.9188i 0.453337 0.785202i
\(362\) 5.27268 + 9.53260i 0.277126 + 0.501022i
\(363\) 9.56046i 0.501794i
\(364\) 27.2586 + 0.601478i 1.42874 + 0.0315260i
\(365\) 1.93736i 0.101406i
\(366\) −0.413165 + 0.228530i −0.0215965 + 0.0119455i
\(367\) −7.04526 + 12.2027i −0.367759 + 0.636978i −0.989215 0.146471i \(-0.953208\pi\)
0.621455 + 0.783449i \(0.286542\pi\)
\(368\) 23.8774 + 1.75698i 1.24470 + 0.0915887i
\(369\) 0.657542i 0.0342303i
\(370\) 0.106027 5.77339i 0.00551207 0.300144i
\(371\) 0.482027 + 0.834895i 0.0250256 + 0.0433456i
\(372\) −0.282549 0.533738i −0.0146495 0.0276730i
\(373\) −16.4594 + 9.50281i −0.852233 + 0.492037i −0.861404 0.507921i \(-0.830414\pi\)
0.00917073 + 0.999958i \(0.497081\pi\)
\(374\) −18.1481 + 10.0381i −0.938415 + 0.519057i
\(375\) −1.48693 0.858477i −0.0767845 0.0443316i
\(376\) 8.89754 + 0.490645i 0.458856 + 0.0253031i
\(377\) 2.66345 4.77354i 0.137175 0.245850i
\(378\) −24.0051 14.4535i −1.23469 0.743405i
\(379\) 1.13250 1.96155i 0.0581727 0.100758i −0.835472 0.549532i \(-0.814806\pi\)
0.893645 + 0.448774i \(0.148139\pi\)
\(380\) −2.66144 0.0977864i −0.136529 0.00501634i
\(381\) 21.0054 12.1275i 1.07614 0.621308i
\(382\) −22.7284 13.6847i −1.16289 0.700173i
\(383\) −17.5544 + 10.1350i −0.896986 + 0.517875i −0.876221 0.481909i \(-0.839943\pi\)
−0.0207648 + 0.999784i \(0.506610\pi\)
\(384\) 19.2649 + 2.49001i 0.983106 + 0.127068i
\(385\) 8.81205i 0.449103i
\(386\) −5.67961 0.104305i −0.289085 0.00530897i
\(387\) −0.401815 0.231988i −0.0204254 0.0117926i
\(388\) −0.883510 + 24.0464i −0.0448534 + 1.22077i
\(389\) 16.5412i 0.838671i 0.907831 + 0.419335i \(0.137737\pi\)
−0.907831 + 0.419335i \(0.862263\pi\)
\(390\) −0.0323869 + 8.75472i −0.00163997 + 0.443313i
\(391\) 37.6624 1.90467
\(392\) −17.2763 11.2865i −0.872585 0.570054i
\(393\) −17.6296 + 30.5354i −0.889297 + 1.54031i
\(394\) 0.0722751 3.93553i 0.00364117 0.198269i
\(395\) 6.68977 0.336599
\(396\) −0.128989 + 0.205592i −0.00648192 + 0.0103314i
\(397\) −15.5305 26.8997i −0.779456 1.35006i −0.932256 0.361800i \(-0.882162\pi\)
0.152800 0.988257i \(-0.451171\pi\)
\(398\) −14.7832 8.90096i −0.741015 0.446165i
\(399\) −4.32231 7.48646i −0.216386 0.374792i
\(400\) −1.74040 3.60153i −0.0870198 0.180077i
\(401\) 29.0761 + 16.7871i 1.45199 + 0.838308i 0.998595 0.0529999i \(-0.0168783\pi\)
0.453398 + 0.891308i \(0.350212\pi\)
\(402\) −6.59190 + 10.9482i −0.328774 + 0.546046i
\(403\) 0.634031 0.00929768i 0.0315833 0.000463151i
\(404\) 29.6449 15.6934i 1.47489 0.780775i
\(405\) 4.42054 7.65660i 0.219658 0.380460i
\(406\) −7.09388 + 3.92377i −0.352063 + 0.194734i
\(407\) −4.75804 8.24117i −0.235847 0.408500i
\(408\) 30.5107 + 1.68248i 1.51051 + 0.0832952i
\(409\) −31.3876 + 18.1216i −1.55202 + 0.896057i −0.554039 + 0.832491i \(0.686914\pi\)
−0.997978 + 0.0635665i \(0.979753\pi\)
\(410\) 17.8560 + 0.327921i 0.881846 + 0.0161949i
\(411\) −25.6677 −1.26609
