Properties

Label 520.2.ca.b.101.6
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.6
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.b.381.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28768 - 0.584700i) q^{2} +(1.00895 - 0.582519i) q^{3} +(1.31625 + 1.50582i) q^{4} +1.00000 q^{5} +(-1.63981 + 0.160165i) q^{6} +(0.786953 + 0.454347i) q^{7} +(-0.814463 - 2.70863i) q^{8} +(-0.821344 + 1.42261i) q^{9} +O(q^{10})\) \(q+(-1.28768 - 0.584700i) q^{2} +(1.00895 - 0.582519i) q^{3} +(1.31625 + 1.50582i) q^{4} +1.00000 q^{5} +(-1.63981 + 0.160165i) q^{6} +(0.786953 + 0.454347i) q^{7} +(-0.814463 - 2.70863i) q^{8} +(-0.821344 + 1.42261i) q^{9} +(-1.28768 - 0.584700i) q^{10} +(2.01803 + 3.49532i) q^{11} +(2.20520 + 0.752555i) q^{12} +(1.21154 + 3.39590i) q^{13} +(-0.747688 - 1.04519i) q^{14} +(1.00895 - 0.582519i) q^{15} +(-0.534964 + 3.96407i) q^{16} +(1.41984 - 2.45923i) q^{17} +(1.88943 - 1.35163i) q^{18} +(0.810340 - 1.40355i) q^{19} +(1.31625 + 1.50582i) q^{20} +1.05866 q^{21} +(-0.554860 - 5.68081i) q^{22} +(-0.494250 - 0.856067i) q^{23} +(-2.39958 - 2.25843i) q^{24} +1.00000 q^{25} +(0.425507 - 5.08123i) q^{26} +5.40891i q^{27} +(0.351664 + 1.78304i) q^{28} +(-7.87290 + 4.54542i) q^{29} +(-1.63981 + 0.160165i) q^{30} +3.84896i q^{31} +(3.00665 - 4.79166i) q^{32} +(4.07218 + 2.35108i) q^{33} +(-3.26621 + 2.33653i) q^{34} +(0.786953 + 0.454347i) q^{35} +(-3.22328 + 0.635719i) q^{36} +(-0.538020 - 0.931878i) q^{37} +(-1.86412 + 1.33352i) q^{38} +(3.20056 + 2.72056i) q^{39} +(-0.814463 - 2.70863i) q^{40} +(7.68661 - 4.43786i) q^{41} +(-1.36322 - 0.619001i) q^{42} +(9.23470 + 5.33166i) q^{43} +(-2.60708 + 7.63950i) q^{44} +(-0.821344 + 1.42261i) q^{45} +(0.135895 + 1.39133i) q^{46} -11.5567i q^{47} +(1.76939 + 4.31118i) q^{48} +(-3.08714 - 5.34708i) q^{49} +(-1.28768 - 0.584700i) q^{50} -3.30832i q^{51} +(-3.51892 + 6.29422i) q^{52} -10.1285i q^{53} +(3.16259 - 6.96495i) q^{54} +(2.01803 + 3.49532i) q^{55} +(0.589713 - 2.50161i) q^{56} -1.88815i q^{57} +(12.7955 - 1.24977i) q^{58} +(4.67358 - 8.09488i) q^{59} +(2.20520 + 0.752555i) q^{60} +(0.159169 + 0.0918962i) q^{61} +(2.25049 - 4.95624i) q^{62} +(-1.29272 + 0.746351i) q^{63} +(-6.67330 + 4.41215i) q^{64} +(1.21154 + 3.39590i) q^{65} +(-3.86900 - 5.40844i) q^{66} +(5.74510 + 9.95080i) q^{67} +(5.57201 - 1.09895i) q^{68} +(-0.997350 - 0.575820i) q^{69} +(-0.747688 - 1.04519i) q^{70} +(4.27599 + 2.46874i) q^{71} +(4.52227 + 1.06605i) q^{72} -5.44599i q^{73} +(0.147930 + 1.51454i) q^{74} +(1.00895 - 0.582519i) q^{75} +(3.18010 - 0.627202i) q^{76} +3.66754i q^{77} +(-2.53060 - 5.37459i) q^{78} -14.8307 q^{79} +(-0.534964 + 3.96407i) q^{80} +(0.686757 + 1.18950i) q^{81} +(-12.4927 + 1.22020i) q^{82} +14.8263 q^{83} +(1.39347 + 1.59415i) q^{84} +(1.41984 - 2.45923i) q^{85} +(-8.77394 - 12.2650i) q^{86} +(-5.29559 + 9.17223i) q^{87} +(7.82391 - 8.31289i) q^{88} +(-2.39372 + 1.38202i) q^{89} +(1.88943 - 1.35163i) q^{90} +(-0.589495 + 3.22288i) q^{91} +(0.638521 - 1.87105i) q^{92} +(2.24209 + 3.88342i) q^{93} +(-6.75719 + 14.8813i) q^{94} +(0.810340 - 1.40355i) q^{95} +(0.242336 - 6.58599i) q^{96} +(-9.80772 - 5.66249i) q^{97} +(0.848814 + 8.69039i) q^{98} -6.62997 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28768 0.584700i −0.910529 0.413445i
\(3\) 1.00895 0.582519i 0.582519 0.336317i −0.179615 0.983737i \(-0.557485\pi\)
0.762134 + 0.647420i \(0.224152\pi\)
\(4\) 1.31625 + 1.50582i 0.658126 + 0.752908i
\(5\) 1.00000 0.447214
\(6\) −1.63981 + 0.160165i −0.669449 + 0.0653869i
\(7\) 0.786953 + 0.454347i 0.297440 + 0.171727i 0.641292 0.767297i \(-0.278399\pi\)
−0.343852 + 0.939024i \(0.611732\pi\)
\(8\) −0.814463 2.70863i −0.287956 0.957644i
\(9\) −0.821344 + 1.42261i −0.273781 + 0.474203i
\(10\) −1.28768 0.584700i −0.407201 0.184898i
\(11\) 2.01803 + 3.49532i 0.608458 + 1.05388i 0.991495 + 0.130147i \(0.0415448\pi\)
−0.383037 + 0.923733i \(0.625122\pi\)
\(12\) 2.20520 + 0.752555i 0.636587 + 0.217244i
\(13\) 1.21154 + 3.39590i 0.336021 + 0.941855i
\(14\) −0.747688 1.04519i −0.199828 0.279338i
\(15\) 1.00895 0.582519i 0.260510 0.150406i
\(16\) −0.534964 + 3.96407i −0.133741 + 0.991016i
\(17\) 1.41984 2.45923i 0.344361 0.596450i −0.640877 0.767644i \(-0.721429\pi\)
0.985237 + 0.171194i \(0.0547623\pi\)
\(18\) 1.88943 1.35163i 0.445343 0.318582i
\(19\) 0.810340 1.40355i 0.185905 0.321996i −0.757976 0.652282i \(-0.773812\pi\)
0.943881 + 0.330286i \(0.107145\pi\)
\(20\) 1.31625 + 1.50582i 0.294323 + 0.336711i
\(21\) 1.05866 0.231019
\(22\) −0.554860 5.68081i −0.118297 1.21115i
\(23\) −0.494250 0.856067i −0.103058 0.178502i 0.809885 0.586589i \(-0.199530\pi\)
−0.912943 + 0.408087i \(0.866196\pi\)
\(24\) −2.39958 2.25843i −0.489812 0.461001i
\(25\) 1.00000 0.200000
\(26\) 0.425507 5.08123i 0.0834488 0.996512i
\(27\) 5.40891i 1.04094i
\(28\) 0.351664 + 1.78304i 0.0664582 + 0.336963i
\(29\) −7.87290 + 4.54542i −1.46196 + 0.844064i −0.999102 0.0423678i \(-0.986510\pi\)
−0.462859 + 0.886432i \(0.653177\pi\)
\(30\) −1.63981 + 0.160165i −0.299387 + 0.0292419i
\(31\) 3.84896i 0.691294i 0.938365 + 0.345647i \(0.112341\pi\)
−0.938365 + 0.345647i \(0.887659\pi\)
\(32\) 3.00665 4.79166i 0.531506 0.847054i
\(33\) 4.07218 + 2.35108i 0.708876 + 0.409270i
\(34\) −3.26621 + 2.33653i −0.560150 + 0.400711i
\(35\) 0.786953 + 0.454347i 0.133019 + 0.0767987i
\(36\) −3.22328 + 0.635719i −0.537214 + 0.105953i
\(37\) −0.538020 0.931878i −0.0884500 0.153200i 0.818406 0.574640i \(-0.194858\pi\)
−0.906856 + 0.421440i \(0.861525\pi\)
\(38\) −1.86412 + 1.33352i −0.302400 + 0.216326i
\(39\) 3.20056 + 2.72056i 0.512500 + 0.435638i
\(40\) −0.814463 2.70863i −0.128778 0.428271i
\(41\) 7.68661 4.43786i 1.20045 0.693078i 0.239792 0.970824i \(-0.422921\pi\)
0.960654 + 0.277747i \(0.0895875\pi\)
\(42\) −1.36322 0.619001i −0.210350 0.0955139i
\(43\) 9.23470 + 5.33166i 1.40828 + 0.813070i 0.995222 0.0976356i \(-0.0311280\pi\)
