Properties

Label 520.2.ca.b.101.5
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.5
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.b.381.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30078 + 0.554941i) q^{2} +(0.176551 - 0.101932i) q^{3} +(1.38408 - 1.44372i) q^{4} +1.00000 q^{5} +(-0.173088 + 0.230566i) q^{6} +(0.820502 + 0.473717i) q^{7} +(-0.999213 + 2.64605i) q^{8} +(-1.47922 + 2.56208i) q^{9} +O(q^{10})\) \(q+(-1.30078 + 0.554941i) q^{2} +(0.176551 - 0.101932i) q^{3} +(1.38408 - 1.44372i) q^{4} +1.00000 q^{5} +(-0.173088 + 0.230566i) q^{6} +(0.820502 + 0.473717i) q^{7} +(-0.999213 + 2.64605i) q^{8} +(-1.47922 + 2.56208i) q^{9} +(-1.30078 + 0.554941i) q^{10} +(0.455050 + 0.788169i) q^{11} +(0.0972001 - 0.395971i) q^{12} +(-2.46575 + 2.63061i) q^{13} +(-1.33018 - 0.160874i) q^{14} +(0.176551 - 0.101932i) q^{15} +(-0.168640 - 3.99644i) q^{16} +(-1.02632 + 1.77763i) q^{17} +(0.502341 - 4.15360i) q^{18} +(0.975331 - 1.68932i) q^{19} +(1.38408 - 1.44372i) q^{20} +0.193147 q^{21} +(-1.02931 - 0.772713i) q^{22} +(3.80196 + 6.58518i) q^{23} +(0.0933042 + 0.569013i) q^{24} +1.00000 q^{25} +(1.74757 - 4.79020i) q^{26} +1.21471i q^{27} +(1.81955 - 0.528910i) q^{28} +(7.35427 - 4.24599i) q^{29} +(-0.173088 + 0.230566i) q^{30} +6.07035i q^{31} +(2.43715 + 5.10493i) q^{32} +(0.160679 + 0.0927679i) q^{33} +(0.348536 - 2.88187i) q^{34} +(0.820502 + 0.473717i) q^{35} +(1.65157 + 5.68171i) q^{36} +(-5.00013 - 8.66049i) q^{37} +(-0.331221 + 2.73869i) q^{38} +(-0.167187 + 0.715773i) q^{39} +(-0.999213 + 2.64605i) q^{40} +(-4.12069 + 2.37908i) q^{41} +(-0.251243 + 0.107185i) q^{42} +(4.14228 + 2.39155i) q^{43} +(1.76772 + 0.433927i) q^{44} +(-1.47922 + 2.56208i) q^{45} +(-8.59992 - 6.45604i) q^{46} +10.4185i q^{47} +(-0.437138 - 0.688385i) q^{48} +(-3.05118 - 5.28481i) q^{49} +(-1.30078 + 0.554941i) q^{50} +0.418457i q^{51} +(0.385062 + 7.20081i) q^{52} +11.4674i q^{53} +(-0.674091 - 1.58007i) q^{54} +(0.455050 + 0.788169i) q^{55} +(-2.07333 + 1.69774i) q^{56} -0.397668i q^{57} +(-7.21004 + 9.60430i) q^{58} +(4.67272 - 8.09338i) q^{59} +(0.0972001 - 0.395971i) q^{60} +(3.13747 + 1.81142i) q^{61} +(-3.36869 - 7.89622i) q^{62} +(-2.42741 + 1.40146i) q^{63} +(-6.00315 - 5.28793i) q^{64} +(-2.46575 + 2.63061i) q^{65} +(-0.260489 - 0.0315039i) q^{66} +(-0.283940 - 0.491798i) q^{67} +(1.14590 + 3.94210i) q^{68} +(1.34248 + 0.775080i) q^{69} +(-1.33018 - 0.160874i) q^{70} +(8.63801 + 4.98716i) q^{71} +(-5.30134 - 6.47416i) q^{72} +1.67947i q^{73} +(11.3102 + 8.49065i) q^{74} +(0.176551 - 0.101932i) q^{75} +(-1.08897 - 3.74626i) q^{76} +0.862259i q^{77} +(-0.179737 - 1.02385i) q^{78} +5.13825 q^{79} +(-0.168640 - 3.99644i) q^{80} +(-4.31384 - 7.47179i) q^{81} +(4.03988 - 5.38141i) q^{82} -15.0936 q^{83} +(0.267331 - 0.278850i) q^{84} +(-1.02632 + 1.77763i) q^{85} +(-6.71538 - 0.812165i) q^{86} +(0.865601 - 1.49926i) q^{87} +(-2.54023 + 0.416535i) q^{88} +(-1.09916 + 0.634602i) q^{89} +(0.502341 - 4.15360i) q^{90} +(-3.26931 + 0.990353i) q^{91} +(14.7694 + 3.62547i) q^{92} +(0.618761 + 1.07173i) q^{93} +(-5.78164 - 13.5522i) q^{94} +(0.975331 - 1.68932i) q^{95} +(0.950635 + 0.652855i) q^{96} +(-6.15706 - 3.55478i) q^{97} +(6.90169 + 5.18117i) q^{98} -2.69247 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30078 + 0.554941i −0.919794 + 0.392403i
\(3\) 0.176551 0.101932i 0.101932 0.0588503i −0.448168 0.893950i \(-0.647923\pi\)
0.550099 + 0.835099i \(0.314590\pi\)
\(4\) 1.38408 1.44372i 0.692040 0.721859i
\(5\) 1.00000 0.447214
\(6\) −0.173088 + 0.230566i −0.0706631 + 0.0941283i
\(7\) 0.820502 + 0.473717i 0.310121 + 0.179048i 0.646980 0.762507i \(-0.276032\pi\)
−0.336860 + 0.941555i \(0.609365\pi\)
\(8\) −0.999213 + 2.64605i −0.353275 + 0.935519i
\(9\) −1.47922 + 2.56208i −0.493073 + 0.854028i
\(10\) −1.30078 + 0.554941i −0.411344 + 0.175488i
\(11\) 0.455050 + 0.788169i 0.137203 + 0.237642i 0.926437 0.376450i \(-0.122856\pi\)
−0.789234 + 0.614093i \(0.789522\pi\)
\(12\) 0.0972001 0.395971i 0.0280592 0.114307i
\(13\) −2.46575 + 2.63061i −0.683875 + 0.729599i
\(14\) −1.33018 0.160874i −0.355506 0.0429953i
\(15\) 0.176551 0.101932i 0.0455852 0.0263186i
\(16\) −0.168640 3.99644i −0.0421600 0.999111i
\(17\) −1.02632 + 1.77763i −0.248919 + 0.431140i −0.963226 0.268692i \(-0.913409\pi\)
0.714307 + 0.699832i \(0.246742\pi\)
\(18\) 0.502341 4.15360i 0.118403 0.979013i
\(19\) 0.975331 1.68932i 0.223756 0.387557i −0.732189 0.681101i \(-0.761501\pi\)
0.955946 + 0.293544i \(0.0948347\pi\)
\(20\) 1.38408 1.44372i 0.309490 0.322825i
\(21\) 0.193147 0.0421481
\(22\) −1.02931 0.772713i −0.219449 0.164743i
\(23\) 3.80196 + 6.58518i 0.792763 + 1.37311i 0.924250 + 0.381788i \(0.124692\pi\)
−0.131487 + 0.991318i \(0.541975\pi\)
\(24\) 0.0933042 + 0.569013i 0.0190456 + 0.116149i
\(25\) 1.00000 0.200000
\(26\) 1.74757 4.79020i 0.342727 0.939435i
\(27\) 1.21471i 0.233770i
\(28\) 1.81955 0.528910i 0.343863 0.0999546i
\(29\) 7.35427 4.24599i 1.36565 0.788460i 0.375283 0.926910i \(-0.377545\pi\)
0.990369 + 0.138450i \(0.0442120\pi\)
\(30\) −0.173088 + 0.230566i −0.0316015 + 0.0420955i
\(31\) 6.07035i 1.09027i 0.838349 + 0.545134i \(0.183521\pi\)
−0.838349 + 0.545134i \(0.816479\pi\)
\(32\) 2.43715 + 5.10493i 0.430832 + 0.902432i
\(33\) 0.160679 + 0.0927679i 0.0279706 + 0.0161488i
\(34\) 0.348536 2.88187i 0.0597734 0.494236i
\(35\) 0.820502 + 0.473717i 0.138690 + 0.0800728i
\(36\) 1.65157 + 5.68171i 0.275261 + 0.946951i
\(37\) −5.00013 8.66049i −0.822017 1.42378i −0.904178 0.427156i \(-0.859515\pi\)
0.0821607 0.996619i \(-0.473818\pi\)
\(38\) −0.331221 + 2.73869i −0.0537311 + 0.444275i
\(39\) −0.167187 + 0.715773i −0.0267714 + 0.114615i
\(40\) −0.999213 + 2.64605i −0.157989 + 0.418377i
\(41\) −4.12069 + 2.37908i −0.643544 + 0.371550i −0.785978 0.618254i \(-0.787840\pi\)
0.142434 + 0.989804i \(0.454507\pi\)
\(42\) −0.251243 + 0.107185i −0.0387676 + 0.0165390i
\(43\) 4.14228 + 2.39155i 0.631692 + 0.364707i 0.781407 0.624022i \(-0.214502\pi\)