\(412\) 12.8324 20.4533i 0.632207 1.00766i
\(413\) 36.7750 + 21.2321i 1.80958 + 1.04476i
\(414\) 0.385686 0.213331i 0.0189554 0.0104846i
\(415\) −6.27137 −0.307849
\(416\) −11.5291 + 16.8250i −0.565260 + 0.824913i
\(417\) 20.9690 1.02686
\(418\) −3.84062 + 2.12433i −0.187851 + 0.103904i
\(419\) −26.7921 15.4684i −1.30888 0.755683i −0.326971 0.945034i \(-0.606028\pi\)
−0.981909 + 0.189352i \(0.939361\pi\)
\(420\) 6.90029 10.9982i 0.336700 0.536658i
\(421\) −9.60814 −0.468272 −0.234136 0.972204i \(-0.575226\pi\)
−0.234136 + 0.972204i \(0.575226\pi\)
\(422\) 12.1273 + 0.222716i 0.590349 + 0.0108416i
\(423\) 0.142068 0.0820230i 0.00690758 0.00398809i
\(424\) −0.720078 0.0397079i −0.0349701 0.00192838i
\(425\) −3.14614 5.44928i −0.152610 0.264329i
\(426\) −27.0368 + 14.9546i −1.30994 + 0.724553i
\(427\) −0.367612 + 0.636723i −0.0177900 + 0.0308132i
\(428\) 2.66241 1.40942i 0.128692 0.0681270i
\(429\) 7.39632 + 12.3877i 0.357098 + 0.598084i
\(430\) 6.50018 10.7959i 0.313467 0.520623i
\(431\) −15.4020 8.89236i −0.741889 0.428330i 0.0808667 0.996725i \(-0.474231\pi\)
−0.822756 + 0.568395i \(0.807565\pi\)
\(432\) 18.8730 9.12013i 0.908026 0.438792i
\(433\) 17.2742 + 29.9198i 0.830144 + 1.43785i 0.897924 + 0.440151i \(0.145075\pi\)
−0.0677796 + 0.997700i \(0.521591\pi\)
\(434\) −0.805631 0.485069i −0.0386715 0.0232841i
\(435\) −1.30152 2.25431i −0.0624033 0.108086i
\(436\) 10.1349 16.1537i 0.485372 0.773623i
\(437\) 7.97039 0.381275
\(438\) −0.0863767 + 4.70339i −0.00412724 + 0.224737i
\(439\) −5.20557 + 9.01631i −0.248448 + 0.430325i −0.963095 0.269160i \(-0.913254\pi\)
0.714647 + 0.699485i \(0.246587\pi\)
\(440\) −5.51866 3.60531i −0.263092 0.171876i
\(441\) −0.379898 −0.0180904
\(442\) −16.1449 + 27.7264i −0.767936 + 1.31881i
\(443\) 23.7421i 1.12802i −0.825768 0.564010i \(-0.809258\pi\)
0.825768 0.564010i \(-0.190742\pi\)
\(444\) −0.514809 + 14.0115i −0.0244318 + 0.664956i
\(445\) −9.69902 5.59973i −0.459778 0.265453i
\(446\) 14.9920 + 0.275325i 0.709893 + 0.0130370i
\(447\) 17.2051i 0.813774i
\(448\) 27.6997 12.1520i 1.30869 0.574130i
\(449\) 21.2866 12.2898i 1.00458 0.579993i 0.0949779 0.995479i \(-0.469722\pi\)
0.909599 + 0.415486i \(0.136389\pi\)
\(450\) −0.0630847 0.0379832i −0.00297384 0.00179055i
\(451\) 25.4884 14.7157i 1.20020 0.692937i
\(452\) 25.0137 + 0.919049i 1.17654 + 0.0432284i
\(453\) 7.48173 12.9587i 0.351522 0.608854i
\(454\) −11.2820 6.79288i −0.529490 0.318805i
\(455\) 6.98869 + 11.7050i 0.327635 + 0.548738i
\(456\) 6.45690 + 0.356058i 0.302372 + 0.0166740i
\(457\) 3.96989 + 2.29202i 0.185704 + 0.107216i 0.589970 0.807425i \(-0.299140\pi\)
−0.404266 + 0.914641i \(0.632473\pi\)
\(458\) 26.9282 14.8946i 1.25827 0.695977i
\(459\) 28.5557 16.4866i 1.33286 0.769529i
\(460\) 5.60080 + 10.5800i 0.261139 + 0.493293i
\(461\) −19.4500 33.6884i −0.905878 1.56903i −0.819735 0.572744i \(-0.805879\pi\)