0.413056 + 0.910706i \(0.364461\pi\)
\(44\) −2.60708 + 7.63950i −0.393033 + 1.15170i
\(45\) −0.821344 + 1.42261i −0.122439 + 0.212070i
\(46\) 0.135895 + 1.39133i 0.0200366 + 0.205140i
\(47\) 11.5567i 1.68571i −0.538138 0.842857i \(-0.680872\pi\)
0.538138 0.842857i \(-0.319128\pi\)
\(48\) 1.76939 + 4.31118i 0.255389 + 0.622265i
\(49\) −3.08714 5.34708i −0.441020 0.763868i
\(50\) −1.28768 0.584700i −0.182106 0.0826891i
\(51\) 3.30832i 0.463258i
\(52\) −3.51892 + 6.29422i −0.487986 + 0.872851i
\(53\) 10.1285i 1.39126i −0.718399 0.695631i \(-0.755125\pi\)
0.718399 0.695631i \(-0.244875\pi\)
\(54\) 3.16259 6.96495i 0.430374 0.947810i
\(55\) 2.01803 + 3.49532i 0.272111 + 0.471309i
\(56\) 0.589713 2.50161i 0.0788037 0.334291i
\(57\) 1.88815i 0.250092i
\(58\) 12.7955 1.24977i 1.68013 0.164103i
\(59\) 4.67358 8.09488i 0.608449 1.05386i −0.383048 0.923729i \(-0.625125\pi\)
0.991496 0.130135i \(-0.0415412\pi\)
\(60\) 2.20520 + 0.752555i 0.284690 + 0.0971545i
\(61\) 0.159169 + 0.0918962i 0.0203795 + 0.0117661i 0.510155 0.860082i \(-0.329588\pi\)
−0.489776 + 0.871849i \(0.662921\pi\)
\(62\) 2.25049 4.95624i 0.285812 0.629443i
\(63\) −1.29272 + 0.746351i −0.162867 + 0.0940313i
\(64\) −6.67330 + 4.41215i −0.834163 + 0.551519i
\(65\) 1.21154 + 3.39590i 0.150273 + 0.421210i
\(66\) −3.86900 5.40844i −0.476241 0.665733i
\(67\) 5.74510 + 9.95080i 0.701875 + 1.21568i 0.967807 + 0.251692i \(0.0809870\pi\)
−0.265932 + 0.963992i \(0.585680\pi\)
\(68\) 5.57201 1.09895i 0.675705 0.133267i
\(69\) −0.997350 0.575820i −0.120067 0.0693206i
\(70\) −0.747688 1.04519i −0.0893658 0.124924i
\(71\) 4.27599 + 2.46874i 0.507467 + 0.292986i 0.731792 0.681528i \(-0.238684\pi\)
−0.224325 + 0.974514i \(0.572018\pi\)
\(72\) 4.52227 + 1.06605i 0.532955 + 0.125635i
\(73\) 5.44599i 0.637405i −0.947855 0.318703i \(-0.896753\pi\)
0.947855 0.318703i \(-0.103247\pi\)
\(74\) 0.147930 + 1.51454i 0.0171965 + 0.176062i
\(75\) 1.00895 0.582519i 0.116504 0.0672635i
\(76\) 3.18010 0.627202i 0.364782 0.0719450i
\(77\) 3.66754i 0.417955i
\(78\) −2.53060 5.37459i −0.286534 0.608552i
\(79\) −14.8307 −1.66859 −0.834294 0.551320i \(-0.814124\pi\)
−0.834294 + 0.551320i \(0.814124\pi\)
\(80\) −0.534964 + 3.96407i −0.0598108 + 0.443196i
\(81\) 0.686757 + 1.18950i 0.0763064 + 0.132167i
\(82\) −12.4927 + 1.22020i −1.37959 + 0.134748i
\(83\) 14.8263 1.62740 0.813701 0.581284i \(-0.197449\pi\)
0.813701 + 0.581284i \(0.197449\pi\)
\(84\) 1.39347 + 1.59415i 0.152040 + 0.173936i
\(85\) 1.41984 2.45923i 0.154003 0.266741i
\(86\) −8.77394 12.2650i −0.946118 1.32257i
\(87\) −5.29559 + 9.17223i −0.567747 + 0.983366i
\(88\) 7.82391 8.31289i 0.834032 0.886157i
\(89\) −2.39372 + 1.38202i −0.253734 + 0.146494i −0.621473 0.783436i \(-0.713465\pi\)
0.367739 + 0.929929i \(0.380132\pi\)
\(90\) 1.88943 1.35163i 0.199163 0.142474i
\(91\) −0.589495 + 3.22288i −0.0617959 + 0.337849i
\(92\) 0.638521 1.87105i 0.0665705 0.195070i
\(93\) 2.24209 + 3.88342i 0.232494 + 0.402692i
\(94\) −6.75719 + 14.8813i −0.696951 + 1.53489i
\(95\) 0.810340 1.40355i 0.0831391 0.144001i
\(96\) 0.242336 6.58599i 0.0247333 0.672180i
\(97\) −9.80772 5.66249i −0.995823 0.574939i −0.0888131 0.996048i \(-0.528307\pi\)
−0.907010 + 0.421110i \(0.861641\pi\)
\(98\) 0.848814 + 8.69039i 0.0857432 + 0.877862i
\(99\) −6.62997 −0.666337
\(100\) 1.31625 + 1.50582i 0.131625 + 0.150582i
\(101\) −15.2516 + 8.80549i −1.51759 + 0.876179i −0.517801 + 0.855501i \(0.673249\pi\)
−0.999786 + 0.0206778i \(0.993418\pi\)
\(102\) −1.93438 + 4.26007i −0.191532 + 0.421810i
\(103\) −4.00462 −0.394587 −0.197293 0.980344i \(-0.563215\pi\)
−0.197293 + 0.980344i \(0.563215\pi\)
\(104\) 8.21148 6.04745i 0.805202 0.593001i
\(105\) 1.05866 0.103315
\(106\) −5.92216 + 13.0423i −0.575211 + 1.26678i
\(107\) −10.4667 + 6.04294i −1.01185 + 0.584193i −0.911733 0.410783i \(-0.865255\pi\)
−0.100118 + 0.994976i \(0.531922\pi\)
\(108\) −8.14482 + 7.11948i −0.783735 + 0.685072i
\(109\) 4.69338 0.449544 0.224772 0.974411i \(-0.427836\pi\)
0.224772 + 0.974411i \(0.427836\pi\)
\(110\) −0.554860 5.68081i −0.0529038 0.541644i
\(111\) −1.08567 0.626814i −0.103048 0.0594945i
\(112\) −2.22205 + 2.87647i −0.209964 + 0.271801i
\(113\) 5.70070 9.87391i 0.536277 0.928859i −0.462823 0.886450i \(-0.653164\pi\)
0.999100 0.0424084i \(-0.0135031\pi\)
\(114\) −1.10400 + 2.43134i −0.103399 + 0.227716i
\(115\) −0.494250 0.856067i −0.0460891 0.0798286i
\(116\) −17.2073 5.87223i −1.59766 0.545222i
\(117\) −5.82614 1.06566i −0.538627 0.0985200i
\(118\) −10.7512 + 7.69099i −0.989725 + 0.708013i
\(119\) 2.23469 1.29020i 0.204853 0.118272i
\(120\) −2.39958 2.25843i −0.219051 0.206166i
\(121\) −2.64485 + 4.58102i −0.240441 + 0.416457i
\(122\) −0.151227 0.211399i −0.0136915 0.0191392i
\(123\) 5.17028 8.95518i 0.466188 0.807462i
\(124\) −5.79583 + 5.06620i −0.520481 + 0.454959i
\(125\) 1.00000 0.0894427
\(126\) 2.10100 0.205211i 0.187172 0.0182816i
\(127\) 5.13384 + 8.89208i 0.455555 + 0.789044i 0.998720 0.0505816i \(-0.0161075\pi\)
−0.543165 + 0.839626i \(0.682774\pi\)
\(128\) 11.1729 1.77957i 0.987552 0.157293i
\(129\) 12.4232 1.09380
\(130\) 0.425507 5.08123i 0.0373194 0.445654i
\(131\) 5.02397i 0.438946i −0.975619 0.219473i \(-0.929566\pi\)
0.975619 0.219473i \(-0.0704339\pi\)
\(132\) 1.81973 + 9.22656i 0.158387 + 0.803069i
\(133\) 1.27540 0.736352i 0.110591 0.0638498i
\(134\) −1.57963 16.1726i −0.136459 1.39710i
\(135\) 5.40891i 0.465524i
\(136\) −7.81753 1.84285i −0.670348 0.158023i
\(137\) −18.9228 10.9251i −1.61668 0.933393i −0.987770 0.155918i \(-0.950166\pi\)
−0.628914 0.777475i \(-0.716500\pi\)
\(138\) 0.947588 + 1.32462i 0.0806640 + 0.112760i
\(139\) −1.79457 1.03610i −0.152214 0.0878807i 0.421959 0.906615i \(-0.361343\pi\)
−0.574172 + 0.818734i \(0.694676\pi\)
\(140\) 0.351664 + 1.78304i 0.0297210 + 0.150694i
\(141\) −6.73198 11.6601i −0.566935 0.981960i
\(142\) −4.06264 5.67913i −0.340929 0.476582i
\(143\) −9.42486 + 11.0877i −0.788147 + 0.927204i