−0.149715 + 0.988729i \(0.547836\pi\)
\(44\) 1.76772 + 0.433927i 0.266494 + 0.0654169i
\(45\) −1.47922 + 2.56208i −0.220509 + 0.381933i
\(46\) −8.59992 6.45604i −1.26799 0.951892i
\(47\) 10.4185i 1.51969i 0.650104 + 0.759846i \(0.274725\pi\)
−0.650104 + 0.759846i \(0.725275\pi\)
\(48\) −0.437138 0.688385i −0.0630954 0.0993599i
\(49\) −3.05118 5.28481i −0.435883 0.754972i
\(50\) −1.30078 + 0.554941i −0.183959 + 0.0784805i
\(51\) 0.418457i 0.0585957i
\(52\) 0.385062 + 7.20081i 0.0533985 + 0.998573i
\(53\) 11.4674i 1.57516i 0.616209 + 0.787582i \(0.288667\pi\)
−0.616209 + 0.787582i \(0.711333\pi\)
\(54\) −0.674091 1.58007i −0.0917321 0.215021i
\(55\) 0.455050 + 0.788169i 0.0613589 + 0.106277i
\(56\) −2.07333 + 1.69774i −0.277061 + 0.226871i
\(57\) 0.397668i 0.0526724i
\(58\) −7.21004 + 9.60430i −0.946725 + 1.26111i
\(59\) 4.67272 8.09338i 0.608336 1.05367i −0.383179 0.923674i \(-0.625171\pi\)
0.991515 0.129995i \(-0.0414960\pi\)
\(60\) 0.0972001 0.395971i 0.0125485 0.0511196i
\(61\) 3.13747 + 1.81142i 0.401711 + 0.231928i 0.687222 0.726447i \(-0.258830\pi\)
−0.285511 + 0.958376i \(0.592163\pi\)
\(62\) −3.36869 7.89622i −0.427824 1.00282i
\(63\) −2.42741 + 1.40146i −0.305824 + 0.176568i
\(64\) −6.00315 5.28793i −0.750393 0.660992i
\(65\) −2.46575 + 2.63061i −0.305838 + 0.326287i
\(66\) −0.260489 0.0315039i −0.0320640 0.00387786i
\(67\) −0.283940 0.491798i −0.0346888 0.0600827i 0.848160 0.529740i \(-0.177711\pi\)
−0.882849 + 0.469658i \(0.844377\pi\)
\(68\) 1.14590 + 3.94210i 0.138960 + 0.478050i
\(69\) 1.34248 + 0.775080i 0.161615 + 0.0933086i
\(70\) −1.33018 0.160874i −0.158987 0.0192281i
\(71\) 8.63801 + 4.98716i 1.02514 + 0.591867i 0.915590 0.402114i \(-0.131725\pi\)
0.109554 + 0.993981i \(0.465058\pi\)
\(72\) −5.30134 6.47416i −0.624769 0.762987i
\(73\) 1.67947i 0.196567i 0.995158 + 0.0982837i \(0.0313352\pi\)
−0.995158 + 0.0982837i \(0.968665\pi\)
\(74\) 11.3102 + 8.49065i 1.31478 + 0.987018i
\(75\) 0.176551 0.101932i 0.0203863 0.0117701i
\(76\) −1.08897 3.74626i −0.124913 0.429725i
\(77\) 0.862259i 0.0982636i
\(78\) −0.179737 1.02385i −0.0203512 0.115928i
\(79\) 5.13825 0.578099 0.289049 0.957314i \(-0.406661\pi\)
0.289049 + 0.957314i \(0.406661\pi\)
\(80\) −0.168640 3.99644i −0.0188545 0.446816i
\(81\) −4.31384 7.47179i −0.479316 0.830199i
\(82\) 4.03988 5.38141i 0.446130 0.594278i
\(83\) −15.0936 −1.65674 −0.828369 0.560183i \(-0.810731\pi\)
−0.828369 + 0.560183i \(0.810731\pi\)
\(84\) 0.267331 0.278850i 0.0291682 0.0304250i
\(85\) −1.02632 + 1.77763i −0.111320 + 0.192812i
\(86\) −6.71538 0.812165i −0.724138 0.0875780i
\(87\) 0.865601 1.49926i 0.0928021 0.160738i
\(88\) −2.54023 + 0.416535i −0.270789 + 0.0444028i
\(89\) −1.09916 + 0.634602i −0.116511 + 0.0672677i −0.557123 0.830430i \(-0.688095\pi\)
0.440612 + 0.897698i \(0.354761\pi\)
\(90\) 0.502341 4.15360i 0.0529514 0.437828i
\(91\) −3.26931 + 0.990353i −0.342717 + 0.103817i
\(92\) 14.7694 + 3.62547i 1.53981 + 0.377982i
\(93\) 0.618761 + 1.07173i 0.0641625 + 0.111133i
\(94\) −5.78164 13.5522i −0.596331 1.39780i
\(95\) 0.975331 1.68932i 0.100067 0.173321i
\(96\) 0.950635 + 0.652855i 0.0970238 + 0.0666318i
\(97\) −6.15706 3.55478i −0.625154 0.360933i 0.153719 0.988115i \(-0.450875\pi\)
−0.778873 + 0.627182i \(0.784208\pi\)
\(98\) 6.90169 + 5.18117i 0.697176 + 0.523377i
\(99\) −2.69247 −0.270604
\(100\) 1.38408 1.44372i 0.138408 0.144372i
\(101\) 5.94485 3.43226i 0.591535 0.341523i −0.174169 0.984716i \(-0.555724\pi\)
0.765704 + 0.643193i \(0.222391\pi\)
\(102\) −0.232219 0.544322i −0.0229931 0.0538960i
\(103\) 13.7687 1.35667 0.678335 0.734753i \(-0.262702\pi\)
0.678335 + 0.734753i \(0.262702\pi\)
\(104\) −4.49691 9.15302i −0.440958 0.897528i
\(105\) 0.193147 0.0188492
\(106\) −6.36372 14.9166i −0.618099 1.44883i
\(107\) 15.9543 9.21122i 1.54236 0.890483i 0.543672 0.839298i \(-0.317034\pi\)
0.998689 0.0511847i \(-0.0162997\pi\)
\(108\) 1.75369 + 1.68125i 0.168749 + 0.161779i
\(109\) −9.34839 −0.895414 −0.447707 0.894180i \(-0.647759\pi\)
−0.447707 + 0.894180i \(0.647759\pi\)
\(110\) −1.02931 0.772713i −0.0981408 0.0736753i
\(111\) −1.76556 1.01934i −0.167579 0.0967518i
\(112\) 1.75481 3.35898i 0.165814 0.317394i
\(113\) 4.37276 7.57384i 0.411355 0.712487i −0.583683 0.811981i \(-0.698389\pi\)
0.995038 + 0.0994941i \(0.0317224\pi\)
\(114\) 0.220682 + 0.517281i 0.0206688 + 0.0484478i
\(115\) 3.80196 + 6.58518i 0.354534 + 0.614072i
\(116\) 4.04889 16.4943i 0.375930 1.53145i
\(117\) −3.09246 10.2087i −0.285898 0.943794i
\(118\) −1.58685 + 13.1208i −0.146081 + 1.20787i
\(119\) −1.68419 + 0.972369i −0.154390 + 0.0891369i
\(120\) 0.0933042 + 0.569013i 0.00851747 + 0.0519436i
\(121\) 5.08586 8.80897i 0.462351 0.800815i
\(122\) −5.08640 0.615154i −0.460501 0.0556935i
\(123\) −0.485008 + 0.840058i −0.0437317 + 0.0757454i
\(124\) 8.76387 + 8.40186i 0.787019 + 0.754509i
\(125\) 1.00000 0.0894427
\(126\) 2.37980 3.17007i 0.212010 0.282412i
\(127\) −2.83054 4.90264i −0.251170 0.435039i 0.712678 0.701491i \(-0.247482\pi\)
−0.963848 + 0.266452i \(0.914149\pi\)
\(128\) 10.7433 + 3.54707i 0.949582 + 0.313520i
\(129\) 0.975097 0.0858525
\(130\) 1.74757 4.79020i 0.153272 0.420128i
\(131\) 5.99225i 0.523545i 0.965130 + 0.261773i \(0.0843071\pi\)
−0.965130 + 0.261773i \(0.915693\pi\)
\(132\) 0.356323 0.103576i 0.0310139 0.00901517i
\(133\) 1.60052 0.924061i 0.138783 0.0801263i
\(134\) 0.642264 + 0.482154i 0.0554832 + 0.0416518i
\(135\) 1.21471i 0.104545i
\(136\) −3.67820 4.49192i −0.315403 0.385179i
\(137\) −6.90871 3.98874i −0.590251 0.340781i 0.174946 0.984578i \(-0.444025\pi\)
−0.765197 + 0.643797i \(0.777358\pi\)
\(138\) −2.17640 0.263216i −0.185267 0.0224064i
\(139\) −16.6654 9.62177i −1.41354 0.816107i −0.417820 0.908530i \(-0.637206\pi\)
−0.995720 + 0.0924224i \(0.970539\pi\)
\(140\) 1.81955 0.528910i 0.153780 0.0447011i
\(141\) 1.06197 + 1.83939i 0.0894342 + 0.154905i
\(142\) −14.0038 1.69363i −1.17517 0.142126i
\(143\) −3.19540 0.746368i −0.267213 0.0624144i