−0.0861432 0.996283i \(-0.527454\pi\)
\(462\) 0.392882 21.3933i 0.0182785 0.995305i
\(463\) 10.4185i 0.484187i 0.970253 + 0.242093i \(0.0778340\pi\)
−0.970253 + 0.242093i \(0.922166\pi\)
\(464\) 0.445030 6.04799i 0.0206600 0.280771i
\(465\) 0.150978 0.261502i 0.00700144 0.0121269i
\(466\) −3.86134 + 2.13579i −0.178873 + 0.0989385i
\(467\) 30.7525i 1.42305i 0.702658 + 0.711527i \(0.251996\pi\)
−0.702658 + 0.711527i \(0.748004\pi\)
\(468\) −0.00828310 + 0.375385i −0.000382887 + 0.0173522i
\(469\) 19.8998i 0.918886i
\(470\) 2.15654 + 3.89886i 0.0994737 + 0.179841i
\(471\) −5.27542 + 9.13729i −0.243079 + 0.421024i
\(472\) −28.3428 + 14.3441i −1.30458 + 0.660241i
\(473\) 20.7675i 0.954889i
\(474\) −16.2409 0.298261i −0.745971 0.0136996i
\(475\) −0.665809 1.15321i −0.0305494 0.0529131i
\(476\) 42.0533 22.2621i 1.92751 1.02038i
\(477\) −0.0114975 + 0.00663811i −0.000526436 + 0.000303938i
\(478\) 2.98988 + 5.40547i 0.136754 + 0.247241i
\(479\) −4.80650 2.77503i −0.219615 0.126795i 0.386157 0.922433i \(-0.373802\pi\)
−0.605772 + 0.795638i \(0.707136\pi\)
\(480\) 4.06464 + 8.82114i 0.185524 + 0.402628i
\(481\) −12.8560 7.17316i −0.586183 0.327068i
\(482\) −9.48477 + 15.7528i −0.432019 + 0.717522i
\(483\) −19.4284 + 33.6509i −0.884021 + 1.53117i
\(484\) 11.1290 + 0.408902i 0.505865 + 0.0185864i
\(485\) −10.4194 + 6.01565i −0.473121 + 0.273157i
\(486\) 0.394688 0.655521i 0.0179034 0.0297350i
\(487\) 6.26700 3.61825i 0.283985 0.163959i −0.351241 0.936285i \(-0.614240\pi\)
0.635226 + 0.772326i \(0.280907\pi\)
\(488\) −0.248354 0.490727i −0.0112425 0.0222142i
\(489\) 1.32188i 0.0597777i
\(490\) 0.189458 10.3164i 0.00855884 0.466047i
\(491\) −7.49146 4.32520i −0.338085 0.195193i 0.321340 0.946964i \(-0.395867\pi\)
−0.659425 + 0.751770i \(0.729200\pi\)
\(492\) −43.3350 1.59221i −1.95369 0.0717823i
\(493\) 9.53964i 0.429644i
\(494\) −3.41670 + 5.86767i −0.153725 + 0.263999i
\(495\) −0.121353 −0.00545441
\(496\) 0.633392 0.306079i 0.0284401 0.0137433i
\(497\) −24.0559 + 41.6660i −1.07905 + 1.86897i
\(498\) 15.2252 + 0.279607i 0.682257 + 0.0125295i
\(499\) 15.6626 0.701155 0.350577 0.936534i \(-0.385985\pi\)
0.350577 + 0.936534i \(0.385985\pi\)
\(500\) 1.06292 1.69417i 0.0475353 0.0757654i
\(501\) 13.4648 + 23.3218i 0.601565 + 1.04194i
\(502\) −11.2442 + 18.6751i −0.501855 + 0.833508i
\(503\) 15.2515 + 26.4164i 0.680032 + 1.17785i 0.974971 + 0.222333i \(0.0713673\pi\)
−0.294939 + 0.955516i \(0.595299\pi\)
\(504\) 0.304552 0.466179i 0.0135658 0.0207653i
\(505\) 14.5244 + 8.38564i 0.646326 + 0.373156i
\(506\) 16.9010 + 10.1761i 0.751341 + 0.452381i
\(507\) 19.6490 + 10.5886i 0.872641 + 0.470256i
\(508\) 13.2188 + 24.9704i 0.586489 + 1.10788i
\(509\) −2.95595 + 5.11986i −0.131020 + 0.226934i −0.924070 0.382223i \(-0.875159\pi\)
0.793050 + 0.609157i \(0.208492\pi\)
\(510\) 7.39503 + 13.3697i 0.327458 + 0.592018i
\(511\) 3.66259 + 6.34380i 0.162024 + 0.280633i