\(144\) −5.19993 4.01691i −0.433327 0.334742i
\(145\) −7.87290 + 4.54542i −0.653809 + 0.377477i
\(146\) −3.18427 + 7.01271i −0.263532 + 0.580376i
\(147\) −6.22955 3.59663i −0.513804 0.296645i
\(148\) 0.695067 2.03675i 0.0571342 0.167419i
\(149\) 1.07638 1.86435i 0.0881809 0.152734i −0.818561 0.574419i \(-0.805228\pi\)
0.906742 + 0.421685i \(0.138561\pi\)
\(150\) −1.63981 + 0.160165i −0.133890 + 0.0130774i
\(151\) 7.39857i 0.602087i 0.953610 + 0.301043i \(0.0973349\pi\)
−0.953610 + 0.301043i \(0.902665\pi\)
\(152\) −4.46168 1.05177i −0.361890 0.0853097i
\(153\) 2.33235 + 4.03974i 0.188559 + 0.326594i
\(154\) 2.14441 4.72262i 0.172801 0.380560i
\(155\) 3.84896i 0.309156i
\(156\) 0.116084 + 8.40040i 0.00929415 + 0.672571i
\(157\) 7.81527i 0.623726i −0.950127 0.311863i \(-0.899047\pi\)
0.950127 0.311863i \(-0.100953\pi\)
\(158\) 19.0973 + 8.67153i 1.51930 + 0.689870i
\(159\) −5.90006 10.2192i −0.467906 0.810436i
\(160\) 3.00665 4.79166i 0.237697 0.378814i
\(161\) 0.898245i 0.0707916i
\(162\) −0.188825 1.93324i −0.0148355 0.151890i
\(163\) −3.49430 + 6.05231i −0.273695 + 0.474054i −0.969805 0.243881i \(-0.921579\pi\)
0.696110 + 0.717935i \(0.254913\pi\)
\(164\) 16.8001 + 5.73327i 1.31187 + 0.447693i
\(165\) 4.07218 + 2.35108i 0.317019 + 0.183031i
\(166\) −19.0916 8.66896i −1.48180 0.672842i
\(167\) 6.37387 3.67996i 0.493225 0.284763i −0.232686 0.972552i \(-0.574752\pi\)
0.725911 + 0.687788i \(0.241418\pi\)
\(168\) −0.862242 2.86752i −0.0665234 0.221234i
\(169\) −10.0643 + 8.22855i −0.774180 + 0.632965i
\(170\) −3.26621 + 2.33653i −0.250507 + 0.179203i
\(171\) 1.33114 + 2.30559i 0.101794 + 0.176313i
\(172\) 4.12669 + 20.9236i 0.314657 + 1.59541i
\(173\) −11.6569 6.73009i −0.886255 0.511679i −0.0135391 0.999908i \(-0.504310\pi\)
−0.872716 + 0.488229i \(0.837643\pi\)
\(174\) 12.1820 8.71458i 0.923518 0.660651i
\(175\) 0.786953 + 0.454347i 0.0594880 + 0.0343454i
\(176\) −14.9353 + 6.12971i −1.12579 + 0.462044i
\(177\) 10.8898i 0.818527i
\(178\) 3.89042 0.379988i 0.291599 0.0284813i
\(179\) −5.65198 + 3.26317i −0.422449 + 0.243901i −0.696125 0.717921i \(-0.745094\pi\)
0.273676 + 0.961822i \(0.411761\pi\)
\(180\) −3.22328 + 0.635719i −0.240249 + 0.0473837i
\(181\) 11.3825i 0.846055i −0.906117 0.423028i \(-0.860967\pi\)
0.906117 0.423028i \(-0.139033\pi\)
\(182\) 2.64350 3.80536i 0.195949 0.282072i
\(183\) 0.214125 0.0158286
\(184\) −1.91622 + 2.03597i −0.141265 + 0.150094i
\(185\) −0.538020 0.931878i −0.0395560 0.0685131i
\(186\) −0.616468 6.31156i −0.0452016 0.462786i
\(187\) 11.4611 0.838116
\(188\) 17.4022 15.2115i 1.26919 1.10941i
\(189\) −2.45752 + 4.25655i −0.178758 + 0.309619i
\(190\) −1.86412 + 1.33352i −0.135237 + 0.0967438i
\(191\) −5.34414 + 9.25631i −0.386688 + 0.669763i −0.992002 0.126224i \(-0.959714\pi\)
0.605314 + 0.795987i \(0.293048\pi\)
\(192\) −4.16288 + 8.33897i −0.300430 + 0.601813i
\(193\) −11.5999 + 6.69719i −0.834977 + 0.482074i −0.855554 0.517714i \(-0.826783\pi\)
0.0205769 + 0.999788i \(0.493450\pi\)
\(194\) 9.31837 + 13.0261i 0.669020 + 0.935217i
\(195\) 3.20056 + 2.72056i 0.229197 + 0.194823i
\(196\) 3.98827 11.6868i 0.284876 0.834769i
\(197\) −5.72584 9.91745i −0.407950 0.706589i 0.586710 0.809797i \(-0.300423\pi\)
−0.994660 + 0.103208i \(0.967089\pi\)
\(198\) 8.53730 + 3.87655i 0.606719 + 0.275494i
\(199\) 4.98119 8.62768i 0.353108 0.611600i −0.633685 0.773591i \(-0.718458\pi\)
0.986792 + 0.161991i \(0.0517916\pi\)
\(200\) −0.814463 2.70863i −0.0575912 0.191529i
\(201\) 11.5931 + 6.69325i 0.817711 + 0.472106i
\(202\) 24.7877 2.42109i 1.74406 0.170347i
\(203\) −8.26080 −0.579795
\(204\) 4.98173 4.35459i 0.348791 0.304882i
\(205\) 7.68661 4.43786i 0.536856 0.309954i
\(206\) 5.15668 + 2.34150i 0.359283 + 0.163140i
\(207\) 1.62380 0.112862
\(208\) −14.1097 + 2.98594i −0.978333 + 0.207037i
\(209\) 6.54115 0.452461
\(210\) −1.36322 0.619001i −0.0940712 0.0427151i
\(211\) 3.72205 2.14892i 0.256236 0.147938i −0.366380 0.930465i \(-0.619403\pi\)
0.622616 + 0.782527i \(0.286070\pi\)
\(212\) 15.2517 13.3317i 1.04749 0.915625i
\(213\) 5.75236 0.394145
\(214\) 17.0111 1.66152i 1.16285 0.113579i
\(215\) 9.23470 + 5.33166i 0.629801 + 0.363616i
\(216\) 14.6507 4.40535i 0.996854 0.299746i
\(217\) −1.74877 + 3.02895i −0.118714 + 0.205619i
\(218\) −6.04358 2.74422i −0.409323 0.185862i
\(219\) −3.17239 5.49474i −0.214370 0.371300i
\(220\) −2.60708 + 7.63950i −0.175770 + 0.515055i
\(221\) 10.0715 + 1.84217i 0.677482 + 0.123918i
\(222\) 1.03150 + 1.44193i 0.0692300 + 0.0967760i
\(223\) 6.29404 3.63386i 0.421480 0.243342i −0.274230 0.961664i \(-0.588423\pi\)
0.695710 + 0.718322i \(0.255090\pi\)
\(224\) 4.54317 2.40475i 0.303553 0.160674i
\(225\) −0.821344 + 1.42261i −0.0547563 + 0.0948406i
\(226\) −13.1140 + 9.38125i −0.872328 + 0.624032i
\(227\) 1.11578 1.93259i 0.0740568 0.128270i −0.826619 0.562762i \(-0.809739\pi\)
0.900676 + 0.434492i \(0.143072\pi\)
\(228\) 2.84321 2.48528i 0.188296 0.164592i
\(229\) −5.95549 −0.393550 −0.196775 0.980449i \(-0.563047\pi\)
−0.196775 + 0.980449i \(0.563047\pi\)
\(230\) 0.135895 + 1.39133i 0.00896066 + 0.0917416i
\(231\) 2.13641 + 3.70037i 0.140565 + 0.243466i
\(232\) 18.7240 + 17.6227i 1.22929 + 1.15698i
\(233\) 0.994961 0.0651821 0.0325910 0.999469i \(-0.489624\pi\)
0.0325910 + 0.999469i \(0.489624\pi\)
\(234\) 6.87912 + 4.77877i 0.449702 + 0.312398i
\(235\) 11.5567i 0.753874i
\(236\) 18.3410 3.61735i 1.19390 0.235469i
\(237\) −14.9635 + 8.63918i −0.971983 + 0.561175i
\(238\) −3.63194 + 0.354742i −0.235424 + 0.0229945i
\(239\) 2.10697i 0.136288i 0.997675 + 0.0681442i \(0.0217078\pi\)
−0.997675 + 0.0681442i \(0.978292\pi\)
\(240\) 1.76939 + 4.31118i 0.114214 + 0.278285i
\(241\) 12.4843 + 7.20780i 0.804183 + 0.464295i 0.844932 0.534874i \(-0.179641\pi\)
−0.0407487 + 0.999169i \(0.512974\pi\)
\(242\) 6.08426 4.35245i 0.391111 0.279786i
\(243\) −12.6669 7.31326i −0.812584 0.469146i
\(244\) 0.0711275 + 0.360638i 0.00455347 + 0.0230875i
