Properties

Label 520.2.ca.b.101.4
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.4
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.b.381.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32269 + 0.500493i) q^{2} +(0.815452 - 0.470802i) q^{3} +(1.49901 - 1.32399i) q^{4} +1.00000 q^{5} +(-0.842957 + 1.03085i) q^{6} +(-2.82007 - 1.62817i) q^{7} +(-1.32008 + 2.50148i) q^{8} +(-1.05669 + 1.83024i) q^{9} +O(q^{10})\) \(q+(-1.32269 + 0.500493i) q^{2} +(0.815452 - 0.470802i) q^{3} +(1.49901 - 1.32399i) q^{4} +1.00000 q^{5} +(-0.842957 + 1.03085i) q^{6} +(-2.82007 - 1.62817i) q^{7} +(-1.32008 + 2.50148i) q^{8} +(-1.05669 + 1.83024i) q^{9} +(-1.32269 + 0.500493i) q^{10} +(-2.28794 - 3.96283i) q^{11} +(0.599037 - 1.78539i) q^{12} +(2.20289 - 2.85434i) q^{13} +(4.54496 + 0.742136i) q^{14} +(0.815452 - 0.470802i) q^{15} +(0.494087 - 3.96937i) q^{16} +(3.64340 - 6.31055i) q^{17} +(0.481651 - 2.94971i) q^{18} +(-3.24655 + 5.62320i) q^{19} +(1.49901 - 1.32399i) q^{20} -3.06618 q^{21} +(5.00960 + 4.09650i) q^{22} +(-3.65810 - 6.33601i) q^{23} +(0.101236 + 2.66133i) q^{24} +1.00000 q^{25} +(-1.48516 + 4.87794i) q^{26} +4.81478i q^{27} +(-6.38301 + 1.29310i) q^{28} +(-3.33584 + 1.92595i) q^{29} +(-0.842957 + 1.03085i) q^{30} -2.78436i q^{31} +(1.33312 + 5.49753i) q^{32} +(-3.73142 - 2.15433i) q^{33} +(-1.66070 + 10.1704i) q^{34} +(-2.82007 - 1.62817i) q^{35} +(0.839233 + 4.14261i) q^{36} +(-2.57569 - 4.46122i) q^{37} +(1.47981 - 9.06262i) q^{38} +(0.452520 - 3.36471i) q^{39} +(-1.32008 + 2.50148i) q^{40} +(3.47276 - 2.00500i) q^{41} +(4.05560 - 1.53460i) q^{42} +(6.09210 + 3.51727i) q^{43} +(-8.67642 - 2.91112i) q^{44} +(-1.05669 + 1.83024i) q^{45} +(8.00965 + 6.54972i) q^{46} -7.32283i q^{47} +(-1.46588 - 3.46945i) q^{48} +(1.80186 + 3.12092i) q^{49} +(-1.32269 + 0.500493i) q^{50} -6.86127i q^{51} +(-0.476971 - 7.19531i) q^{52} -3.33709i q^{53} +(-2.40976 - 6.36846i) q^{54} +(-2.28794 - 3.96283i) q^{55} +(7.79555 - 4.90502i) q^{56} +6.11393i q^{57} +(3.44836 - 4.21699i) q^{58} +(-0.960988 + 1.66448i) q^{59} +(0.599037 - 1.78539i) q^{60} +(4.19212 + 2.42032i) q^{61} +(1.39355 + 3.68284i) q^{62} +(5.95989 - 3.44094i) q^{63} +(-4.51477 - 6.60431i) q^{64} +(2.20289 - 2.85434i) q^{65} +(6.01373 + 0.981968i) q^{66} +(-0.105635 - 0.182965i) q^{67} +(-2.89362 - 14.2834i) q^{68} +(-5.96601 - 3.44448i) q^{69} +(4.54496 + 0.742136i) q^{70} +(-5.29581 - 3.05754i) q^{71} +(-3.18339 - 5.05936i) q^{72} +7.65793i q^{73} +(5.63964 + 4.61170i) q^{74} +(0.815452 - 0.470802i) q^{75} +(2.57844 + 12.7277i) q^{76} +14.9006i q^{77} +(1.08547 + 4.67694i) q^{78} +14.7003 q^{79} +(0.494087 - 3.96937i) q^{80} +(-0.903270 - 1.56451i) q^{81} +(-3.58989 + 4.39008i) q^{82} -7.55031 q^{83} +(-4.59624 + 4.05959i) q^{84} +(3.64340 - 6.31055i) q^{85} +(-9.81832 - 1.60321i) q^{86} +(-1.81348 + 3.14104i) q^{87} +(12.9332 - 0.491972i) q^{88} +(-4.09878 + 2.36643i) q^{89} +(0.481651 - 2.94971i) q^{90} +(-10.8597 + 4.46278i) q^{91} +(-13.8724 - 4.65448i) q^{92} +(-1.31088 - 2.27051i) q^{93} +(3.66502 + 9.68583i) q^{94} +(-3.24655 + 5.62320i) q^{95} +(3.67534 + 3.85534i) q^{96} +(7.27269 + 4.19889i) q^{97} +(-3.94530 - 3.22618i) q^{98} +9.67060 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32269 + 0.500493i −0.935283 + 0.353902i