\(512\) −3.72250 + 22.3191i −0.164513 + 0.986375i
\(513\) 6.04315 3.48901i 0.266812 0.154044i
\(514\) 0.413276 22.5038i 0.0182288 0.992599i
\(515\) 12.0728 0.531989
\(516\) −16.2620 + 25.9196i −0.715895 + 1.14105i
\(517\) 6.35893 + 3.67133i 0.279666 + 0.161465i
\(518\) 10.5674 + 19.1051i 0.464306 + 0.839430i
\(519\) 36.0795 1.58372
\(520\) −10.1897 0.412141i −0.446848 0.0180736i
\(521\) 4.99681 0.218914 0.109457 0.993992i \(-0.465089\pi\)
0.109457 + 0.993992i \(0.465089\pi\)
\(522\) −0.0540353 0.0976916i −0.00236506 0.00427585i
\(523\) 25.9469 + 14.9804i 1.13458 + 0.655049i 0.945082 0.326833i \(-0.105981\pi\)
0.189495 + 0.981882i \(0.439315\pi\)
\(524\) −34.7913 21.8281i −1.51986 0.953565i
\(525\) 6.49182 0.283326
\(526\) 0.432586 23.5552i 0.0188617 1.02706i
\(527\) 0.958351 0.553304i 0.0417464 0.0241023i
\(528\) 13.2371 + 8.99876i 0.576070 + 0.391621i
\(529\) −6.41306 11.1077i −0.278829 0.482946i
\(530\) −0.174529 0.315534i −0.00758104 0.0137059i
\(531\) −0.292392 + 0.506438i −0.0126887 + 0.0219775i
\(532\) 8.89961 4.71127i 0.385847 0.204259i
\(533\) 22.1853 39.7612i 0.960950 1.72225i
\(534\) 23.2969 + 14.0271i 1.00816 + 0.607011i
\(535\) 1.30443 + 0.753114i 0.0563955 + 0.0325600i
\(536\) −12.4625 8.14167i −0.538298 0.351667i
\(537\) 8.98027 + 15.5543i 0.387527 + 0.671217i
\(538\) −14.6575 + 24.3439i −0.631928 + 1.04954i
\(539\) −8.50208 14.7260i −0.366211 0.634295i
\(540\) 8.87787 + 5.56999i 0.382043 + 0.239694i
\(541\) −29.5361 −1.26986 −0.634929 0.772571i \(-0.718971\pi\)
−0.634929 + 0.772571i \(0.718971\pi\)
\(542\) 2.11661 + 0.0388710i 0.0909161 + 0.00166965i
\(543\) 6.61282 11.4537i 0.283783 0.491527i
\(544\) −3.26347 + 35.4446i −0.139920 + 1.51968i
\(545\) 9.53492 0.408431
\(546\) −16.4448 28.7281i −0.703772 1.22945i
\(547\) 7.61764i 0.325707i −0.986650 0.162853i \(-0.947930\pi\)
0.986650 0.162853i \(-0.0520697\pi\)
\(548\) 1.09781 29.8789i 0.0468960 1.27636i
\(549\) −0.00876847 0.00506248i −0.000374229 0.000216061i
\(550\) 0.0605196 3.29542i 0.00258057 0.140517i
\(551\) 2.01885i 0.0860057i
\(552\) −13.1255 25.9350i −0.558660 1.10387i
\(553\) −21.9053 + 12.6470i −0.931508 + 0.537806i
\(554\) 19.0594 31.6548i 0.809754 1.34489i
\(555\) −6.07125 + 3.50524i −0.257710 + 0.148789i
\(556\) −0.896845 + 24.4093i −0.0380347 + 1.03519i
\(557\) 9.41978 16.3155i 0.399129 0.691311i −0.594490 0.804103i \(-0.702646\pi\)
0.993619 + 0.112792i \(0.0359793\pi\)
\(558\) 0.00668001 0.0110945i 0.000282788 0.000469669i
\(559\) −16.4703 27.5853i −0.696621 1.16673i
\(560\) 12.5075 + 8.50280i 0.528540 + 0.359309i
\(561\) 21.8055 + 12.5894i 0.920631 + 0.531526i
\(562\) −6.31332 11.4140i −0.266311 0.481471i
\(563\) 40.3186 23.2779i 1.69923 0.981049i 0.752732 0.658327i \(-0.228736\pi\)
0.946494 0.322721i \(-0.104598\pi\)
\(564\) −5.06167 9.56152i −0.213135 0.402613i
\(565\) 6.25763 + 10.8385i 0.263261 + 0.455981i