\(245\) −3.08714 5.34708i −0.197230 0.341612i
\(246\) −11.8938 + 8.50837i −0.758319 + 0.542474i
\(247\) 5.74808 + 1.05138i 0.365742 + 0.0668977i
\(248\) 10.4254 3.13484i 0.662014 0.199062i
\(249\) 14.9591 8.63662i 0.947992 0.547324i
\(250\) −1.28768 0.584700i −0.0814402 0.0369797i
\(251\) 2.37866 + 1.37332i 0.150139 + 0.0866830i 0.573188 0.819424i \(-0.305707\pi\)
−0.423048 + 0.906107i \(0.639040\pi\)
\(252\) −2.82541 0.964209i −0.177984 0.0607395i
\(253\) 1.99482 3.45513i 0.125413 0.217222i
\(254\) −1.41156 14.4519i −0.0885692 0.906795i
\(255\) 3.30832i 0.207175i
\(256\) −15.4276 4.24127i −0.964227 0.265079i
\(257\) −3.27795 5.67758i −0.204473 0.354158i 0.745492 0.666515i \(-0.232215\pi\)
−0.949965 + 0.312357i \(0.898881\pi\)
\(258\) −15.9971 7.26382i −0.995935 0.452226i
\(259\) 0.977792i 0.0607570i
\(260\) −3.51892 + 6.29422i −0.218234 + 0.390351i
\(261\) 14.9334i 0.924356i
\(262\) −2.93752 + 6.46928i −0.181480 + 0.399673i
\(263\) 0.410453 + 0.710926i 0.0253096 + 0.0438376i 0.878403 0.477921i \(-0.158609\pi\)
−0.853093 + 0.521759i \(0.825276\pi\)
\(264\) 3.05154 12.9449i 0.187809 0.796702i
\(265\) 10.1285i 0.622191i
\(266\) −2.07285 + 0.202461i −0.127095 + 0.0124137i
\(267\) −1.61010 + 2.78878i −0.0985367 + 0.170670i
\(268\) −7.42208 + 21.7488i −0.453376 + 1.32852i
\(269\) 15.4691 + 8.93107i 0.943166 + 0.544537i 0.890951 0.454099i \(-0.150039\pi\)
0.0522145 + 0.998636i \(0.483372\pi\)
\(270\) 3.16259 6.96495i 0.192469 0.423873i
\(271\) 8.02412 4.63273i 0.487431 0.281418i −0.236077 0.971734i \(-0.575862\pi\)
0.723508 + 0.690316i \(0.242529\pi\)
\(272\) 8.98898 + 6.94392i 0.545037 + 0.421037i
\(273\) 1.28261 + 3.59512i 0.0776273 + 0.217587i
\(274\) 17.9787 + 25.1322i 1.08613 + 1.51829i
\(275\) 2.01803 + 3.49532i 0.121692 + 0.210776i
\(276\) −0.445684 2.25975i −0.0268270 0.136021i
\(277\) −5.69939 3.29054i −0.342443 0.197710i 0.318909 0.947785i \(-0.396684\pi\)
−0.661352 + 0.750076i \(0.730017\pi\)
\(278\) 1.70503 + 2.38345i 0.102261 + 0.142950i
\(279\) −5.47557 3.16132i −0.327814 0.189263i
\(280\) 0.589713 2.50161i 0.0352421 0.149500i
\(281\) 0.628207i 0.0374757i −0.999824 0.0187378i \(-0.994035\pi\)
0.999824 0.0187378i \(-0.00596479\pi\)
\(282\) 1.85097 + 18.9507i 0.110224 + 1.12850i
\(283\) 3.25394 1.87866i 0.193427 0.111675i −0.400159 0.916446i \(-0.631045\pi\)
0.593586 + 0.804771i \(0.297712\pi\)
\(284\) 1.91080 + 9.68834i 0.113385 + 0.574897i
\(285\) 1.88815i 0.111845i
\(286\) 18.6192 8.76678i 1.10098 0.518390i
\(287\) 8.06532 0.476081
\(288\) 4.34717 + 8.21290i 0.256159 + 0.483950i
\(289\) 4.46813 + 7.73903i 0.262831 + 0.455237i
\(290\) 12.7955 1.24977i 0.751378 0.0733892i
\(291\) −13.1940 −0.773447
\(292\) 8.20066 7.16829i 0.479907 0.419493i
\(293\) −10.2140 + 17.6911i −0.596707 + 1.03353i 0.396597 + 0.917993i \(0.370191\pi\)
−0.993304 + 0.115534i \(0.963142\pi\)
\(294\) 5.91873 + 8.27373i 0.345187 + 0.482534i
\(295\) 4.67358 8.09488i 0.272107 0.471302i
\(296\) −2.08591 + 2.21628i −0.121241 + 0.128818i
\(297\) −18.9059 + 10.9153i −1.09703 + 0.633370i
\(298\) −2.47613 + 1.77133i −0.143438 + 0.102611i
\(299\) 2.30832 2.71559i 0.133493 0.157046i
\(300\) 2.20520 + 0.752555i 0.127317 + 0.0434488i
\(301\) 4.84485 + 8.39152i 0.279252 + 0.483679i
\(302\) 4.32594 9.52700i 0.248930 0.548217i
\(303\) −10.2587 + 17.7686i −0.589349 + 1.02078i
\(304\) 5.13026 + 3.96309i 0.294241 + 0.227299i
\(305\) 0.159169 + 0.0918962i 0.00911399 + 0.00526196i
\(306\) −0.641283 6.56563i −0.0366597 0.375332i
\(307\) −29.0460 −1.65774 −0.828870 0.559441i \(-0.811016\pi\)
−0.828870 + 0.559441i \(0.811016\pi\)
\(308\) −5.52264 + 4.82740i −0.314681 + 0.275067i
\(309\) −4.04047 + 2.33277i −0.229854 + 0.132706i
\(310\) 2.25049 4.95624i 0.127819 0.281496i
\(311\) 29.6373 1.68057 0.840287 0.542141i \(-0.182386\pi\)
0.840287 + 0.542141i \(0.182386\pi\)
\(312\) 4.76224 10.8849i 0.269609 0.616238i
\(313\) 21.2962 1.20373 0.601867 0.798597i \(-0.294424\pi\)
0.601867 + 0.798597i \(0.294424\pi\)
\(314\) −4.56959 + 10.0636i −0.257877 + 0.567921i
\(315\) −1.29272 + 0.746351i −0.0728364 + 0.0420521i
\(316\) −19.5210 22.3324i −1.09814 1.25629i
\(317\) 13.7154 0.770334 0.385167 0.922847i \(-0.374144\pi\)
0.385167 + 0.922847i \(0.374144\pi\)
\(318\) 1.62223 + 16.6089i 0.0909704 + 0.931379i
\(319\) −31.7754 18.3456i −1.77908 1.02715i
\(320\) −6.67330 + 4.41215i −0.373049 + 0.246647i
\(321\) −7.04025 + 12.1941i −0.392948 + 0.680607i
\(322\) −0.525204 + 1.15665i −0.0292685 + 0.0644578i
\(323\) −2.30110 3.98562i −0.128037 0.221766i
\(324\) −0.887221 + 2.59981i −0.0492900 + 0.144434i
\(325\) 1.21154 + 3.39590i 0.0672042 + 0.188371i
\(326\) 8.03834 5.75034i 0.445203 0.318482i
\(327\) 4.73539 2.73398i 0.261868 0.151189i
\(328\) −18.2810 17.2057i −1.00940 0.950024i
\(329\) 5.25074 9.09455i 0.289483 0.501399i
\(330\) −3.86900 5.40844i −0.212982 0.297725i
\(331\) 11.7962 20.4317i 0.648380 1.12303i −0.335130 0.942172i \(-0.608780\pi\)
0.983510 0.180855i \(-0.0578865\pi\)
\(332\) 19.5152 + 22.3257i 1.07104 + 1.22528i
\(333\) 1.76760 0.0968638
\(334\) −10.3592 + 1.01181i −0.566830 + 0.0553638i
\(335\) 5.74510 + 9.95080i 0.313888 + 0.543670i
\(336\) −0.566347 + 4.19661i −0.0308968 + 0.228944i
\(337\) 10.2973 0.560931 0.280465 0.959864i \(-0.409511\pi\)
0.280465 + 0.959864i \(0.409511\pi\)
\(338\) 17.7709 4.71114i 0.966610 0.256252i
\(339\) 13.2831i 0.721437i
\(340\) 5.57201 1.09895i 0.302184 0.0595990i
\(341\) −13.4534 + 7.76731i −0.728541 + 0.420623i
\(342\) −0.365998 3.74719i −0.0197909 0.202625i
\(343\) 11.9714i 0.646394i
\(344\) 6.92014 29.3558i 0.373109 1.58276i
\(345\) −0.997350 0.575820i −0.0536955 0.0310011i
\(346\) 11.0752 + 15.4820i 0.595409 + 0.832317i
\(347\) 8.66358 + 5.00192i 0.465085 + 0.268517i 0.714180 0.699962i \(-0.246800\pi\)
−0.249095 + 0.968479i \(0.580133\pi\)
\(348\) −20.7820 + 4.09878i −1.11403 + 0.219717i
\(349\) 10.9211 + 18.9158i 0.584591 + 1.01254i 0.994926 + 0.100607i \(0.0320785\pi\)