\(3\) 0.815452 0.470802i 0.470802 0.271817i −0.245774 0.969327i \(-0.579042\pi\)
0.716575 + 0.697510i \(0.245709\pi\)
\(4\) 1.49901 1.32399i 0.749507 0.661996i
\(5\) 1.00000 0.447214
\(6\) −0.842957 + 1.03085i −0.344136 + 0.420844i
\(7\) −2.82007 1.62817i −1.06589 0.615390i −0.138832 0.990316i \(-0.544335\pi\)
−0.927055 + 0.374926i \(0.877668\pi\)
\(8\) −1.32008 + 2.50148i −0.466719 + 0.884405i
\(9\) −1.05669 + 1.83024i −0.352231 + 0.610081i
\(10\) −1.32269 + 0.500493i −0.418271 + 0.158270i
\(11\) −2.28794 3.96283i −0.689840 1.19484i −0.971889 0.235439i \(-0.924347\pi\)
0.282049 0.959400i \(-0.408986\pi\)
\(12\) 0.599037 1.78539i 0.172927 0.515398i
\(13\) 2.20289 2.85434i 0.610971 0.791653i
\(14\) 4.54496 + 0.742136i 1.21469 + 0.198344i
\(15\) 0.815452 0.470802i 0.210549 0.121560i
\(16\) 0.494087 3.96937i 0.123522 0.992342i
\(17\) 3.64340 6.31055i 0.883654 1.53053i 0.0364049 0.999337i \(-0.488409\pi\)
0.847249 0.531196i \(-0.178257\pi\)
\(18\) 0.481651 2.94971i 0.113526 0.695253i
\(19\) −3.24655 + 5.62320i −0.744811 + 1.29005i 0.205472 + 0.978663i \(0.434127\pi\)
−0.950283 + 0.311387i \(0.899206\pi\)
\(20\) 1.49901 1.32399i 0.335190 0.296054i
\(21\) −3.06618 −0.669095
\(22\) 5.00960 + 4.09650i 1.06805 + 0.873376i
\(23\) −3.65810 6.33601i −0.762766 1.32115i −0.941420 0.337237i \(-0.890507\pi\)
0.178654 0.983912i \(-0.442826\pi\)
\(24\) 0.101236 + 2.66133i 0.0206646 + 0.543242i
\(25\) 1.00000 0.200000
\(26\) −1.48516 + 4.87794i −0.291263 + 0.956643i
\(27\) 4.81478i 0.926605i
\(28\) −6.38301 + 1.29310i −1.20627 + 0.244374i
\(29\) −3.33584 + 1.92595i −0.619450 + 0.357640i −0.776655 0.629926i \(-0.783085\pi\)
0.157205 + 0.987566i \(0.449752\pi\)
\(30\) −0.842957 + 1.03085i −0.153902 + 0.188207i
\(31\) 2.78436i 0.500086i −0.968235 0.250043i \(-0.919555\pi\)
0.968235 0.250043i \(-0.0804448\pi\)
\(32\) 1.33312 + 5.49753i 0.235664 + 0.971835i
\(33\) −3.73142 2.15433i −0.649556 0.375021i
\(34\) −1.66070 + 10.1704i −0.284808 + 1.74421i
\(35\) −2.82007 1.62817i −0.476679 0.275211i
\(36\) 0.839233 + 4.14261i 0.139872 + 0.690436i
\(37\) −2.57569 4.46122i −0.423440 0.733420i 0.572833 0.819672i \(-0.305844\pi\)
−0.996273 + 0.0862519i \(0.972511\pi\)
\(38\) 1.47981 9.06262i 0.240058 1.47015i
\(39\) 0.452520 3.36471i 0.0724612 0.538784i
\(40\) −1.32008 + 2.50148i −0.208723 + 0.395518i
\(41\) 3.47276 2.00500i 0.542354 0.313128i −0.203679 0.979038i \(-0.565290\pi\)
0.746032 + 0.665910i \(0.231956\pi\)
\(42\) 4.05560 1.53460i 0.625793 0.236794i