\(144\) 10.4887 + 5.47955i 0.874057 + 0.456629i
\(145\) 7.35427 4.24599i 0.610739 0.352610i
\(146\) −0.932008 2.18463i −0.0771335 0.180801i
\(147\) −1.07738 0.622024i −0.0888606 0.0513037i
\(148\) −19.4239 4.76803i −1.59663 0.391930i
\(149\) −5.12408 + 8.87516i −0.419781 + 0.727082i −0.995917 0.0902718i \(-0.971226\pi\)
0.576136 + 0.817354i \(0.304560\pi\)
\(150\) −0.173088 + 0.230566i −0.0141326 + 0.0188257i
\(151\) 19.3244i 1.57260i −0.617845 0.786300i \(-0.711994\pi\)
0.617845 0.786300i \(-0.288006\pi\)
\(152\) 3.49547 + 4.26876i 0.283520 + 0.346243i
\(153\) −3.03630 5.25903i −0.245470 0.425167i
\(154\) −0.478503 1.12161i −0.0385589 0.0903822i
\(155\) 6.07035i 0.487582i
\(156\) 0.801974 + 1.23206i 0.0642093 + 0.0986437i
\(157\) 8.86549i 0.707543i −0.935332 0.353772i \(-0.884899\pi\)
0.935332 0.353772i \(-0.115101\pi\)
\(158\) −6.68376 + 2.85143i −0.531731 + 0.226847i
\(159\) 1.16889 + 2.02457i 0.0926988 + 0.160559i
\(160\) 2.43715 + 5.10493i 0.192674 + 0.403580i
\(161\) 7.20421i 0.567771i
\(162\) 9.75779 + 7.32527i 0.766644 + 0.575527i
\(163\) −0.149213 + 0.258444i −0.0116873 + 0.0202429i −0.871810 0.489844i \(-0.837054\pi\)
0.860123 + 0.510087i \(0.170387\pi\)
\(164\) −2.26865 + 9.24196i −0.177152 + 0.721676i
\(165\) 0.160679 + 0.0927679i 0.0125088 + 0.00722197i
\(166\) 19.6335 8.37606i 1.52386 0.650108i
\(167\) 19.1340 11.0470i 1.48063 0.854842i 0.480871 0.876791i \(-0.340320\pi\)
0.999759 + 0.0219487i \(0.00698705\pi\)
\(168\) −0.192995 + 0.511076i −0.0148899 + 0.0394304i
\(169\) −0.840192 12.9728i −0.0646302 0.997909i
\(170\) 0.348536 2.88187i 0.0267315 0.221029i
\(171\) 2.88546 + 4.99776i 0.220656 + 0.382188i
\(172\) 9.18597 2.67019i 0.700423 0.203600i
\(173\) −4.64831 2.68370i −0.353405 0.204038i 0.312779 0.949826i \(-0.398740\pi\)
−0.666184 + 0.745788i \(0.732073\pi\)
\(174\) −0.293957 + 2.43058i −0.0222848 + 0.184262i
\(175\) 0.820502 + 0.473717i 0.0620241 + 0.0358096i
\(176\) 3.07313 1.95150i 0.231646 0.147100i
\(177\) 1.90519i 0.143203i
\(178\) 1.07761 1.43545i 0.0807701 0.107592i
\(179\) −2.41643 + 1.39512i −0.180612 + 0.104276i −0.587580 0.809166i \(-0.699919\pi\)
0.406968 + 0.913442i \(0.366586\pi\)
\(180\) 1.65157 + 5.68171i 0.123100 + 0.423489i
\(181\) 17.0340i 1.26613i 0.774100 + 0.633063i \(0.218203\pi\)
−0.774100 + 0.633063i \(0.781797\pi\)
\(182\) 3.70308 3.10251i 0.274491 0.229973i
\(183\) 0.738563 0.0545961
\(184\) −21.2237 + 3.48016i −1.56463 + 0.256561i
\(185\) −5.00013 8.66049i −0.367617 0.636732i
\(186\) −1.39962 1.05071i −0.102625 0.0770416i
\(187\) −1.86810 −0.136609
\(188\) 15.0413 + 14.4200i 1.09700 + 1.05169i
\(189\) −0.575427 + 0.996669i −0.0418562 + 0.0724970i
\(190\) −0.331221 + 2.73869i −0.0240293 + 0.198686i
\(191\) −3.03214 + 5.25182i −0.219398 + 0.380008i −0.954624 0.297814i \(-0.903743\pi\)
0.735226 + 0.677822i \(0.237076\pi\)
\(192\) −1.59887 0.321678i −0.115388 0.0232151i
\(193\) −6.53284 + 3.77174i −0.470244 + 0.271495i −0.716342 0.697750i \(-0.754185\pi\)
0.246098 + 0.969245i \(0.420852\pi\)
\(194\) 9.98170 + 1.20720i 0.716644 + 0.0866717i
\(195\) −0.167187 + 0.715773i −0.0119725 + 0.0512576i
\(196\) −11.8529 2.90955i −0.846632 0.207825i
\(197\) −10.9228 18.9188i −0.778214 1.34791i −0.932970 0.359954i \(-0.882792\pi\)
0.154756 0.987953i \(-0.450541\pi\)
\(198\) 3.50233 1.49416i 0.248900 0.106186i
\(199\) −5.17919 + 8.97062i −0.367143 + 0.635910i −0.989118 0.147127i \(-0.952997\pi\)
0.621975 + 0.783037i \(0.286331\pi\)
\(200\) −0.999213 + 2.64605i −0.0706550 + 0.187104i
\(201\) −0.100260 0.0578849i −0.00707177 0.00408289i
\(202\) −5.82827 + 7.76368i −0.410076 + 0.546250i
\(203\) 8.04559 0.564689
\(204\) 0.604134 + 0.579178i 0.0422978 + 0.0405506i
\(205\) −4.12069 + 2.37908i −0.287802 + 0.166162i
\(206\) −17.9101 + 7.64081i −1.24786 + 0.532361i
\(207\) −22.4957 −1.56356
\(208\) 10.9289 + 9.41059i 0.757783 + 0.652507i
\(209\) 1.77530 0.122800
\(210\) −0.251243 + 0.107185i −0.0173374 + 0.00739648i
\(211\) 15.4851 8.94031i 1.06604 0.615477i 0.138941 0.990301i \(-0.455630\pi\)
0.927096 + 0.374824i \(0.122297\pi\)
\(212\) 16.5556 + 15.8718i 1.13705 + 1.09008i
\(213\) 2.03340 0.139326
\(214\) −15.6414 + 20.8355i −1.06923 + 1.42429i
\(215\) 4.14228 + 2.39155i 0.282501 + 0.163102i
\(216\) −3.21417 1.21375i −0.218697 0.0825853i
\(217\) −2.87563 + 4.98074i −0.195210 + 0.338114i
\(218\) 12.1602 5.18781i 0.823596 0.351363i
\(219\) 0.171191 + 0.296512i 0.0115680 + 0.0200364i
\(220\) 1.76772 + 0.433927i 0.119180 + 0.0292553i
\(221\) −2.14562 7.08304i −0.144330 0.476457i
\(222\) 2.86228 + 0.346168i 0.192104 + 0.0232332i
\(223\) −8.20409 + 4.73663i −0.549386 + 0.317188i −0.748874 0.662712i \(-0.769405\pi\)
0.199488 + 0.979900i \(0.436072\pi\)
\(224\) −0.418600 + 5.34312i −0.0279689 + 0.357002i
\(225\) −1.47922 + 2.56208i −0.0986147 + 0.170806i
\(226\) −1.48498 + 12.2786i −0.0987796 + 0.816758i
\(227\) −3.15175 + 5.45899i −0.209189 + 0.362326i −0.951459 0.307775i \(-0.900416\pi\)
0.742270 + 0.670101i \(0.233749\pi\)
\(228\) −0.574120 0.550405i −0.0380221 0.0364515i
\(229\) 18.3896 1.21522 0.607610 0.794235i \(-0.292128\pi\)
0.607610 + 0.794235i \(0.292128\pi\)
\(230\) −8.59992 6.45604i −0.567062 0.425699i
\(231\) 0.0878915 + 0.152233i 0.00578284 + 0.0100162i
\(232\) 3.88661 + 23.7024i 0.255169 + 1.55614i
\(233\) −5.13679 −0.336523 −0.168261 0.985742i \(-0.553815\pi\)
−0.168261 + 0.985742i \(0.553815\pi\)
\(234\) 9.68784 + 11.5632i 0.633314 + 0.755909i
\(235\) 10.4185i 0.679627i
\(236\) −5.21714 17.9480i −0.339607 1.16831i
\(237\) 0.907162 0.523750i 0.0589265 0.0340212i
\(238\) 1.65116 2.19947i 0.107029 0.142570i
\(239\) 6.33273i 0.409630i 0.978801 + 0.204815i \(0.0656594\pi\)
−0.978801 + 0.204815i \(0.934341\pi\)
\(240\) −0.437138 0.688385i −0.0282171 0.0444351i
\(241\) −1.02250 0.590343i −0.0658653 0.0380273i 0.466706 0.884413i \(-0.345441\pi\)
−0.532571 + 0.846385i \(0.678774\pi\)
\(242\) −1.72715 + 14.2809i −0.111025 + 0.918012i
\(243\) −4.67913 2.70149i −0.300166 0.173301i