\(566\) 41.6737 + 0.765328i 1.75168 + 0.0321691i
\(567\) 33.4282i 1.40385i
\(568\) −16.2518 32.1122i −0.681911 1.34740i
\(569\) −7.34580 + 12.7233i −0.307952 + 0.533389i −0.977914 0.209007i \(-0.932977\pi\)
0.669962 + 0.742395i \(0.266310\pi\)
\(570\) 1.56499 + 2.82938i 0.0655502 + 0.118510i
\(571\) 9.08765i 0.380306i −0.981754 0.190153i \(-0.939102\pi\)
0.981754 0.190153i \(-0.0608985\pi\)
\(572\) −14.7365 + 8.08000i −0.616163 + 0.337842i
\(573\) 32.2095i 1.34557i
\(574\) −59.0885 + 32.6831i −2.46631 + 1.36417i
\(575\) −2.99275 + 5.18359i −0.124806 + 0.216171i
\(576\) 0.167349 + 0.381459i 0.00697286 + 0.0158941i
\(577\) 38.8384i 1.61687i 0.588589 + 0.808433i \(0.299684\pi\)
−0.588589 + 0.808433i \(0.700316\pi\)
\(578\) −0.586676 + 31.9458i −0.0244025 + 1.32877i
\(579\) 3.44831 + 5.97264i 0.143307 + 0.248214i
\(580\) 2.67983 1.41865i 0.111274 0.0589060i
\(581\) 20.5353 11.8560i 0.851947 0.491872i
\(582\) 25.5637 14.1398i 1.05965 0.586115i
\(583\) −0.514628 0.297121i −0.0213137 0.0123055i
\(584\) −5.47138 0.301713i −0.226407 0.0124850i
\(585\) −0.161192 + 0.0962430i −0.00666448 + 0.00397916i
\(586\) −25.2625 15.2105i −1.04359 0.628342i
\(587\) 12.8892 22.3248i 0.531995 0.921442i −0.467308 0.884095i \(-0.654776\pi\)
0.999302 0.0373469i \(-0.0118906\pi\)
\(588\) −0.919906 + 25.0370i −0.0379363 + 1.03251i
\(589\) 0.202813 0.117094i 0.00835676 0.00482478i
\(590\) −13.6069 8.19268i −0.560185 0.337287i
\(591\) −4.13858 + 2.38941i −0.170238 + 0.0982871i
\(592\) −16.2883 1.19855i −0.669446 0.0492599i
\(593\) 12.4011i 0.509251i 0.967040 + 0.254625i \(0.0819522\pi\)
−0.967040 + 0.254625i \(0.918048\pi\)
\(594\) 17.2689 + 0.317139i 0.708550 + 0.0130124i
\(595\) 20.6038 + 11.8956i 0.844672 + 0.487672i
\(596\) 20.0279 + 0.735864i 0.820376 + 0.0301422i
\(597\) 20.9500i 0.857427i
\(598\) 30.5199 + 0.112904i 1.24805 + 0.00461700i
\(599\) 27.7083 1.13213 0.566065 0.824361i \(-0.308465\pi\)
0.566065 + 0.824361i \(0.308465\pi\)
\(600\) −2.65602 + 4.06559i −0.108432 + 0.165977i
\(601\) −4.42901 + 7.67127i −0.180663 + 0.312918i −0.942107 0.335314i \(-0.891158\pi\)
0.761443 + 0.648231i \(0.224491\pi\)
\(602\) −0.874881 + 47.6391i −0.0356575 + 1.94163i
\(603\) −0.274045 −0.0111600
\(604\) 14.7649 + 9.26349i 0.600773 + 0.376926i
\(605\) 2.78413 + 4.82226i 0.113191 + 0.196053i
\(606\) −34.8874 21.0056i −1.41720 0.853296i
\(607\) 8.70593 + 15.0791i 0.353363 + 0.612042i 0.986836 0.161722i \(-0.0517048\pi\)
−0.633474 + 0.773764i \(0.718371\pi\)
\(608\) −0.690638 + 7.50104i −0.0280091 + 0.304207i
\(609\) 8.52355 + 4.92107i 0.345391 + 0.199412i
\(610\) 0.141848 0.235589i 0.00574326 0.00953873i
\(611\) 11.3582 0.166561i 0.459503 0.00673834i
\(612\) 0.306577 + 0.579126i 0.0123926 + 0.0234098i
\(613\) −15.1928 + 26.3148i −0.613633 + 1.06284i 0.376989 + 0.926218i \(0.376959\pi\)
−0.990623 + 0.136626i \(0.956374\pi\)
\(614\) 5.20232 2.87751i 0.209948 0.116127i