\(43\) 6.09210 + 3.51727i 0.929036 + 0.536379i 0.886507 0.462716i \(-0.153125\pi\)
0.0425296 + 0.999095i \(0.486458\pi\)
\(44\) −8.67642 2.91112i −1.30802 0.438868i
\(45\) −1.05669 + 1.83024i −0.157522 + 0.272837i
\(46\) 8.00965 + 6.54972i 1.18096 + 0.965704i
\(47\) 7.32283i 1.06814i −0.845439 0.534072i \(-0.820661\pi\)
0.845439 0.534072i \(-0.179339\pi\)
\(48\) −1.46588 3.46945i −0.211582 0.500772i
\(49\) 1.80186 + 3.12092i 0.257409 + 0.445845i
\(50\) −1.32269 + 0.500493i −0.187057 + 0.0707803i
\(51\) 6.86127i 0.960770i
\(52\) −0.476971 7.19531i −0.0661439 0.997810i
\(53\) 3.33709i 0.458385i −0.973381 0.229192i \(-0.926392\pi\)
0.973381 0.229192i \(-0.0736085\pi\)
\(54\) −2.40976 6.36846i −0.327927 0.866637i
\(55\) −2.28794 3.96283i −0.308506 0.534348i
\(56\) 7.79555 4.90502i 1.04172 0.655461i
\(57\) 6.11393i 0.809810i
\(58\) 3.44836 4.21699i 0.452792 0.553719i
\(59\) −0.960988 + 1.66448i −0.125110 + 0.216697i −0.921776 0.387723i \(-0.873262\pi\)
0.796666 + 0.604420i \(0.206595\pi\)
\(60\) 0.599037 1.78539i 0.0773353 0.230493i
\(61\) 4.19212 + 2.42032i 0.536745 + 0.309890i 0.743759 0.668448i \(-0.233041\pi\)
−0.207014 + 0.978338i \(0.566374\pi\)
\(62\) 1.39355 + 3.68284i 0.176981 + 0.467722i
\(63\) 5.95989 3.44094i 0.750875 0.433518i
\(64\) −4.51477 6.60431i −0.564346 0.825538i
\(65\) 2.20289 2.85434i 0.273235 0.354038i
\(66\) 6.01373 + 0.981968i 0.740239 + 0.120872i
\(67\) −0.105635 0.182965i −0.0129054 0.0223528i 0.859501 0.511135i \(-0.170775\pi\)
−0.872406 + 0.488782i \(0.837441\pi\)
\(68\) −2.89362 14.2834i −0.350903 1.73212i
\(69\) −5.96601 3.44448i −0.718223 0.414666i
\(70\) 4.54496 + 0.742136i 0.543227 + 0.0887023i
\(71\) −5.29581 3.05754i −0.628497 0.362863i 0.151673 0.988431i \(-0.451534\pi\)
−0.780170 + 0.625568i \(0.784867\pi\)
\(72\) −3.18339 5.05936i −0.375166 0.596251i
\(73\) 7.65793i 0.896293i 0.893960 + 0.448146i \(0.147916\pi\)
−0.893960 + 0.448146i \(0.852084\pi\)
\(74\) 5.63964 + 4.61170i 0.655595 + 0.536099i
\(75\) 0.815452 0.470802i 0.0941603 0.0543635i
\(76\) 2.57844 + 12.7277i 0.295767 + 1.45996i
\(77\) 14.9006i 1.69808i
\(78\) 1.08547 + 4.67694i 0.122905 + 0.529560i
\(79\) 14.7003 1.65392 0.826959 0.562262i \(-0.190069\pi\)
0.826959 + 0.562262i \(0.190069\pi\)
\(80\) 0.494087 3.96937i 0.0552407 0.443789i
\(81\) −0.903270 1.56451i −0.100363 0.173834i
\(82\) −3.58989 + 4.39008i −0.396437 + 0.484803i
\(83\) −7.55031 −0.828754 −0.414377 0.910105i \(-0.636001\pi\)
−0.414377 + 0.910105i \(0.636001\pi\)
\(84\) −4.59624 + 4.05959i −0.501491 + 0.442938i
\(85\) 3.64340 6.31055i 0.395182 0.684475i
\(86\) −9.81832 1.60321i −1.05874 0.172879i
\(87\) −1.81348 + 3.14104i −0.194425 + 0.336755i
\(88\) 12.9332 0.491972i 1.37868 0.0524443i
\(89\) −4.09878 + 2.36643i −0.434470 + 0.250841i −0.701249 0.712916i \(-0.747374\pi\)
0.266779 + 0.963758i \(0.414041\pi\)
\(90\) 0.481651 2.94971i 0.0507705 0.310927i