−0.410335 + 0.911935i \(0.634588\pi\)
\(350\) −0.747688 1.04519i −0.0399656 0.0558676i
\(351\) −18.3681 + 6.55311i −0.980418 + 0.349779i
\(352\) 22.8159 + 0.839527i 1.21609 + 0.0447469i
\(353\) 4.63051 2.67343i 0.246457 0.142292i −0.371684 0.928359i \(-0.621219\pi\)
0.618141 + 0.786067i \(0.287886\pi\)
\(354\) −6.36727 + 14.0226i −0.338416 + 0.745293i
\(355\) 4.27599 + 2.46874i 0.226946 + 0.131027i
\(356\) −5.23181 1.78543i −0.277285 0.0946274i
\(357\) 1.50313 2.60349i 0.0795540 0.137792i
\(358\) 9.18594 0.897216i 0.485492 0.0474193i
\(359\) 15.3255i 0.808851i −0.914571 0.404426i \(-0.867471\pi\)
0.914571 0.404426i \(-0.132529\pi\)
\(360\) 4.52227 + 1.06605i 0.238345 + 0.0561858i
\(361\) 8.18670 + 14.1798i 0.430879 + 0.746304i
\(362\) −6.65535 + 14.6571i −0.349798 + 0.770358i
\(363\) 6.16271i 0.323458i
\(364\) −5.62898 + 3.35444i −0.295039 + 0.175821i
\(365\) 5.44599i 0.285056i
\(366\) −0.275725 0.125199i −0.0144124 0.00654426i
\(367\) −17.4724 30.2631i −0.912053 1.57972i −0.811159 0.584826i \(-0.801163\pi\)
−0.100895 0.994897i \(-0.532170\pi\)
\(368\) 3.65791 1.50128i 0.190682 0.0782594i
\(369\) 14.5800i 0.759007i
\(370\) 0.147930 + 1.51454i 0.00769050 + 0.0787374i
\(371\) 4.60187 7.97068i 0.238917 0.413817i
\(372\) −2.89656 + 8.48774i −0.150179 + 0.440069i
\(373\) −13.8440 7.99284i −0.716815 0.413854i 0.0967640 0.995307i \(-0.469151\pi\)
−0.813579 + 0.581454i \(0.802484\pi\)
\(374\) −14.7582 6.70128i −0.763128 0.346515i
\(375\) 1.00895 0.582519i 0.0521021 0.0300811i
\(376\) −31.3027 + 9.41248i −1.61431 + 0.485412i
\(377\) −24.9742 21.2287i −1.28623 1.09333i
\(378\) 5.65331 4.04417i 0.290775 0.208010i
\(379\) −0.360892 0.625083i −0.0185378 0.0321084i 0.856608 0.515968i \(-0.172568\pi\)
−0.875145 + 0.483860i \(0.839234\pi\)
\(380\) 3.18010 0.627202i 0.163136 0.0321748i
\(381\) 10.3596 + 5.98112i 0.530739 + 0.306422i
\(382\) 12.2937 8.79447i 0.629001 0.449964i
\(383\) −29.8976 17.2614i −1.52769 0.882015i −0.999458 0.0329171i \(-0.989520\pi\)
−0.528236 0.849098i \(-0.677146\pi\)
\(384\) 10.2363 8.30391i 0.522367 0.423757i
\(385\) 3.66754i 0.186915i
\(386\) 18.8528 1.84140i 0.959582 0.0937250i
\(387\) −15.1697 + 8.75825i −0.771121 + 0.445207i
\(388\) −4.38276 22.2219i −0.222501 1.12814i
\(389\) 28.3941i 1.43964i 0.694163 + 0.719818i \(0.255775\pi\)
−0.694163 + 0.719818i \(0.744225\pi\)
\(390\) −2.53060 5.37459i −0.128142 0.272153i
\(391\) −2.80702 −0.141957
\(392\) −11.9689 + 12.7169i −0.604519 + 0.642300i
\(393\) −2.92656 5.06895i −0.147625 0.255695i
\(394\) 1.57433 + 16.1184i 0.0793137 + 0.812035i
\(395\) −14.8307 −0.746215
\(396\) −8.72671 9.98352i −0.438534 0.501691i
\(397\) 19.2805 33.3949i 0.967662 1.67604i 0.265378 0.964145i \(-0.414503\pi\)
0.702285 0.711896i \(-0.252163\pi\)
\(398\) −11.4588 + 8.19721i −0.574378 + 0.410889i
\(399\) 0.857877 1.48589i 0.0429476 0.0743874i
\(400\) −0.534964 + 3.96407i −0.0267482 + 0.198203i
\(401\) −24.7230 + 14.2738i −1.23461 + 0.712802i −0.967987 0.251000i \(-0.919241\pi\)
−0.266622 + 0.963801i \(0.585907\pi\)
\(402\) −11.0146 15.3972i −0.549360 0.767945i
\(403\) −13.0707 + 4.66317i −0.651099 + 0.232289i
\(404\) −33.3343 11.3758i −1.65845 0.565967i
\(405\) 0.686757 + 1.18950i 0.0341252 + 0.0591067i
\(406\) 10.6373 + 4.83009i 0.527920 + 0.239713i
\(407\) 2.17148 3.76111i 0.107636 0.186431i
\(408\) −8.96101 + 2.69451i −0.443636 + 0.133398i
\(409\) 16.0645 + 9.27487i 0.794341 + 0.458613i 0.841488 0.540275i \(-0.181680\pi\)
−0.0471479 + 0.998888i \(0.515013\pi\)
\(410\) −12.4927 + 1.22020i −0.616972 + 0.0602613i
\(411\) −25.4563 −1.25567
\(412\) −5.27108 6.03022i −0.259688 0.297088i
\(413\) 7.35578 4.24686i 0.361954 0.208974i
\(414\) −2.09094 0.949435i −0.102764 0.0466622i
\(415\) 14.8263 0.727796
\(416\) 19.9147 + 4.40502i 0.976399 + 0.215974i
\(417\) −2.41419 −0.118223
\(418\) −8.42292 3.82461i −0.411978 0.187068i
\(419\) 14.6025 8.43073i 0.713377 0.411868i −0.0989333 0.995094i \(-0.531543\pi\)
0.812310 + 0.583226i \(0.198210\pi\)
\(420\) 1.39347 + 1.59415i 0.0679942 + 0.0777867i
\(421\) 27.8277 1.35624 0.678120 0.734951i \(-0.262795\pi\)
0.678120 + 0.734951i \(0.262795\pi\)
\(422\) −6.04929 + 0.590851i −0.294475 + 0.0287622i
\(423\) 16.4406 + 9.49200i 0.799371 + 0.461517i
\(424\) −27.4344 + 8.24932i −1.33233 + 0.400622i
\(425\) 1.41984 2.45923i 0.0688721 0.119290i
\(426\) −7.40721 3.36340i −0.358880 0.162957i
\(427\) 0.0835056 + 0.144636i 0.00404112 + 0.00699943i
\(428\) −22.8763 7.80686i −1.10577 0.377359i
\(429\) −3.05042 + 16.6772i −0.147275 + 0.805181i
\(430\) −8.77394 12.2650i −0.423117 0.591471i
\(431\) 7.01128 4.04796i 0.337721 0.194984i −0.321543 0.946895i \(-0.604201\pi\)
0.659264 + 0.751912i \(0.270868\pi\)
\(432\) −21.4413 2.89357i −1.03159 0.139217i
\(433\) −4.48649 + 7.77083i −0.215607 + 0.373442i −0.953460 0.301519i \(-0.902506\pi\)
0.737853 + 0.674961i \(0.235840\pi\)
\(434\) 4.02288 2.87782i 0.193105 0.138140i
\(435\) −5.29559 + 9.17223i −0.253904 + 0.439775i
\(436\) 6.17766 + 7.06736i 0.295856 + 0.338465i
\(437\) −1.60204 −0.0766361
\(438\) 0.872255 + 8.93038i 0.0416780 + 0.426710i
\(439\) 3.21962 + 5.57654i 0.153664 + 0.266154i 0.932572 0.360985i \(-0.117559\pi\)
−0.778908 + 0.627139i \(0.784226\pi\)
\(440\) 7.82391 8.31289i 0.372990 0.396301i
\(441\) 10.1424 0.482972
\(442\) −11.8918 8.26094i −0.565633 0.392933i
\(443\) 10.0241i 0.476260i −0.971233 0.238130i \(-0.923466\pi\)
0.971233 0.238130i \(-0.0765344\pi\)
\(444\) −0.485153 2.45987i −0.0230243 0.116740i
\(445\) −2.39372 + 1.38202i −0.113473 + 0.0655139i
\(446\) −10.2294 + 0.999138i −0.484378 + 0.0473106i
\(447\) 2.50806i 0.118627i
\(448\) −7.25622 + 0.440156i −0.342824 + 0.0207954i
\(449\) −35.4627 20.4744i −1.67359 0.966247i −0.965603 0.260020i \(-0.916271\pi\)
−0.707985 0.706227i \(-0.750396\pi\)
\(450\) 1.88943 1.35163i 0.0890686 0.0637164i
\(451\) 31.0235 + 17.9114i 1.46084 + 0.843417i
\(452\) 22.3718 4.41233i 1.05228 0.207539i