\(615\) −10.8411 18.7773i −0.437153 0.757172i
\(616\) 24.8864 + 1.37233i 1.00270 + 0.0552929i
\(617\) 2.28942 1.32180i 0.0921685 0.0532135i −0.453207 0.891405i \(-0.649720\pi\)
0.545376 + 0.838192i \(0.316387\pi\)
\(618\) −29.3094 0.538260i −1.17900 0.0216520i
\(619\) 0.212316 0.00853370 0.00426685 0.999991i \(-0.498642\pi\)
0.00426685 + 0.999991i \(0.498642\pi\)
\(620\) 0.297949 + 0.186933i 0.0119659 + 0.00750742i
\(621\) −27.1634 15.6828i −1.09003 0.629328i
\(622\) 36.6653 20.2803i 1.47014 0.813168i
\(623\) 42.3453 1.69653
\(624\) 24.7195 + 1.45487i 0.989571 + 0.0582415i
\(625\) 1.00000 0.0400000
\(626\) −5.14216 + 2.84423i −0.205522 + 0.113678i
\(627\) 4.61464 + 2.66427i 0.184291 + 0.106401i
\(628\) −10.4108 6.53175i −0.415436 0.260645i
\(629\) −25.6920 −1.02441
\(630\) 0.278375 + 0.00511229i 0.0110907 + 0.000203679i
\(631\) −39.2581 + 22.6657i −1.56284 + 0.902307i −0.565874 + 0.824491i \(0.691461\pi\)
−0.996968 + 0.0778160i \(0.975205\pi\)
\(632\) 1.04182 18.8928i 0.0414415 0.751516i
\(633\) −7.36295 12.7530i −0.292651 0.506887i
\(634\) −7.16805 + 3.96480i −0.284680 + 0.157462i
\(635\) −7.06335 + 12.2341i −0.280301 + 0.485495i
\(636\) 0.409640 + 0.773813i 0.0162433 + 0.0306837i
\(637\) −22.9722 12.8176i −0.910193 0.507853i
\(638\) 2.57753 4.28091i 0.102045 0.169483i
\(639\) −0.573792 0.331279i −0.0226989 0.0131052i
\(640\) −10.4423 + 4.35423i −0.412766 + 0.172116i
\(641\) −7.52790 13.0387i −0.297334 0.514998i 0.678191 0.734886i \(-0.262764\pi\)
−0.975525 + 0.219888i \(0.929431\pi\)
\(642\) −3.13323 1.88652i −0.123659 0.0744548i
\(643\) −5.72240 9.91149i −0.225670 0.390871i 0.730851 0.682538i \(-0.239124\pi\)
−0.956520 + 0.291666i \(0.905790\pi\)
\(644\) −38.3410 24.0552i −1.51085 0.947907i
\(645\) −15.2994 −0.602411
\(646\) −0.217578 + 11.8476i −0.00856050 + 0.466137i
\(647\) 12.0980 20.9543i 0.475621 0.823800i −0.523989 0.851725i \(-0.675557\pi\)
0.999610 + 0.0279251i \(0.00888999\pi\)
\(648\) −20.9349 13.6766i −0.822399 0.537268i
\(649\) −26.1748 −1.02745
\(650\) −2.53316 4.42528i −0.0993586 0.173574i
\(651\) 1.14170i 0.0447467i
\(652\) −1.53876 0.0565371i −0.0602626 0.00221416i
\(653\) 24.3794 + 14.0754i 0.954038 + 0.550814i 0.894333 0.447402i \(-0.147651\pi\)
0.0597051 + 0.998216i \(0.480984\pi\)
\(654\) −23.1482 0.425111i −0.905167 0.0166232i
\(655\) 20.5359i 0.802406i
\(656\) 3.70688 50.3768i 0.144729 1.96688i
\(657\) −0.0873620 + 0.0504385i −0.00340832 + 0.00196779i
\(658\) −14.4323 8.68966i −0.562629 0.338758i
\(659\) 25.2767 14.5935i 0.984641 0.568483i 0.0809728 0.996716i \(-0.474197\pi\)
0.903668 + 0.428234i \(0.140864\pi\)
\(660\) −0.293851 + 7.99770i −0.0114381 + 0.311310i
\(661\) 12.5865 21.8004i 0.489557 0.847938i −0.510371 0.859955i \(-0.670492\pi\)
0.999928 + 0.0120167i \(0.00382512\pi\)
\(662\) 8.83675 + 5.32060i 0.343450 + 0.206791i
\(663\) 38.9486 0.571158i 1.51264 0.0221819i