\(244\) 6.95768 2.02247i 0.445420 0.129475i
\(245\) −3.05118 5.28481i −0.194933 0.337634i
\(246\) 0.164708 1.36188i 0.0105014 0.0868306i
\(247\) 2.03903 + 6.73115i 0.129740 + 0.428293i
\(248\) −16.0624 6.06558i −1.01997 0.385164i
\(249\) −2.66479 + 1.53852i −0.168874 + 0.0974994i
\(250\) −1.30078 + 0.554941i −0.0822688 + 0.0350976i
\(251\) 4.69876 + 2.71283i 0.296583 + 0.171232i 0.640907 0.767619i \(-0.278558\pi\)
−0.344324 + 0.938851i \(0.611892\pi\)
\(252\) −1.33641 + 5.44423i −0.0841858 + 0.342954i
\(253\) −3.46016 + 5.99317i −0.217538 + 0.376788i
\(254\) 6.40260 + 4.80650i 0.401735 + 0.301587i
\(255\) 0.418457i 0.0262048i
\(256\) −15.9431 + 1.34792i −0.996445 + 0.0842451i
\(257\) −2.83044 4.90246i −0.176558 0.305807i 0.764141 0.645049i \(-0.223163\pi\)
−0.940699 + 0.339242i \(0.889830\pi\)
\(258\) −1.26839 + 0.541121i −0.0789665 + 0.0336887i
\(259\) 9.47460i 0.588723i
\(260\) 0.385062 + 7.20081i 0.0238805 + 0.446576i
\(261\) 25.1230i 1.55507i
\(262\) −3.32535 7.79463i −0.205441 0.481554i
\(263\) −7.55918 13.0929i −0.466119 0.807341i 0.533132 0.846032i \(-0.321015\pi\)
−0.999251 + 0.0386904i \(0.987681\pi\)
\(264\) −0.406021 + 0.332469i −0.0249889 + 0.0204620i
\(265\) 11.4674i 0.704435i
\(266\) −1.56913 + 2.09020i −0.0962098 + 0.128158i
\(267\) −0.129372 + 0.224079i −0.00791744 + 0.0137134i
\(268\) −1.10301 0.270760i −0.0673773 0.0165393i
\(269\) 20.6859 + 11.9430i 1.26124 + 0.728177i 0.973314 0.229476i \(-0.0737014\pi\)
0.287925 + 0.957653i \(0.407035\pi\)
\(270\) −0.674091 1.58007i −0.0410239 0.0961601i
\(271\) −4.13463 + 2.38713i −0.251161 + 0.145008i −0.620296 0.784368i \(-0.712987\pi\)
0.369135 + 0.929376i \(0.379654\pi\)
\(272\) 7.27730 + 3.80184i 0.441251 + 0.230520i
\(273\) −0.476251 + 0.508094i −0.0288240 + 0.0307512i
\(274\) 11.2003 + 1.35457i 0.676632 + 0.0818326i
\(275\) 0.455050 + 0.788169i 0.0274405 + 0.0475284i
\(276\) 2.97709 0.865385i 0.179200 0.0520900i
\(277\) −13.8603 8.00227i −0.832787 0.480810i 0.0220192 0.999758i \(-0.492991\pi\)
−0.854806 + 0.518948i \(0.826324\pi\)
\(278\) 27.0176 + 3.26754i 1.62041 + 0.195974i
\(279\) −15.5528 8.97939i −0.931119 0.537582i
\(280\) −2.07333 + 1.69774i −0.123905 + 0.101460i
\(281\) 7.56569i 0.451331i −0.974205 0.225666i \(-0.927544\pi\)
0.974205 0.225666i \(-0.0724557\pi\)
\(282\) −2.40215 1.80332i −0.143046 0.107386i
\(283\) −5.23546 + 3.02269i −0.311216 + 0.179680i −0.647470 0.762091i \(-0.724173\pi\)
0.336255 + 0.941771i \(0.390840\pi\)
\(284\) 19.1558 5.56822i 1.13668 0.330413i
\(285\) 0.397668i 0.0235558i
\(286\) 4.57072 0.802395i 0.270272 0.0474466i
\(287\) −4.50805 −0.266102
\(288\) −16.6843 1.30711i −0.983134 0.0770224i
\(289\) 6.39334 + 11.0736i 0.376079 + 0.651388i
\(290\) −7.21004 + 9.60430i −0.423388 + 0.563984i
\(291\) −1.44938 −0.0849640
\(292\) 2.42468 + 2.32453i 0.141894 + 0.136033i
\(293\) 7.04335 12.1994i 0.411477 0.712699i −0.583575 0.812059i \(-0.698346\pi\)
0.995051 + 0.0993608i \(0.0316798\pi\)
\(294\) 1.74662 + 0.211239i 0.101865 + 0.0123197i
\(295\) 4.67272 8.09338i 0.272056 0.471215i
\(296\) 27.9123 4.57693i 1.62237 0.266029i
\(297\) −0.957395 + 0.552752i −0.0555537 + 0.0320739i
\(298\) 1.74013 14.3882i 0.100803 0.833488i
\(299\) −26.6977 6.23593i −1.54397 0.360633i
\(300\) 0.0972001 0.395971i 0.00561185 0.0228614i
\(301\) 2.26583 + 3.92454i 0.130600 + 0.226206i
\(302\) 10.7239 + 25.1369i 0.617092 + 1.44647i
\(303\) 0.699712 1.21194i 0.0401974 0.0696240i
\(304\) −6.91576 3.61297i −0.396646 0.207218i
\(305\) 3.13747 + 1.81142i 0.179651 + 0.103721i
\(306\) 6.86802 + 5.15589i 0.392619 + 0.294743i
\(307\) 28.3105 1.61577 0.807883 0.589343i \(-0.200613\pi\)
0.807883 + 0.589343i \(0.200613\pi\)
\(308\) 1.24486 + 1.19344i 0.0709324 + 0.0680024i
\(309\) 2.43087 1.40346i 0.138288 0.0798403i
\(310\) −3.36869 7.89622i −0.191329 0.448475i
\(311\) 12.3778 0.701880 0.350940 0.936398i \(-0.385862\pi\)
0.350940 + 0.936398i \(0.385862\pi\)
\(312\) −1.72692 1.15760i −0.0977673 0.0655359i
\(313\) 24.2462 1.37048 0.685239 0.728318i \(-0.259698\pi\)
0.685239 + 0.728318i \(0.259698\pi\)
\(314\) 4.91983 + 11.5321i 0.277642 + 0.650794i
\(315\) −2.42741 + 1.40146i −0.136769 + 0.0789635i
\(316\) 7.11176 7.41818i 0.400068 0.417305i
\(317\) −21.7910 −1.22391 −0.611953 0.790894i \(-0.709616\pi\)
−0.611953 + 0.790894i \(0.709616\pi\)
\(318\) −2.64399 1.98487i −0.148268 0.111306i
\(319\) 6.69311 + 3.86427i 0.374742 + 0.216358i
\(320\) −6.00315 5.28793i −0.335586 0.295604i
\(321\) 1.87783 3.25250i 0.104810 0.181537i
\(322\) −3.99791 9.37112i −0.222795 0.522232i
\(323\) 2.00200 + 3.46756i 0.111394 + 0.192940i
\(324\) −16.7579 4.11360i −0.930993 0.228533i
\(325\) −2.46575 + 2.63061i −0.136775 + 0.145920i
\(326\) 0.0506725 0.418985i 0.00280649 0.0232054i
\(327\) −1.65047 + 0.952897i −0.0912710 + 0.0526953i
\(328\) −2.17772 13.2808i −0.120244 0.733307i
\(329\) −4.93541 + 8.54838i −0.272098 + 0.471287i
\(330\) −0.260489 0.0315039i −0.0143395 0.00173423i
\(331\) −4.90658 + 8.49845i −0.269690 + 0.467117i −0.968782 0.247915i \(-0.920255\pi\)
0.699092 + 0.715032i \(0.253588\pi\)
\(332\) −20.8908 + 21.7909i −1.14653 + 1.19593i
\(333\) 29.5852 1.62126
\(334\) −18.7587 + 24.9880i −1.02643 + 1.36728i
\(335\) −0.283940 0.491798i −0.0155133 0.0268698i
\(336\) −0.0325723 0.771901i −0.00177697 0.0421106i
\(337\) 12.3215 0.671193 0.335597 0.942006i \(-0.391062\pi\)
0.335597 + 0.942006i \(0.391062\pi\)
\(338\) 8.29206 + 16.4086i 0.451029 + 0.892510i
\(339\) 1.78289i 0.0968333i
\(340\) 1.14590 + 3.94210i 0.0621449 + 0.213791i
\(341\) −4.78447 + 2.76231i −0.259093 + 0.149588i
\(342\) −6.52682 4.89975i −0.352930 0.264948i
\(343\) 12.4136i 0.670273i
\(344\) −10.4672 + 8.57101i −0.564352 + 0.462118i
\(345\) 1.34248 + 0.775080i 0.0722765 + 0.0417289i
\(346\) 7.53575 + 0.911382i 0.405125 + 0.0489962i
\(347\) −1.88100 1.08599i −0.100977 0.0582993i 0.448661 0.893702i \(-0.351901\pi\)
−0.549638 + 0.835403i \(0.685234\pi\)
\(348\) −0.966453 3.32479i −0.0518073 0.178227i