\(453\) 4.30980 + 7.46480i 0.202492 + 0.350727i
\(454\) −2.56675 + 1.83616i −0.120464 + 0.0861753i
\(455\) −0.589495 + 3.22288i −0.0276360 + 0.151091i
\(456\) −5.11430 + 1.53783i −0.239499 + 0.0720155i
\(457\) −17.0300 + 9.83229i −0.796631 + 0.459935i −0.842292 0.539022i \(-0.818794\pi\)
0.0456608 + 0.998957i \(0.485461\pi\)
\(458\) 7.66878 + 3.48218i 0.358338 + 0.162711i
\(459\) 13.3017 + 7.67976i 0.620872 + 0.358460i
\(460\) 0.638521 1.87105i 0.0297712 0.0872381i
\(461\) −9.15438 + 15.8559i −0.426362 + 0.738481i −0.996547 0.0830360i \(-0.973538\pi\)
0.570185 + 0.821517i \(0.306872\pi\)
\(462\) −0.587410 6.01406i −0.0273288 0.279799i
\(463\) 34.7475i 1.61485i −0.589968 0.807426i \(-0.700860\pi\)
0.589968 0.807426i \(-0.299140\pi\)
\(464\) −13.8066 33.6403i −0.640957 1.56171i
\(465\) 2.24209 + 3.88342i 0.103975 + 0.180089i
\(466\) −1.28119 0.581754i −0.0593501 0.0269492i
\(467\) 12.6309i 0.584489i −0.956344 0.292245i \(-0.905598\pi\)
0.956344 0.292245i \(-0.0944021\pi\)
\(468\) −6.06398 10.1758i −0.280307 0.470375i
\(469\) 10.4411i 0.482124i
\(470\) −6.75719 + 14.8813i −0.311686 + 0.686424i
\(471\) −4.55254 7.88523i −0.209770 0.363332i
\(472\) −25.7325 6.06600i −1.18443 0.279210i
\(473\) 43.0377i 1.97887i
\(474\) 24.3196 2.37536i 1.11703 0.109104i
\(475\) 0.810340 1.40355i 0.0371810 0.0643993i
\(476\) 4.88421 + 1.66680i 0.223867 + 0.0763978i
\(477\) 14.4090 + 8.31901i 0.659741 + 0.380901i
\(478\) 1.23194 2.71311i 0.0563478 0.124095i
\(479\) 1.01749 0.587451i 0.0464905 0.0268413i −0.476575 0.879134i \(-0.658122\pi\)
0.523065 + 0.852293i \(0.324788\pi\)
\(480\) 0.242336 6.58599i 0.0110611 0.300608i
\(481\) 2.51274 2.95607i 0.114571 0.134785i
\(482\) −11.8614 16.5809i −0.540271 0.755240i
\(483\) −0.523245 0.906286i −0.0238085 0.0412375i
\(484\) −10.3795 + 2.04711i −0.471794 + 0.0930506i
\(485\) −9.80772 5.66249i −0.445345 0.257120i
\(486\) 12.0349 + 16.8235i 0.545915 + 0.763130i
\(487\) 12.8997 + 7.44763i 0.584540 + 0.337484i 0.762936 0.646475i \(-0.223757\pi\)
−0.178396 + 0.983959i \(0.557091\pi\)
\(488\) 0.119275 0.505975i 0.00539934 0.0229044i
\(489\) 8.14199i 0.368194i
\(490\) 0.848814 + 8.69039i 0.0383455 + 0.392592i
\(491\) −29.0986 + 16.8001i −1.31320 + 0.758178i −0.982625 0.185600i \(-0.940577\pi\)
−0.330578 + 0.943779i \(0.607244\pi\)
\(492\) 20.2902 4.00179i 0.914755 0.180414i
\(493\) 25.8150i 1.16265i
\(494\) −6.78696 4.71475i −0.305360 0.212127i
\(495\) −6.62997 −0.297995
\(496\) −15.2575 2.05906i −0.685084 0.0924544i
\(497\) 2.24333 + 3.88557i 0.100627 + 0.174292i
\(498\) −24.3124 + 2.37466i −1.08946 + 0.106411i
\(499\) 17.4987 0.783349 0.391674 0.920104i \(-0.371896\pi\)
0.391674 + 0.920104i \(0.371896\pi\)
\(500\) 1.31625 + 1.50582i 0.0588646 + 0.0673421i
\(501\) 4.28729 7.42580i 0.191542 0.331760i
\(502\) −2.25997 3.15920i −0.100868 0.141002i
\(503\) −7.33267 + 12.7006i −0.326948 + 0.566290i −0.981905 0.189376i \(-0.939353\pi\)
0.654957 + 0.755666i \(0.272687\pi\)
\(504\) 3.07445 + 2.89361i 0.136947 + 0.128892i
\(505\) −15.2516 + 8.80549i −0.678685 + 0.391839i
\(506\) −4.58891 + 3.28274i −0.204002 + 0.145935i
\(507\) −5.36115 + 14.1649i −0.238097 + 0.629084i
\(508\) −6.63241 + 19.4348i −0.294265 + 0.862282i
\(509\) −17.8928 30.9912i −0.793084 1.37366i −0.924048 0.382275i \(-0.875141\pi\)
0.130964 0.991387i \(-0.458193\pi\)
\(510\) −1.93438 + 4.26007i −0.0856557 + 0.188639i
\(511\) 2.47437 4.28574i 0.109460 0.189590i
\(512\) 17.3860 + 14.4819i 0.768360 + 0.640017i
\(513\) 7.59167 + 4.38305i 0.335180 + 0.193516i
\(514\) 0.901279 + 9.22754i 0.0397537 + 0.407009i
\(515\) −4.00462 −0.176465
\(516\) 16.3520 + 18.7070i 0.719857 + 0.823529i
\(517\) 40.3943 23.3217i 1.77654 1.02569i
\(518\) −0.571715 + 1.25909i −0.0251197 + 0.0553210i
\(519\) −15.6816 −0.688347
\(520\) 8.21148 6.04745i 0.360097 0.265198i
\(521\) 33.7099 1.47686 0.738428 0.674332i \(-0.235568\pi\)
0.738428 + 0.674332i \(0.235568\pi\)
\(522\) −8.73157 + 19.2295i −0.382171 + 0.841652i
\(523\) −3.92771 + 2.26767i −0.171747 + 0.0991581i −0.583409 0.812178i \(-0.698282\pi\)
0.411662 + 0.911336i \(0.364948\pi\)
\(524\) 7.56518 6.61281i 0.330486 0.288882i
\(525\) 1.05866 0.0462039
\(526\) −0.112855 1.15544i −0.00492071 0.0503795i
\(527\) 9.46548 + 5.46490i 0.412323 + 0.238055i
\(528\) −11.4983 + 14.8847i −0.500399 + 0.647771i
\(529\) 11.0114 19.0724i 0.478758 0.829233i
\(530\) −5.92216 + 13.0423i −0.257242 + 0.566523i
\(531\) 7.67724 + 13.2974i 0.333164 + 0.577056i
\(532\) 2.78755 + 0.951292i 0.120856 + 0.0412437i
\(533\) 24.3832 + 20.7263i 1.05615 + 0.897757i
\(534\) 3.70390 2.64963i 0.160283 0.114661i
\(535\) −10.4667 + 6.04294i −0.452514 + 0.261259i
\(536\) 22.2738 23.6659i 0.962083 1.02221i
\(537\) −3.80172 + 6.58477i −0.164056 + 0.284154i
\(538\) −14.6972 20.5452i −0.633643 0.885764i
\(539\) 12.4598 21.5811i 0.536683 0.929563i
\(540\) −8.14482 + 7.11948i −0.350497 + 0.306374i
\(541\) 28.0708 1.20686 0.603430 0.797416i \(-0.293800\pi\)
0.603430 + 0.797416i \(0.293800\pi\)
\(542\) −13.0413 + 1.27378i −0.560171 + 0.0547134i
\(543\) −6.63052 11.4844i −0.284543 0.492843i
\(544\) −7.51484 14.1974i −0.322196 0.608709i
\(545\) 4.69338 0.201042
\(546\) 0.450469 5.37932i 0.0192783 0.230213i
\(547\) 8.48845i 0.362940i 0.983396 + 0.181470i \(0.0580855\pi\)
−0.983396 + 0.181470i \(0.941914\pi\)
\(548\) −8.45600 42.8744i −0.361222 1.83150i
\(549\) −0.261465 + 0.150957i −0.0111590 + 0.00644268i
\(550\) −0.554860 5.68081i −0.0236593 0.242230i
\(551\) 14.7334i 0.627662i
\(552\) −0.747377 + 3.17043i −0.0318105 + 0.134943i
\(553\) −11.6711 6.73830i −0.496305 0.286542i
\(554\) 5.41502 + 7.56961i 0.230062 + 0.321602i
\(555\) −1.08567 0.626814i −0.0460843 0.0266068i
\(556\) −0.801938 4.06606i −0.0340097 0.172440i
\(557\) 6.60522 + 11.4406i 0.279872 + 0.484753i 0.971353 0.237642i \(-0.0763746\pi\)
−0.691481 + 0.722395i \(0.743041\pi\)
\(558\) 5.20237 + 7.27235i 0.220234 + 0.307863i