\(664\) −0.976664 + 17.7112i −0.0379019 + 0.687328i
\(665\) 4.36031 + 2.51743i 0.169086 + 0.0976217i
\(666\) −0.263101 + 0.145527i −0.0101950 + 0.00563905i
\(667\) −7.85876 + 4.53726i −0.304292 + 0.175683i
\(668\) −27.7241 + 14.6765i −1.07268 + 0.567852i
\(669\) −9.10222 15.7655i −0.351912 0.609530i
\(670\) 0.136668 7.44188i 0.00527996 0.287505i
\(671\) 0.453191i 0.0174953i
\(672\) −29.9858 21.2002i −1.15673 0.817814i
\(673\) 16.7563 29.0227i 0.645907 1.11874i −0.338184 0.941080i \(-0.609813\pi\)
0.984091 0.177664i \(-0.0568540\pi\)
\(674\) 32.3757 17.9077i 1.24707 0.689778i
\(675\) 5.24026i 0.201698i
\(676\) −13.1662 + 22.4199i −0.506394 + 0.862302i
\(677\) 12.7044i 0.488269i 0.969741 + 0.244135i \(0.0785039\pi\)
−0.969741 + 0.244135i \(0.921496\pi\)
\(678\) −14.7086 26.5920i −0.564881 1.02126i
\(679\) 22.7452 39.3959i 0.872882 1.51188i
\(680\) −15.8795 + 8.03650i −0.608950 + 0.308186i
\(681\) 15.9883i 0.612672i
\(682\) 0.579557 + 0.0106434i 0.0221924 + 0.000407558i
\(683\) 8.46499 + 14.6618i 0.323904 + 0.561018i 0.981290 0.192536i \(-0.0616712\pi\)
−0.657386 + 0.753554i \(0.728338\pi\)
\(684\) 0.0648800 + 0.122559i 0.00248075 + 0.00468615i
\(685\) 12.9467 7.47477i 0.494667 0.285596i
\(686\) 0.766128 + 1.38510i 0.0292509 + 0.0528834i
\(687\) −32.3552 18.6803i −1.23443 0.712697i
\(688\) −29.4767 20.0387i −1.12379 0.763967i
\(689\) −0.919218 + 0.0134798i −0.0350194 + 0.000513539i
\(690\) 7.49669 12.4509i 0.285394 0.473999i
\(691\) −1.85408 + 3.21136i −0.0705325 + 0.122166i −0.899135 0.437672i \(-0.855803\pi\)
0.828602 + 0.559838i \(0.189137\pi\)
\(692\) −1.54312 + 41.9990i −0.0586608 + 1.59656i
\(693\) 0.397364 0.229418i 0.0150946 0.00871487i
\(694\) 15.3784 25.5414i 0.583757 0.969536i
\(695\) −10.5767 + 6.10645i −0.401196 + 0.231631i
\(696\) −6.56916 + 3.32461i −0.249003 + 0.126019i
\(697\) 79.4605i 3.00978i
\(698\) −0.473979 + 25.8092i −0.0179404 + 0.976891i
\(699\) 4.63954 + 2.67864i 0.175483 + 0.101315i
\(700\) −0.277656 + 7.55692i −0.0104944 + 0.285625i
\(701\) 4.72864i 0.178598i −0.996005 0.0892992i \(-0.971537\pi\)
0.996005 0.0892992i \(-0.0284627\pi\)
\(702\) 23.1896 13.2744i 0.875236 0.501010i
\(703\) −5.43712 −0.205065
\(704\) −11.0413 + 15.0240i −0.416135 + 0.566238i
\(705\) 2.70466 4.68461i 0.101863 0.176433i
\(706\) −31.7406 0.582908i −1.19457 0.0219380i
\(707\) −63.4124 −2.38487
\(708\) 32.6685 + 20.4963i 1.22776 + 0.770297i
\(709\) −4.75914 8.24308i −0.178733 0.309575i 0.762714 0.646736i \(-0.223867\pi\)
−0.941447 + 0.337161i \(0.890533\pi\)
\(710\) 9.28227 15.4165i 0.348357 0.578571i
\(711\) −0.174165 0.301663i −0.00653171 0.0113133i
\(712\) −17.3249 + 26.5193i −0.649277 + 0.993852i
\(713\) −0.911624 0.526327i −0.0341406 0.0197111i
\(714\) −49.4900 29.7979i −1.85212 1.11516i
\(715\) −7.33815 4.09441i −0.274431 0.153122i
\(716\) −18.4903 + 9.78839i −0.691016 + 0.365809i
\(717\) 3.74981 6.49486i 0.140039 0.242555i