\(349\) −9.73002 16.8529i −0.520836 0.902114i −0.999706 0.0242286i \(-0.992287\pi\)
0.478871 0.877885i \(-0.341046\pi\)
\(350\) −1.33018 0.160874i −0.0711012 0.00859905i
\(351\) −3.19542 2.99516i −0.170559 0.159870i
\(352\) −2.91452 + 4.24389i −0.155344 + 0.226200i
\(353\) −17.6089 + 10.1665i −0.937228 + 0.541109i −0.889090 0.457732i \(-0.848662\pi\)
−0.0481380 + 0.998841i \(0.515329\pi\)
\(354\) 1.05727 + 2.47824i 0.0561932 + 0.131717i
\(355\) 8.63801 + 4.98716i 0.458458 + 0.264691i
\(356\) −0.605144 + 2.46522i −0.0320726 + 0.130656i
\(357\) −0.198230 + 0.343345i −0.0104915 + 0.0181717i
\(358\) 2.36904 3.15573i 0.125208 0.166786i
\(359\) 36.4015i 1.92120i −0.277934 0.960600i \(-0.589650\pi\)
0.277934 0.960600i \(-0.410350\pi\)
\(360\) −5.30134 6.47416i −0.279405 0.341218i
\(361\) 7.59746 + 13.1592i 0.399866 + 0.692589i
\(362\) −9.45286 22.1576i −0.496831 1.16458i
\(363\) 2.07364i 0.108838i
\(364\) −3.09520 + 6.09069i −0.162233 + 0.319239i
\(365\) 1.67947i 0.0879076i
\(366\) −0.960711 + 0.409859i −0.0502172 + 0.0214237i
\(367\) −3.86297 6.69086i −0.201645 0.349260i 0.747413 0.664359i \(-0.231296\pi\)
−0.949059 + 0.315099i \(0.897962\pi\)
\(368\) 25.6762 16.3048i 1.33846 0.849948i
\(369\) 14.0767i 0.732806i
\(370\) 11.3102 + 8.49065i 0.587987 + 0.441408i
\(371\) −5.43229 + 9.40900i −0.282030 + 0.488491i
\(372\) 2.40368 + 0.590039i 0.124625 + 0.0305921i
\(373\) −3.34521 1.93136i −0.173208 0.100002i 0.410889 0.911685i \(-0.365218\pi\)
−0.584098 + 0.811683i \(0.698552\pi\)
\(374\) 2.43000 1.03669i 0.125652 0.0536058i
\(375\) 0.176551 0.101932i 0.00911704 0.00526373i
\(376\) −27.5678 10.4103i −1.42170 0.536869i
\(377\) −6.96423 + 29.8157i −0.358676 + 1.53559i
\(378\) 0.195414 1.61578i 0.0100510 0.0831068i
\(379\) −6.76637 11.7197i −0.347565 0.602000i 0.638251 0.769828i \(-0.279658\pi\)
−0.985816 + 0.167828i \(0.946325\pi\)
\(380\) −1.08897 3.74626i −0.0558628 0.192179i
\(381\) −0.999469 0.577044i −0.0512043 0.0295628i
\(382\) 1.02971 8.51414i 0.0526845 0.435622i
\(383\) 9.70246 + 5.60172i 0.495773 + 0.286234i 0.726966 0.686673i \(-0.240930\pi\)
−0.231193 + 0.972908i \(0.574263\pi\)
\(384\) 2.25829 0.468843i 0.115243 0.0239256i
\(385\) 0.862259i 0.0439448i
\(386\) 6.40472 8.53155i 0.325992 0.434245i
\(387\) −12.2547 + 7.07524i −0.622940 + 0.359655i
\(388\) −13.6540 + 3.96895i −0.693175 + 0.201493i
\(389\) 24.7818i 1.25649i 0.778017 + 0.628243i \(0.216225\pi\)
−0.778017 + 0.628243i \(0.783775\pi\)
\(390\) −0.179737 1.02385i −0.00910136 0.0518444i
\(391\) −15.6081 −0.789334
\(392\) 17.0326 2.79293i 0.860278 0.141065i
\(393\) 0.610800 + 1.05794i 0.0308108 + 0.0533658i
\(394\) 24.7070 + 18.5478i 1.24472 + 0.934423i
\(395\) 5.13825 0.258534
\(396\) −3.72660 + 3.88717i −0.187269 + 0.195338i
\(397\) 11.1940 19.3886i 0.561813 0.973088i −0.435526 0.900176i \(-0.643437\pi\)
0.997338 0.0729119i \(-0.0232292\pi\)
\(398\) 1.75884 14.5430i 0.0881629 0.728974i
\(399\) 0.188382 0.326287i 0.00943090 0.0163348i
\(400\) −0.168640 3.99644i −0.00843200 0.199822i
\(401\) −3.99466 + 2.30632i −0.199484 + 0.115172i −0.596415 0.802677i \(-0.703409\pi\)
0.396931 + 0.917848i \(0.370075\pi\)
\(402\) 0.162539 + 0.0196576i 0.00810670 + 0.000980434i
\(403\) −15.9687 14.9679i −0.795458 0.745607i
\(404\) 3.27294 13.3332i 0.162835 0.663352i
\(405\) −4.31384 7.47179i −0.214357 0.371276i
\(406\) −10.4656 + 4.46483i −0.519398 + 0.221586i
\(407\) 4.55062 7.88191i 0.225566 0.390692i
\(408\) −1.10726 0.418128i −0.0548174 0.0207004i
\(409\) 16.1251 + 9.30986i 0.797337 + 0.460343i 0.842539 0.538635i \(-0.181060\pi\)
−0.0452019 + 0.998978i \(0.514393\pi\)
\(410\) 4.03988 5.38141i 0.199516 0.265769i
\(411\) −1.62632 −0.0802203
\(412\) 19.0570 19.8781i 0.938870 0.979324i
\(413\) 7.66795 4.42709i 0.377315 0.217843i
\(414\) 29.2621 12.4838i 1.43815 0.613545i
\(415\) −15.0936 −0.740916
\(416\) −19.4385 6.17626i −0.953049 0.302816i
\(417\) −3.92305 −0.192113
\(418\) −2.30928 + 0.985185i −0.112950 + 0.0481869i
\(419\) 19.5563 11.2909i 0.955389 0.551594i 0.0606385 0.998160i \(-0.480686\pi\)
0.894751 + 0.446565i \(0.147353\pi\)
\(420\) 0.267331 0.278850i 0.0130444 0.0136065i
\(421\) 10.0032 0.487528 0.243764 0.969835i \(-0.421618\pi\)
0.243764 + 0.969835i \(0.421618\pi\)
\(422\) −15.1814 + 20.2227i −0.739019 + 0.984427i
\(423\) −26.6930 15.4112i −1.29786 0.749319i
\(424\) −30.3432 11.4583i −1.47360 0.556467i
\(425\) −1.02632 + 1.77763i −0.0497837 + 0.0862280i
\(426\) −2.64501 + 1.12842i −0.128151 + 0.0546719i
\(427\) 1.71620 + 2.97254i 0.0830526 + 0.143851i
\(428\) 8.78365 35.7826i 0.424574 1.72962i
\(429\) −0.640229 + 0.193941i −0.0309106 + 0.00936354i
\(430\) −6.71538 0.812165i −0.323844 0.0391661i
\(431\) 3.75891 2.17021i 0.181061 0.104535i −0.406730 0.913548i \(-0.633331\pi\)
0.587791 + 0.809013i \(0.299998\pi\)
\(432\) 4.85451 0.204848i 0.233563 0.00985577i
\(433\) 10.4081 18.0274i 0.500181 0.866340i −0.499819 0.866130i \(-0.666600\pi\)
1.00000 0.000209462i \(-6.66737e-5\pi\)
\(434\) 0.976559 8.07467i 0.0468763 0.387596i
\(435\) 0.865601 1.49926i 0.0415024 0.0718842i
\(436\) −12.9389 + 13.4964i −0.619662 + 0.646362i
\(437\) 14.8327 0.709542
\(438\) −0.387230 0.290697i −0.0185026 0.0138900i
\(439\) 3.70929 + 6.42467i 0.177035 + 0.306633i 0.940863 0.338786i \(-0.110016\pi\)
−0.763829 + 0.645419i \(0.776683\pi\)
\(440\) −2.54023 + 0.416535i −0.121101 + 0.0198575i
\(441\) 18.0535 0.859690
\(442\) 6.72166 + 8.02281i 0.319717 + 0.381606i
\(443\) 25.6118i 1.21686i −0.793609 0.608428i \(-0.791801\pi\)
0.793609 0.608428i \(-0.208199\pi\)
\(444\) −3.91532 + 1.13811i −0.185813 + 0.0540122i
\(445\) −1.09916 + 0.634602i −0.0521053 + 0.0300830i
\(446\) 8.04320 10.7141i 0.380856 0.507328i
\(447\) 2.08922i 0.0988168i
\(448\) −2.42061 7.18255i −0.114363 0.339344i
\(449\) 20.0446 + 11.5728i 0.945963 + 0.546152i 0.891825 0.452381i \(-0.149425\pi\)
0.0541386 + 0.998533i \(0.482759\pi\)
\(450\) 0.502341 4.15360i 0.0236806 0.195803i
\(451\) −3.75024 2.16520i −0.176592 0.101955i