\(559\) −6.91759 + 37.8197i −0.292583 + 1.59960i
\(560\) −2.22205 + 2.87647i −0.0938989 + 0.121553i
\(561\) 11.5637 6.67628i 0.488218 0.281873i
\(562\) −0.367313 + 0.808931i −0.0154942 + 0.0341227i
\(563\) −13.6293 7.86886i −0.574405 0.331633i 0.184502 0.982832i \(-0.440933\pi\)
−0.758907 + 0.651199i \(0.774266\pi\)
\(564\) 8.69703 25.4848i 0.366211 1.07310i
\(565\) 5.70070 9.87391i 0.239830 0.415398i
\(566\) −5.28850 + 0.516542i −0.222292 + 0.0217119i
\(567\) 1.24811i 0.0524155i
\(568\) 3.20427 13.5928i 0.134448 0.570339i
\(569\) 17.8062 + 30.8412i 0.746475 + 1.29293i 0.949503 + 0.313759i \(0.101588\pi\)
−0.203028 + 0.979173i \(0.565078\pi\)
\(570\) −1.10400 + 2.43134i −0.0462416 + 0.101838i
\(571\) 22.5745i 0.944715i −0.881407 0.472357i \(-0.843403\pi\)
0.881407 0.472357i \(-0.156597\pi\)
\(572\) −29.1016 + 0.402151i −1.21680 + 0.0168148i
\(573\) 12.4522i 0.520200i
\(574\) −10.3856 4.71580i −0.433486 0.196834i
\(575\) −0.494250 0.856067i −0.0206117 0.0357005i
\(576\) −0.795689 13.1174i −0.0331537 0.546558i
\(577\) 5.11683i 0.213016i 0.994312 + 0.106508i \(0.0339670\pi\)
−0.994312 + 0.106508i \(0.966033\pi\)
\(578\) −1.22852 12.5779i −0.0510998 0.523173i
\(579\) −7.80247 + 13.5143i −0.324260 + 0.561634i
\(580\) −17.2073 5.87223i −0.714494 0.243831i
\(581\) 11.6676 + 6.73631i 0.484055 + 0.279469i
\(582\) 16.9897 + 7.71455i 0.704246 + 0.319778i
\(583\) 35.4025 20.4397i 1.46622 0.846524i
\(584\) −14.7511 + 4.43556i −0.610407 + 0.183545i
\(585\) −5.82614 1.06566i −0.240881 0.0440595i
\(586\) 23.4964 16.8084i 0.970626 0.694350i
\(587\) 8.14685 + 14.1108i 0.336256 + 0.582413i 0.983725 0.179679i \(-0.0575058\pi\)
−0.647469 + 0.762092i \(0.724172\pi\)
\(588\) −2.78379 14.1146i −0.114801 0.582077i
\(589\) 5.40221 + 3.11897i 0.222594 + 0.128515i
\(590\) −10.7512 + 7.69099i −0.442619 + 0.316633i
\(591\) −11.5542 6.67082i −0.475276 0.274401i
\(592\) 3.98185 1.63423i 0.163653 0.0671662i
\(593\) 45.0181i 1.84867i −0.381581 0.924335i \(-0.624620\pi\)
0.381581 0.924335i \(-0.375380\pi\)
\(594\) 30.7269 3.00119i 1.26074 0.123140i
\(595\) 2.23469 1.29020i 0.0916132 0.0528929i
\(596\) 4.22417 0.833120i 0.173029 0.0341259i
\(597\) 11.6066i 0.475025i
\(598\) −4.56018 + 2.14714i −0.186480 + 0.0878031i
\(599\) 17.8885 0.730903 0.365452 0.930830i \(-0.380915\pi\)
0.365452 + 0.930830i \(0.380915\pi\)
\(600\) −2.39958 2.25843i −0.0979624 0.0922001i
\(601\) −17.9649 31.1161i −0.732803 1.26925i −0.955681 0.294406i \(-0.904878\pi\)
0.222877 0.974846i \(-0.428455\pi\)
\(602\) −1.33210 13.6384i −0.0542923 0.555860i
\(603\) −18.8748 −0.768641
\(604\) −11.1409 + 9.73837i −0.453316 + 0.396249i
\(605\) −2.64485 + 4.58102i −0.107529 + 0.186245i
\(606\) 23.5993 16.8821i 0.958656 0.685788i
\(607\) −4.90763 + 8.50026i −0.199194 + 0.345015i −0.948267 0.317473i \(-0.897166\pi\)
0.749073 + 0.662487i \(0.230499\pi\)
\(608\) −4.28893 8.10287i −0.173939 0.328615i
\(609\) −8.33475 + 4.81207i −0.337741 + 0.194995i
\(610\) −0.151227 0.211399i −0.00612302 0.00855931i
\(611\) 39.2454 14.0014i 1.58770 0.566435i
\(612\) −3.01316 + 8.82940i −0.121800 + 0.356907i
\(613\) −7.95475 13.7780i −0.321289 0.556489i 0.659465 0.751735i \(-0.270783\pi\)
−0.980754 + 0.195246i \(0.937449\pi\)
\(614\) 37.4020 + 16.9832i 1.50942 + 0.685385i
\(615\) 5.17028 8.95518i 0.208486 0.361108i
\(616\) 9.93398 2.98707i 0.400252 0.120353i
\(617\) −29.7504 17.1764i −1.19771 0.691496i −0.237663 0.971348i \(-0.576381\pi\)
−0.960043 + 0.279852i \(0.909715\pi\)
\(618\) 6.56681 0.641398i 0.264156 0.0258008i
\(619\) −36.9709 −1.48599 −0.742994 0.669298i \(-0.766595\pi\)
−0.742994 + 0.669298i \(0.766595\pi\)
\(620\) −5.79583 + 5.06620i −0.232766 + 0.203464i
\(621\) 4.63038 2.67335i 0.185811 0.107278i
\(622\) −38.1634 17.3289i −1.53021 0.694826i
\(623\) −2.51166 −0.100628
\(624\) −12.4967 + 11.2318i −0.500267 + 0.449634i
\(625\) 1.00000 0.0400000
\(626\) −27.4228 12.4519i −1.09603 0.497678i
\(627\) 6.59970 3.81034i 0.263567 0.152170i
\(628\) 11.7684 10.2869i 0.469609 0.410490i
\(629\) −3.05560 −0.121835
\(630\) 2.10100 0.205211i 0.0837059 0.00817578i
\(631\) 22.4180 + 12.9431i 0.892448 + 0.515255i 0.874742 0.484588i \(-0.161030\pi\)
0.0177056 + 0.999843i \(0.494364\pi\)
\(632\) 12.0791 + 40.1709i 0.480480 + 1.59791i
\(633\) 2.50358 4.33632i 0.0995083 0.172353i
\(634\) −17.6611 8.01940i −0.701411 0.318491i
\(635\) 5.13384 + 8.89208i 0.203730 + 0.352871i
\(636\) 7.62228 22.3355i 0.302243 0.885659i
\(637\) 14.4180 16.9618i 0.571261 0.672052i
\(638\) 30.1900 + 42.2024i 1.19523 + 1.67081i
\(639\) −7.02411 + 4.05537i −0.277870 + 0.160428i
\(640\) 11.1729 1.77957i 0.441647 0.0703435i
\(641\) −22.0205 + 38.1406i −0.869757 + 1.50646i −0.00751163 + 0.999972i \(0.502391\pi\)
−0.862245 + 0.506491i \(0.830942\pi\)
\(642\) 16.1955 11.5857i 0.639185 0.457249i
\(643\) 3.63461 6.29534i 0.143335 0.248264i −0.785415 0.618969i \(-0.787551\pi\)
0.928751 + 0.370705i \(0.120884\pi\)
\(644\) 1.35259 1.18232i 0.0532996 0.0465898i
\(645\) 12.4232 0.489161
\(646\) 0.632692 + 6.47767i 0.0248929 + 0.254860i
\(647\) 22.3305 + 38.6775i 0.877902 + 1.52057i 0.853639 + 0.520865i \(0.174391\pi\)
0.0242628 + 0.999706i \(0.492276\pi\)
\(648\) 2.66257 2.82897i 0.104596 0.111132i
\(649\) 37.7256 1.48086
\(650\) 0.425507 5.08123i 0.0166898 0.199302i
\(651\) 4.07476i 0.159702i
\(652\) −13.7131 + 2.70459i −0.537045 + 0.105920i
\(653\) −28.1392 + 16.2462i −1.10117 + 0.635762i −0.936528 0.350592i \(-0.885981\pi\)
−0.164643 + 0.986353i \(0.552647\pi\)
\(654\) −7.69624 + 0.751713i −0.300947 + 0.0293943i
\(655\) 5.02397i 0.196303i
\(656\) 13.4799 + 32.8443i 0.526302 + 1.28235i
\(657\) 7.74752 + 4.47303i 0.302259 + 0.174510i
\(658\) −12.0789 + 8.64078i −0.470884 + 0.336853i
\(659\) −25.1640 14.5284i −0.980251 0.565948i −0.0779048 0.996961i \(-0.524823\pi\)
−0.902346 + 0.431013i \(0.858156\pi\)
\(660\) 1.81973 + 9.22656i 0.0708328 + 0.359144i
\(661\) 3.00066 + 5.19730i 0.116712 + 0.202151i 0.918463 0.395507i \(-0.129431\pi\)