\(718\) 13.0284 + 23.5544i 0.486216 + 0.879041i
\(719\) −8.53992 14.7916i −0.318485 0.551633i 0.661687 0.749780i \(-0.269841\pi\)
−0.980172 + 0.198148i \(0.936507\pi\)
\(720\) −0.117094 + 0.172245i −0.00436385 + 0.00641917i
\(721\) −39.5316 + 22.8236i −1.47224 + 0.849995i
\(722\) 0.447334 24.3583i 0.0166480 0.906520i
\(723\) 22.3241 0.830243
\(724\) 13.0501 + 8.18766i 0.485004 + 0.304292i
\(725\) 1.31297 + 0.758042i 0.0487624 + 0.0281530i
\(726\) −6.54413 11.8313i −0.242875 0.439100i
\(727\) 33.5816 1.24547 0.622736 0.782432i \(-0.286021\pi\)
0.622736 + 0.782432i \(0.286021\pi\)
\(728\) 34.1448 17.9141i 1.26549 0.663942i
\(729\) −27.4522 −1.01675
\(730\) −1.32612 2.39753i −0.0490820 0.0887365i
\(731\) −48.5572 28.0345i −1.79595 1.03689i
\(732\) −0.354873 + 0.565623i −0.0131165 + 0.0209060i
\(733\) 41.7157 1.54080 0.770402 0.637558i \(-0.220055\pi\)
0.770402 + 0.637558i \(0.220055\pi\)
\(734\) −0.365893 + 19.9236i −0.0135053 + 0.735395i
\(735\) −10.8486 + 6.26346i −0.400158 + 0.231031i
\(736\) 30.7515 14.1698i 1.13351 0.522305i
\(737\) −6.13310 10.6228i −0.225916 0.391297i
\(738\) −0.450087 0.813723i −0.0165679 0.0299536i
\(739\) 3.25983 5.64619i 0.119915 0.207699i −0.799819 0.600241i \(-0.795071\pi\)
0.919734 + 0.392543i \(0.128405\pi\)
\(740\) −3.82067 7.21727i −0.140451 0.265312i
\(741\) 8.24258 0.120873i 0.302799 0.00444036i
\(742\) 1.16800 + 0.703254i 0.0428788 + 0.0258173i
\(743\) −29.7573 17.1804i −1.09169 0.630287i −0.157664 0.987493i \(-0.550396\pi\)
−0.934026 + 0.357206i \(0.883730\pi\)
\(744\) −0.715004 0.467108i −0.0262133 0.0171250i
\(745\) 5.01036 + 8.67820i 0.183565 + 0.317944i
\(746\) −13.8641 + 23.0264i −0.507602 + 0.843055i
\(747\) 0.163273 + 0.282796i 0.00597383 + 0.0103470i
\(748\) −15.5876 + 24.8447i −0.569939 + 0.908412i
\(749\) −5.69506 −0.208093
\(750\) −2.42773 0.0445847i −0.0886482 0.00162800i
\(751\) −6.67823 + 11.5670i −0.243692 + 0.422087i −0.961763 0.273883i \(-0.911692\pi\)
0.718071 + 0.695970i \(0.245025\pi\)
\(752\) 11.3468 5.48318i 0.413773 0.199951i
\(753\) 26.4653 0.964450
\(754\) 0.0285979 7.73049i 0.00104147 0.281528i
\(755\) 8.71512i 0.317176i
\(756\) −39.6002 1.45499i −1.44025 0.0529174i
\(757\) −5.94730 3.43368i −0.216158 0.124799i 0.388012 0.921654i \(-0.373162\pi\)
−0.604170 + 0.796855i \(0.706495\pi\)
\(758\) 0.0588161 3.20266i 0.00213630 0.116326i
\(759\) 23.9512i 0.869374i
\(760\) −3.36053 + 1.70074i −0.121899 + 0.0616924i
\(761\) −37.6520 + 21.7384i −1.36488 + 0.788016i −0.990269 0.139165i \(-0.955558\pi\)
−0.374614 + 0.927181i \(0.622225\pi\)
\(762\) 17.6934 29.3861i 0.640963 1.06455i
\(763\) −31.2216 + 18.0258i −1.13030 + 0.652578i
\(764\) −37.4941 1.37760i −1.35649 0.0498400i
\(765\) −0.163817 + 0.283740i −0.00592282 + 0.0102586i
\(766\) −14.7865 + 24.5582i −0.534258 + 0.887326i
\(767\) −34.7678 + 20.7588i −1.25539 + 0.749558i
\(768\) 25.5451 10.1053i 0.921780 0.364645i