\(452\) −4.88224 16.7958i −0.229641 0.790010i
\(453\) −1.96977 3.41174i −0.0925478 0.160298i
\(454\) 1.07033 8.85001i 0.0502331 0.415351i
\(455\) −3.26931 + 0.990353i −0.153268 + 0.0464284i
\(456\) 1.05225 + 0.397355i 0.0492761 + 0.0186079i
\(457\) 24.5250 14.1595i 1.14723 0.662355i 0.199021 0.979995i \(-0.436224\pi\)
0.948211 + 0.317640i \(0.102890\pi\)
\(458\) −23.9209 + 10.2052i −1.11775 + 0.476856i
\(459\) −2.15931 1.24668i −0.100788 0.0581898i
\(460\) 14.7694 + 3.62547i 0.688625 + 0.169039i
\(461\) −11.8155 + 20.4650i −0.550302 + 0.953150i 0.447951 + 0.894058i \(0.352154\pi\)
−0.998253 + 0.0590923i \(0.981179\pi\)
\(462\) −0.198808 0.149247i −0.00924938 0.00694360i
\(463\) 26.1046i 1.21318i 0.795014 + 0.606592i \(0.207464\pi\)
−0.795014 + 0.606592i \(0.792536\pi\)
\(464\) −18.2091 28.6749i −0.845335 1.33120i
\(465\) 0.618761 + 1.07173i 0.0286943 + 0.0497001i
\(466\) 6.68186 2.85062i 0.309531 0.132052i
\(467\) 18.7238i 0.866434i 0.901290 + 0.433217i \(0.142622\pi\)
−0.901290 + 0.433217i \(0.857378\pi\)
\(468\) −19.0187 9.66503i −0.879139 0.446766i
\(469\) 0.538029i 0.0248439i
\(470\) −5.78164 13.5522i −0.266687 0.625116i
\(471\) −0.903674 1.56521i −0.0416391 0.0721210i
\(472\) 16.7464 + 20.4513i 0.770818 + 0.941345i
\(473\) 4.35309i 0.200155i
\(474\) −0.889372 + 1.18471i −0.0408502 + 0.0544154i
\(475\) 0.975331 1.68932i 0.0447512 0.0775114i
\(476\) −0.927232 + 3.77733i −0.0424996 + 0.173134i
\(477\) −29.3804 16.9628i −1.34523 0.776672i
\(478\) −3.51429 8.23752i −0.160740 0.376776i
\(479\) −10.7411 + 6.20137i −0.490772 + 0.283348i −0.724895 0.688860i \(-0.758112\pi\)
0.234122 + 0.972207i \(0.424778\pi\)
\(480\) 0.950635 + 0.652855i 0.0433904 + 0.0297986i
\(481\) 35.1114 + 8.20117i 1.60094 + 0.373941i
\(482\) 1.65766 + 0.200480i 0.0755045 + 0.00913159i
\(483\) 0.734337 + 1.27191i 0.0334135 + 0.0578738i
\(484\) −5.67842 19.5349i −0.258110 0.887948i
\(485\) −6.15706 3.55478i −0.279578 0.161414i
\(486\) 7.58570 + 0.917423i 0.344095 + 0.0416152i
\(487\) 11.0900 + 6.40279i 0.502534 + 0.290138i 0.729759 0.683704i \(-0.239632\pi\)
−0.227225 + 0.973842i \(0.572965\pi\)
\(488\) −7.92809 + 6.49190i −0.358888 + 0.293874i
\(489\) 0.0608381i 0.00275119i
\(490\) 6.90169 + 5.18117i 0.311787 + 0.234061i
\(491\) −4.12069 + 2.37908i −0.185964 + 0.107366i −0.590092 0.807336i \(-0.700908\pi\)
0.404128 + 0.914703i \(0.367575\pi\)
\(492\) 0.541516 + 1.86292i 0.0244134 + 0.0839870i
\(493\) 17.4309i 0.785050i
\(494\) −6.38773 7.62424i −0.287397 0.343031i
\(495\) −2.69247 −0.121018
\(496\) 24.2598 1.02370i 1.08930 0.0459657i
\(497\) 4.72500 + 8.18394i 0.211945 + 0.367100i
\(498\) 2.61253 3.48008i 0.117070 0.155946i
\(499\) −30.2817 −1.35559 −0.677797 0.735249i \(-0.737065\pi\)
−0.677797 + 0.735249i \(0.737065\pi\)
\(500\) 1.38408 1.44372i 0.0618980 0.0645650i
\(501\) 2.25208 3.90071i 0.100615 0.174271i
\(502\) −7.61754 0.921273i −0.339987 0.0411184i
\(503\) −1.02393 + 1.77350i −0.0456548 + 0.0790764i −0.887950 0.459940i \(-0.847871\pi\)
0.842295 + 0.539017i \(0.181204\pi\)
\(504\) −1.28284 7.82339i −0.0571424 0.348482i
\(505\) 5.94485 3.43226i 0.264543 0.152734i
\(506\) 1.17507 9.71601i 0.0522380 0.431929i
\(507\) −1.47068 2.20472i −0.0653151 0.0979150i
\(508\) −10.9957 2.69915i −0.487857 0.119755i
\(509\) 14.0474 + 24.3308i 0.622640 + 1.07844i 0.988992 + 0.147967i \(0.0472731\pi\)
−0.366353 + 0.930476i \(0.619394\pi\)
\(510\) −0.232219 0.544322i −0.0102828 0.0241030i
\(511\) −0.795594 + 1.37801i −0.0351950 + 0.0609596i
\(512\) 19.9905 10.6008i 0.883466 0.468496i
\(513\) 2.05203 + 1.18474i 0.0905994 + 0.0523076i
\(514\) 6.40237 + 4.80632i 0.282396 + 0.211998i
\(515\) 13.7687 0.606721
\(516\) 1.34961 1.40776i 0.0594134 0.0619734i
\(517\) −8.21152 + 4.74093i −0.361142 + 0.208506i
\(518\) 5.25784 + 12.3244i 0.231016 + 0.541503i
\(519\) −1.09422 −0.0480308
\(520\) −4.49691 9.15302i −0.197203 0.401387i
\(521\) −23.8519 −1.04497 −0.522484 0.852649i \(-0.674995\pi\)
−0.522484 + 0.852649i \(0.674995\pi\)
\(522\) −13.9418 32.6796i −0.610215 1.43035i
\(523\) 30.2270 17.4516i 1.32174 0.763105i 0.337731 0.941243i \(-0.390341\pi\)
0.984006 + 0.178138i \(0.0570074\pi\)
\(524\) 8.65112 + 8.29376i 0.377926 + 0.362315i
\(525\) 0.193147 0.00842962
\(526\) 17.0986 + 12.8361i 0.745536 + 0.559681i
\(527\) −10.7909 6.23011i −0.470058 0.271388i
\(528\) 0.343645 0.657788i 0.0149552 0.0286265i
\(529\) −17.4098 + 30.1546i −0.756946 + 1.31107i
\(530\) −6.36372 14.9166i −0.276422 0.647935i
\(531\) 13.8240 + 23.9438i 0.599908 + 1.03907i
\(532\) 0.881167 3.58968i 0.0382034 0.155632i
\(533\) 3.90215 16.7061i 0.169021 0.723623i
\(534\) 0.0439345 0.363272i 0.00190123 0.0157203i
\(535\) 15.9543 9.21122i 0.689765 0.398236i
\(536\) 1.58504 0.259908i 0.0684633 0.0112263i
\(537\) −0.284415 + 0.492620i −0.0122734 + 0.0212581i
\(538\) −33.5355 4.05582i −1.44582 0.174859i
\(539\) 2.77688 4.80970i 0.119609 0.207168i
\(540\) 1.75369 + 1.68125i 0.0754670 + 0.0723496i
\(541\) 36.1168 1.55278 0.776391 0.630251i \(-0.217048\pi\)
0.776391 + 0.630251i \(0.217048\pi\)
\(542\) 4.05355 5.39962i 0.174115 0.231933i
\(543\) 1.73630 + 3.00736i 0.0745119 + 0.129058i
\(544\) −11.5760 0.906906i −0.496317 0.0388833i
\(545\) −9.34839 −0.400441
\(546\) 0.337538 0.925212i 0.0144453 0.0395954i
\(547\) 7.44775i 0.318443i 0.987243 + 0.159221i \(0.0508984\pi\)
−0.987243 + 0.159221i \(0.949102\pi\)
\(548\) −15.3208 + 4.45348i −0.654473 + 0.190243i
\(549\) −9.28201 + 5.35897i −0.396146 + 0.228715i
\(550\) −1.02931 0.772713i −0.0438899 0.0329486i
\(551\) 16.5650i 0.705691i
\(552\) −3.39232 + 2.77779i −0.144387 + 0.118231i
\(553\) 4.21595 + 2.43408i 0.179280 + 0.103507i
\(554\) 22.4701 + 2.71756i 0.954663 + 0.115458i
\(555\) −1.76556 1.01934i −0.0749436 0.0432687i
\(556\) −36.9574 + 10.7428i −1.56734 + 0.455597i
\(557\) −19.3137 33.4523i −0.818347 1.41742i −0.906899 0.421348i \(-0.861557\pi\)
0.0885520 0.996072i \(-0.471776\pi\)
\(558\) 25.2138 + 3.04939i 1.06739 + 0.129091i
\(559\) −16.5050 + 4.99976i −0.698088 + 0.211468i