−0.801751 + 0.597659i \(0.796098\pi\)
\(662\) −27.1362 + 19.4123i −1.05468 + 0.754479i
\(663\) 11.2348 4.00817i 0.436322 0.155664i
\(664\) −12.0755 40.1590i −0.468620 1.55847i
\(665\) 1.27540 0.736352i 0.0494578 0.0285545i
\(666\) −2.27610 1.03351i −0.0881973 0.0400479i
\(667\) 7.78237 + 4.49315i 0.301335 + 0.173976i
\(668\) 13.9310 + 4.75413i 0.539005 + 0.183943i
\(669\) 4.23359 7.33279i 0.163680 0.283502i
\(670\) −1.57963 16.1726i −0.0610263 0.624803i
\(671\) 0.741796i 0.0286367i
\(672\) 3.18303 5.07276i 0.122788 0.195686i
\(673\) −3.97923 6.89223i −0.153388 0.265676i 0.779083 0.626921i \(-0.215685\pi\)
−0.932471 + 0.361245i \(0.882352\pi\)
\(674\) −13.2597 6.02085i −0.510744 0.231914i
\(675\) 5.40891i 0.208189i
\(676\) −25.6379 4.32420i −0.986073 0.166315i
\(677\) 34.9163i 1.34194i 0.741483 + 0.670972i \(0.234123\pi\)
−0.741483 + 0.670972i \(0.765877\pi\)
\(678\) −7.76661 + 17.1044i −0.298275 + 0.656889i
\(679\) −5.14547 8.91222i −0.197465 0.342020i
\(680\) −7.81753 1.84285i −0.299789 0.0706702i
\(681\) 2.59985i 0.0996264i
\(682\) 21.8652 2.13564i 0.837262 0.0817777i
\(683\) −8.39031 + 14.5324i −0.321046 + 0.556068i −0.980704 0.195498i \(-0.937368\pi\)
0.659658 + 0.751566i \(0.270701\pi\)
\(684\) −1.71969 + 5.03919i −0.0657541 + 0.192678i
\(685\) −18.9228 10.9251i −0.723003 0.417426i
\(686\) −6.99967 + 15.4153i −0.267249 + 0.588561i
\(687\) −6.00880 + 3.46918i −0.229250 + 0.132358i
\(688\) −26.0753 + 33.7547i −0.994110 + 1.28689i
\(689\) 34.3956 12.2711i 1.31037 0.467493i
\(690\) 0.947588 + 1.32462i 0.0360740 + 0.0504276i
\(691\) −1.56844 2.71661i −0.0596661 0.103345i 0.834649 0.550782i \(-0.185670\pi\)
−0.894316 + 0.447437i \(0.852337\pi\)
\(692\) −5.20908 26.4116i −0.198019 1.00402i
\(693\) −5.21747 3.01231i −0.198195 0.114428i
\(694\) −8.23132 11.5065i −0.312456 0.436780i
\(695\) −1.79457 1.03610i −0.0680721 0.0393014i
\(696\) 29.1572 + 6.87333i 1.10520 + 0.260533i
\(697\) 25.2041i 0.954675i
\(698\) −3.00277 30.7432i −0.113656 1.16365i
\(699\) 1.00387 0.579583i 0.0379698 0.0219219i
\(700\) 0.351664 + 1.78304i 0.0132916 + 0.0673926i
\(701\) 15.2711i 0.576782i −0.957513 0.288391i \(-0.906880\pi\)
0.957513 0.288391i \(-0.0931203\pi\)
\(702\) 27.4839 + 2.30153i 1.03731 + 0.0868656i
\(703\) −1.74392 −0.0657731
\(704\) −28.8888 14.4215i −1.08879 0.543531i
\(705\) −6.73198 11.6601i −0.253541 0.439146i
\(706\) −7.52578 + 0.735064i −0.283236 + 0.0276645i
\(707\) −16.0030 −0.601855
\(708\) 16.3980 14.3337i 0.616276 0.538694i
\(709\) 3.41446 5.91402i 0.128233 0.222106i −0.794759 0.606925i \(-0.792403\pi\)
0.922992 + 0.384819i \(0.125736\pi\)
\(710\) −4.06264 5.67913i −0.152468 0.213134i
\(711\) 12.1811 21.0983i 0.456828 0.791249i
\(712\) 5.69297 + 5.35810i 0.213353 + 0.200803i
\(713\) 3.29497 1.90235i 0.123398 0.0712436i
\(714\) −3.45781 + 2.47359i −0.129405 + 0.0925719i
\(715\) −9.42486 + 11.0877i −0.352470 + 0.414658i
\(716\) −12.3532 4.21569i −0.461660 0.157548i
\(717\) 1.22735 + 2.12583i 0.0458362 + 0.0793906i
\(718\) −8.96085 + 19.7344i −0.334416 + 0.736482i
\(719\) 1.44358 2.50036i 0.0538366 0.0932477i −0.837851 0.545899i \(-0.816188\pi\)
0.891688 + 0.452651i \(0.149522\pi\)
\(720\) −5.19993 4.01691i −0.193790 0.149701i
\(721\) −3.15144 1.81949i −0.117366 0.0677612i
\(722\) −2.25095 23.0458i −0.0837716 0.857676i
\(723\) 16.7947 0.624602
\(724\) 17.1400 14.9822i 0.637002 0.556811i
\(725\) −7.87290 + 4.54542i −0.292392 + 0.168813i
\(726\) 3.60334 7.93561i 0.133732 0.294518i
\(727\) 43.6301 1.61815 0.809075 0.587705i \(-0.199968\pi\)
0.809075 + 0.587705i \(0.199968\pi\)
\(728\) 9.20969 1.02819i 0.341334 0.0381073i
\(729\) −21.1610 −0.783740
\(730\) −3.18427 + 7.01271i −0.117855 + 0.259552i
\(731\) 26.2235 15.1402i 0.969912 0.559979i
\(732\) 0.281843 + 0.322433i 0.0104172 + 0.0119175i
\(733\) 0.536145 0.0198030 0.00990149 0.999951i \(-0.496848\pi\)
0.00990149 + 0.999951i \(0.496848\pi\)
\(734\) 4.80408 + 49.1854i 0.177322 + 1.81547i
\(735\) −6.22955 3.59663i −0.229780 0.132664i
\(736\) −5.58802 0.205615i −0.205977 0.00757907i
\(737\) −23.1875 + 40.1619i −0.854123 + 1.47938i
\(738\) 8.52496 18.7745i 0.313808 0.691098i
\(739\) 25.8337 + 44.7452i 0.950307 + 1.64598i 0.744760 + 0.667333i \(0.232564\pi\)
0.205547 + 0.978647i \(0.434103\pi\)
\(740\) 0.695067 2.03675i 0.0255512 0.0748723i
\(741\) 6.41199 2.28757i 0.235550 0.0840361i
\(742\) −10.5862 + 7.57299i −0.388632 + 0.278013i
\(743\) 6.05907 3.49821i 0.222286 0.128337i −0.384722 0.923032i \(-0.625703\pi\)
0.607008 + 0.794696i \(0.292369\pi\)
\(744\) 8.69263 9.23589i 0.318687 0.338604i
\(745\) 1.07638 1.86435i 0.0394357 0.0683046i
\(746\) 13.1533 + 18.3868i 0.481575 + 0.673190i
\(747\) −12.1775 + 21.0921i −0.445552 + 0.771719i
\(748\) 15.0856 + 17.2582i 0.551585 + 0.631024i
\(749\) −10.9824 −0.401287
\(750\) −1.63981 + 0.160165i −0.0598773 + 0.00584839i
\(751\) −17.9187 31.0362i −0.653864 1.13253i −0.982177 0.187957i \(-0.939814\pi\)
0.328313 0.944569i \(-0.393520\pi\)
\(752\) 45.8114 + 6.18241i 1.67057 + 0.225449i
\(753\) 3.19993 0.116612
\(754\) 19.7464 + 41.9382i 0.719121 + 1.52730i
\(755\) 7.39857i 0.269261i
\(756\) −9.64430 + 1.90212i −0.350760 + 0.0691793i
\(757\) −2.11175 + 1.21922i −0.0767528 + 0.0443133i −0.537885 0.843018i \(-0.680777\pi\)
0.461132 + 0.887331i \(0.347443\pi\)
\(758\) 0.0992279 + 1.01592i 0.00360412 + 0.0368999i
\(759\) 4.64808i 0.168715i
\(760\) −4.46168 1.05177i −0.161842 0.0381516i
\(761\) −20.1359 11.6254i −0.729924 0.421422i 0.0884703 0.996079i \(-0.471802\pi\)
−0.818394 + 0.574657i \(0.805135\pi\)
\(762\) −9.84272 13.7590i −0.356564 0.498438i
\(763\) 3.69346 + 2.13242i 0.133712 + 0.0771989i
\(764\) −20.9725 + 4.13635i −0.758760 + 0.149648i
\(765\) 2.33235 + 4.03974i 0.0843262 + 0.146057i
\(766\) 28.4058 + 39.7083i 1.02634 + 1.43472i
\(767\) 33.1517 + 6.06377i 1.19704 + 0.218950i
\(768\) −18.0364 + 4.70765i −0.650831 + 0.169873i
\(769\) −8.79396 + 5.07719i −0.317118 +