\(560\) 1.75481 3.35898i 0.0741544 0.141943i
\(561\) −0.329815 + 0.190419i −0.0139248 + 0.00803949i
\(562\) 4.19851 + 9.84133i 0.177104 + 0.415132i
\(563\) −23.1968 13.3927i −0.977627 0.564433i −0.0760739 0.997102i \(-0.524238\pi\)
−0.901553 + 0.432669i \(0.857572\pi\)
\(564\) 4.12541 + 1.01268i 0.173711 + 0.0426414i
\(565\) 4.37276 7.57384i 0.183963 0.318634i
\(566\) 5.13279 6.83724i 0.215747 0.287391i
\(567\) 8.17416i 0.343283i
\(568\) −21.8275 + 17.8734i −0.915860 + 0.749950i
\(569\) −2.22781 3.85869i −0.0933948 0.161765i 0.815543 0.578697i \(-0.196439\pi\)
−0.908938 + 0.416932i \(0.863105\pi\)
\(570\) 0.220682 + 0.517281i 0.00924337 + 0.0216665i
\(571\) 35.6563i 1.49217i 0.665852 + 0.746084i \(0.268068\pi\)
−0.665852 + 0.746084i \(0.731932\pi\)
\(572\) −5.50024 + 3.58022i −0.229977 + 0.149697i
\(573\) 1.23628i 0.0516465i
\(574\) 5.86400 2.50170i 0.244759 0.104419i
\(575\) 3.80196 + 6.58518i 0.158553 + 0.274621i
\(576\) 22.4281 7.55855i 0.934504 0.314940i
\(577\) 18.4920i 0.769832i 0.922952 + 0.384916i \(0.125770\pi\)
−0.922952 + 0.384916i \(0.874230\pi\)
\(578\) −14.4616 10.8564i −0.601521 0.451568i
\(579\) −0.768918 + 1.33181i −0.0319552 + 0.0553479i
\(580\) 4.04889 16.4943i 0.168121 0.684887i
\(581\) −12.3843 7.15009i −0.513788 0.296636i
\(582\) 1.88533 0.804319i 0.0781493 0.0333401i
\(583\) −9.03823 + 5.21823i −0.374325 + 0.216117i
\(584\) −4.44396 1.67815i −0.183893 0.0694424i
\(585\) −3.09246 10.2087i −0.127857 0.422078i
\(586\) −2.39191 + 19.7775i −0.0988089 + 0.817000i
\(587\) 19.1108 + 33.1009i 0.788788 + 1.36622i 0.926710 + 0.375778i \(0.122624\pi\)
−0.137922 + 0.990443i \(0.544042\pi\)
\(588\) −2.38921 + 0.694497i −0.0985292 + 0.0286406i
\(589\) 10.2548 + 5.92060i 0.422541 + 0.243954i
\(590\) −1.58685 + 13.1208i −0.0653295 + 0.540176i
\(591\) −3.85684 2.22675i −0.158649 0.0915962i
\(592\) −33.7679 + 21.4433i −1.38785 + 0.881313i
\(593\) 2.58816i 0.106283i 0.998587 + 0.0531415i \(0.0169234\pi\)
−0.998587 + 0.0531415i \(0.983077\pi\)
\(594\) 0.938620 1.25031i 0.0385120 0.0513008i
\(595\) −1.68419 + 0.972369i −0.0690451 + 0.0398632i
\(596\) 5.72109 + 19.6817i 0.234345 + 0.806193i
\(597\) 2.11169i 0.0864258i
\(598\) 38.1885 6.70404i 1.56165 0.274149i
\(599\) 43.0158 1.75758 0.878788 0.477212i \(-0.158353\pi\)
0.878788 + 0.477212i \(0.158353\pi\)
\(600\) 0.0933042 + 0.569013i 0.00380913 + 0.0232299i
\(601\) 5.80881 + 10.0612i 0.236946 + 0.410403i 0.959837 0.280560i \(-0.0905201\pi\)
−0.722890 + 0.690963i \(0.757187\pi\)
\(602\) −5.12524 3.84757i −0.208889 0.156815i
\(603\) 1.68004 0.0684165
\(604\) −27.8990 26.7466i −1.13519 1.08830i
\(605\) 5.08586 8.80897i 0.206770 0.358135i
\(606\) −0.237621 + 1.96477i −0.00965270 + 0.0798133i
\(607\) −6.25095 + 10.8270i −0.253718 + 0.439453i −0.964547 0.263913i \(-0.914987\pi\)
0.710828 + 0.703365i \(0.248320\pi\)
\(608\) 11.0009 + 0.861851i 0.446145 + 0.0349527i
\(609\) 1.42045 0.820100i 0.0575597 0.0332321i
\(610\) −5.08640 0.615154i −0.205942 0.0249069i
\(611\) −27.4069 25.6893i −1.10877 1.03928i
\(612\) −11.7950 2.89536i −0.476786 0.117038i
\(613\) 5.66362 + 9.80969i 0.228752 + 0.396209i 0.957438 0.288638i \(-0.0932023\pi\)
−0.728687 + 0.684847i \(0.759869\pi\)
\(614\) −36.8259 + 15.7107i −1.48617 + 0.634031i
\(615\) −0.485008 + 0.840058i −0.0195574 + 0.0338744i
\(616\) −2.28158 0.861581i −0.0919275 0.0347141i
\(617\) 6.40877 + 3.70011i 0.258008 + 0.148961i 0.623425 0.781883i \(-0.285741\pi\)
−0.365418 + 0.930844i \(0.619074\pi\)
\(618\) −2.38320 + 3.17460i −0.0958664 + 0.127701i
\(619\) −8.97939 −0.360912 −0.180456 0.983583i \(-0.557757\pi\)
−0.180456 + 0.983583i \(0.557757\pi\)
\(620\) 8.76387 + 8.40186i 0.351966 + 0.337427i
\(621\) −7.99907 + 4.61826i −0.320992 + 0.185325i
\(622\) −16.1008 + 6.86895i −0.645585 + 0.275420i
\(623\) −1.20249 −0.0481766
\(624\) 2.88874 + 0.547446i 0.115642 + 0.0219154i
\(625\) 1.00000 0.0400000
\(626\) −31.5391 + 13.4552i −1.26056 + 0.537779i
\(627\) 0.313430 0.180959i 0.0125172 0.00722680i
\(628\) −12.7993 12.2706i −0.510746 0.489649i
\(629\) 20.5269 0.818462
\(630\) 2.37980 3.17007i 0.0948136 0.126299i
\(631\) 25.9248 + 14.9677i 1.03205 + 0.595854i 0.917571 0.397571i \(-0.130147\pi\)
0.114479 + 0.993426i \(0.463480\pi\)
\(632\) −5.13421 + 13.5961i −0.204228 + 0.540822i
\(633\) 1.82260 3.15684i 0.0724419 0.125473i
\(634\) 28.3454 12.0927i 1.12574 0.480264i
\(635\) −2.83054 4.90264i −0.112327 0.194555i
\(636\) 4.54075 + 1.11463i 0.180052 + 0.0441979i
\(637\) 21.4257 + 5.00452i 0.848917 + 0.198286i
\(638\) −10.8507 1.31230i −0.429585 0.0519545i
\(639\) −25.5550 + 14.7542i −1.01094 + 0.583667i
\(640\) 10.7433 + 3.54707i 0.424666 + 0.140210i
\(641\) −18.5886 + 32.1965i −0.734207 + 1.27168i 0.220864 + 0.975305i \(0.429112\pi\)
−0.955070 + 0.296379i \(0.904221\pi\)
\(642\) −0.637708 + 5.27288i −0.0251683 + 0.208104i
\(643\) 14.1618 24.5290i 0.558488 0.967330i −0.439135 0.898421i \(-0.644715\pi\)
0.997623 0.0689088i \(-0.0219517\pi\)
\(644\) 10.4008 + 9.97121i 0.409851 + 0.392921i
\(645\) 0.975097 0.0383944
\(646\) −4.52846 3.39956i −0.178170 0.133754i
\(647\) −16.1098 27.9029i −0.633341 1.09698i −0.986864 0.161552i \(-0.948350\pi\)
0.353523 0.935426i \(-0.384983\pi\)
\(648\) 24.0812 3.94872i 0.945998 0.155120i
\(649\) 8.50528 0.333861
\(650\) 1.74757 4.79020i 0.0685454 0.187887i
\(651\) 1.17247i 0.0459527i
\(652\) 0.166598 + 0.573129i 0.00652448 + 0.0224455i
\(653\) −15.6423 + 9.03111i −0.612132 + 0.353415i −0.773799 0.633431i \(-0.781646\pi\)
0.161667 + 0.986845i \(0.448313\pi\)
\(654\) 1.61810 2.15542i 0.0632727 0.0842838i
\(655\) 5.99225i 0.234137i
\(656\) 10.2028 + 16.0669i 0.398352 + 0.627307i
\(657\) −4.30295 2.48431i −0.167874 0.0969221i
\(658\) 1.67606 13.8585i 0.0653395 0.540259i
\(659\) 6.57871 + 3.79822i 0.256270 + 0.147958i 0.622632 0.782515i \(-0.286063\pi\)
−0.366362 + 0.930472i \(0.619397\pi\)
\(660\) 0.356323 0.103576i 0.0138699 0.00403171i
\(661\) −16.8080 29.1123i −0.653755 1.13234i −0.982204 0.187816i \(-0.939859\pi\)
0.328449 0.944522i \(-0.393474\pi\)
\(662\) 1.66627 13.7775i 0.0647614 0.535479i
\(663\) −1.10080 1.03181i −0.0427514 0.0400721i
\(664\) 15.0817 39.9384i 0.585284 1.54991i
\(665\) 1.60052 0.924061i 0.0620655 0.0358336i
\(666\) −38.4840 + 16.4180i −1.49122 + 0.636186i
\(667\) 55.9212 + 32.2861i 2.16528 + 1.25012i
\(668\) 10.5342 42.9140i 0.407581 1.66039i
\(669\) −0.965625 + 1.67251i −0.0373332 + 0.0646630i
\(670\) 0.642264 + 0.482154i 0.0248128 + 0.0186272i
\(671\) 3.29714i 0.127285i
\(672\) 0.470729 + 0.986001i 0.0181588 + 0.0380358i
\(673\) 21.7955 + 37.7509i 0.840156 + 1.45519i 0.889763 + 0.456423i \(0.150870\pi\)
−0.0496072 + 0.998769i \(0.515797\pi\)
\(674\) −16.0276 + 6.83769i −0.617359 + 0.263378i
\(675\) 1.21471i 0.0467541i
\(676\) −19.8920 16.7424i −0.765076 0.643940i
\(677\) 33.4500i 1.28559i 0.766040 + 0.642793i \(0.222225\pi\)
−0.766040 + 0.642793i \(0.777775\pi\)
\(678\) 0.989399 + 2.31916i 0.0379976 + 0.0890667i
\(679\) −3.36792 5.83340i −0.129249 0.223866i
\(680\) −3.67820 4.49192i −0.141052 0.172257i
\(681\) 1.28505i 0.0492433i
\(682\) 4.69064 6.24827i 0.179614 0.239259i
\(683\) −13.1705 + 22.8120i −0.503955 + 0.872876i 0.496035 + 0.868303i \(0.334789\pi\)
−0.999990 + 0.00457291i \(0.998544\pi\)
\(684\) 11.2091 + 2.75152i 0.428589 + 0.105207i
\(685\) −6.90871 3.98874i −0.263968 0.152402i
\(686\) 6.88883 + 16.1475i 0.263017 + 0.616513i
\(687\) 3.24670 1.87448i 0.123869 0.0715160i
\(688\) 8.85912 16.9577i 0.337751 0.646506i
\(689\) −30.1662 28.2756i −1.14924 1.07722i
\(690\) −2.17640 0.263216i −0.0828540 0.0100205i
\(691\) 2.33735 + 4.04842i 0.0889171 + 0.154009i 0.907054 0.421015i \(-0.138326\pi\)
−0.818137 + 0.575024i \(0.804993\pi\)
\(692\) −10.3082 + 2.99639i −0.391857 + 0.113906i
\(693\) −2.20918 1.27547i −0.0839198 0.0484511i
\(694\) 3.04944 + 0.368802i 0.115755 + 0.0139995i
\(695\) −16.6654 9.62177i −0.632154 0.364974i
\(696\) 3.10221 + 3.78851i 0.117589 + 0.143603i
\(697\) 9.76678i 0.369943i
\(698\) 22.0090 + 16.5224i 0.833053 + 0.625381i
\(699\) −0.906905 + 0.523602i −0.0343023 + 0.0198044i
\(700\) 1.81955 0.528910i 0.0687727 0.0199909i
\(701\) 5.91052i 0.223237i −0.993751 0.111619i \(-0.964396\pi\)
0.993751 0.111619i \(-0.0356035\pi\)
\(702\) 5.81869 + 2.12279i 0.219612 + 0.0801195i
\(703\) −19.5071 −0.735726
\(704\) 1.43606 7.13777i 0.0541234 0.269015i
\(705\) 1.06197 + 1.83939i 0.0399962 + 0.0692754i
\(706\) 17.2636 22.9964i 0.649724 0.865479i
\(707\) 6.50369 0.244596
\(708\) −2.75056 2.63694i −0.103372 0.0991022i
\(709\) 15.6266 27.0660i 0.586868 1.01649i −0.407772 0.913084i \(-0.633694\pi\)
0.994640 0.103401i \(-0.0329726\pi\)
\(710\) −14.0038 1.69363i −0.525552 0.0635608i
\(711\) −7.60060 + 13.1646i −0.285045 + 0.493712i
\(712\) −0.580890 3.54254i −0.0217698 0.132762i
\(713\) −39.9744 + 23.0792i −1.49705 + 0.864324i
\(714\) 0.0673187 0.556624i 0.00251934 0.0208311i
\(715\) −3.19540 0.746368i −0.119501 0.0279126i
\(716\) −1.33036 + 5.41960i −0.0497180 + 0.202540i
\(717\) 0.645506 + 1.11805i 0.0241069 + 0.0417543i
\(718\) 20.2007 + 47.3506i 0.753884 + 1.76711i
\(719\) −9.15518 + 15.8572i −0.341431 + 0.591375i −0.984699 0.174266i \(-0.944245\pi\)
0.643268 + 0.765641i \(0.277578\pi\)
\(720\) 10.4887 + 5.47955i 0.390890 + 0.204211i
\(721\) 11.2972 + 6.52246i 0.420731 + 0.242909i
\(722\) −17.1852 12.9011i −0.639568 0.480130i
\(723\) −0.240698 −0.00895167
\(724\) 24.5923 + 23.5764i 0.913965 + 0.876211i
\(725\) 7.35427 4.24599i 0.273131 0.157692i
\(726\) 1.15075 + 2.69736i 0.0427083 + 0.100108i
\(727\) 34.1329 1.26592 0.632960 0.774184i \(-0.281840\pi\)
0.632960 + 0.774184i \(0.281840\pi\)
\(728\) 0.646219 9.64033i 0.0239505 0.357295i
\(729\) 24.7816 0.917836
\(730\) −0.932008 2.18463i −0.0344952 0.0808568i
\(731\) −8.50259 + 4.90897i −0.314480 + 0.181565i
\(732\) 1.02223 1.06628i 0.0377827 0.0394107i
\(733\) −21.7917 −0.804895 −0.402447 0.915443i \(-0.631840\pi\)
−0.402447 + 0.915443i \(0.631840\pi\)
\(734\) 8.73793 + 6.55965i 0.322523 + 0.242121i
\(735\) −1.07738 0.622024i −0.0397397 0.0229437i
\(736\) −24.3509 + 35.4578i −0.897587 + 1.30699i
\(737\) 0.258414 0.447586i 0.00951879 0.0164870i
\(738\) 7.81176 + 18.3108i 0.287555 + 0.674030i
\(739\) −7.01484 12.1501i −0.258045 0.446947i 0.707673 0.706540i \(-0.249745\pi\)
−0.965718 + 0.259593i \(0.916412\pi\)
\(740\) −19.4239 4.76803i −0.714036 0.175276i
\(741\) 1.04611 + 0.980549i 0.0384298 + 0.0360214i
\(742\) 1.84480 15.2537i 0.0677246 0.559980i
\(743\) 27.2452 15.7300i 0.999530 0.577079i 0.0914205 0.995812i \(-0.470859\pi\)
0.908109 + 0.418734i \(0.137526\pi\)
\(744\) −3.45411 + 0.566390i −0.126634 + 0.0207648i
\(745\) −5.12408 + 8.87516i −0.187732 + 0.325161i
\(746\) 5.42319 + 0.655886i 0.198557 + 0.0240137i
\(747\) 22.3268 38.6711i 0.816893 1.41490i
\(748\) −2.58561 + 2.69701i −0.0945391 + 0.0986126i
\(749\) 17.4541 0.637757
\(750\) −0.173088 + 0.230566i −0.00632030 + 0.00841909i
\(751\) 6.02077 + 10.4283i 0.219701 + 0.380533i 0.954717 0.297517i \(-0.0961585\pi\)
−0.735016 + 0.678050i \(0.762825\pi\)
\(752\) 41.6369 1.75697i 1.51834 0.0640702i
\(753\) 1.10609 0.0403083
\(754\) −7.48701 42.6486i −0.272661 1.55317i
\(755\) 19.3244i 0.703288i
\(756\) 0.642471 + 2.21023i 0.0233664 + 0.0803851i
\(757\) −12.2994 + 7.10108i −0.447031 + 0.258093i −0.706575 0.707638i \(-0.749761\pi\)
0.259545 + 0.965731i \(0.416427\pi\)
\(758\) 15.3053 + 11.4899i 0.555915 + 0.417331i
\(759\) 1.41080i 0.0512088i
\(760\) 3.49547 + 4.26876i 0.126794 + 0.154844i
\(761\) −9.71814 5.61077i −0.352282 0.203390i 0.313408 0.949619i \(-0.398529\pi\)
−0.665690 + 0.746228i \(0.731863\pi\)
\(762\) 1.62032 + 0.195963i 0.0586980 + 0.00709899i
\(763\) −7.67037 4.42849i −0.277686 0.160322i
\(764\) 3.38542 + 11.6465i 0.122480 + 0.421355i
\(765\) −3.03630 5.25903i −0.109778 0.190140i
\(766\) −15.7294 1.90234i −0.568328 0.0687342i
\(767\) 9.76878 + 32.2483i 0.352730 + 1.16442i
\(768\) −2.67737 + 1.86308i −0.0966114 + 0.0672283i
\(769\) 19.8028 11.4331i 0.714107