\(91\) −10.8597 + 4.46278i −1.13840 + 0.467826i
\(92\) −13.8724 4.65448i −1.44629 0.485263i
\(93\) −1.31088 2.27051i −0.135932 0.235441i
\(94\) 3.66502 + 9.68583i 0.378018 + 0.999017i
\(95\) −3.24655 + 5.62320i −0.333089 + 0.576928i
\(96\) 3.67534 + 3.85534i 0.375112 + 0.393484i
\(97\) 7.27269 + 4.19889i 0.738430 + 0.426333i 0.821498 0.570211i \(-0.193139\pi\)
−0.0830682 + 0.996544i \(0.526472\pi\)
\(98\) −3.94530 3.22618i −0.398535 0.325894i
\(99\) 9.67060 0.971932
\(100\) 1.49901 1.32399i 0.149901 0.132399i
\(101\) 8.39604 4.84746i 0.835437 0.482340i −0.0202735 0.999794i \(-0.506454\pi\)
0.855711 + 0.517455i \(0.173120\pi\)
\(102\) 3.43402 + 9.07533i 0.340018 + 0.898592i
\(103\) −9.65843 −0.951673 −0.475837 0.879534i \(-0.657855\pi\)
−0.475837 + 0.879534i \(0.657855\pi\)
\(104\) 4.23208 + 9.27844i 0.414990 + 0.909826i
\(105\) −3.06618 −0.299228
\(106\) 1.67019 + 4.41393i 0.162223 + 0.428719i
\(107\) 2.53186 1.46177i 0.244764 0.141314i −0.372601 0.927992i \(-0.621534\pi\)
0.617364 + 0.786677i \(0.288200\pi\)
\(108\) 6.37473 + 7.21742i 0.613409 + 0.694497i
\(109\) −1.12321 −0.107584 −0.0537921 0.998552i \(-0.517131\pi\)
−0.0537921 + 0.998552i \(0.517131\pi\)
\(110\) 5.00960 + 4.09650i 0.477647 + 0.390586i
\(111\) −4.20070 2.42528i −0.398713 0.230197i
\(112\) −7.85616 + 10.3894i −0.742337 + 0.981709i
\(113\) 4.10521 7.11043i 0.386186 0.668893i −0.605747 0.795657i \(-0.707126\pi\)
0.991933 + 0.126764i \(0.0404591\pi\)
\(114\) −3.05998 8.08683i −0.286593 0.757401i
\(115\) −3.65810 6.33601i −0.341119 0.590836i
\(116\) −2.45053 + 7.30365i −0.227526 + 0.678127i
\(117\) 2.89637 + 7.04798i 0.267770 + 0.651586i
\(118\) 0.438029 2.68256i 0.0403238 0.246949i
\(119\) −20.5493 + 11.8641i −1.88375 + 1.08758i
\(120\) 0.101236 + 2.66133i 0.00924150 + 0.242945i
\(121\) −4.96936 + 8.60718i −0.451760 + 0.782471i
\(122\) −6.75622 1.10321i −0.611679 0.0998797i
\(123\) 1.88791 3.26996i 0.170227 0.294842i
\(124\) −3.68647 4.17380i −0.331055 0.374818i
\(125\) 1.00000 0.0894427
\(126\) −6.16091 + 7.53418i −0.548858 + 0.671198i
\(127\) −2.26541 3.92381i −0.201023 0.348182i 0.747835 0.663884i \(-0.231093\pi\)
−0.948858 + 0.315702i \(0.897760\pi\)
\(128\) 9.27704 + 6.47584i 0.819983 + 0.572389i
\(129\) 6.62375 0.583189
\(130\) −1.48516 + 4.87794i −0.130257 + 0.427824i
\(131\) 18.1375i 1.58468i 0.610078 + 0.792342i \(0.291138\pi\)
−0.610078 + 0.792342i \(0.708862\pi\)
\(132\) −8.44577 + 1.71099i −0.735110 + 0.148923i
\(133\) 18.3110 10.5719i 1.58777 0.916698i
\(134\) 0.231295 + 0.189137i 0.0199808 + 0.0163389i
\(135\) 4.81478i 0.414390i
\(136\) 10.9761 + 17.4443i 0.941194 + 1.49584i
\(137\) 10.3515 + 5.97644i 0.884389 + 0.510602i 0.872103 0.489323i \(-0.162756\pi\)
0.0122856 + 0.999925i \(0.496089\pi\)
\(138\) 9.61511 + 1.57003i 0.818493 + 0.133650i
\(139\) 17.3034 + 9.99011i 1.46765 + 0.847350i 0.999344 0.0362139i \(-0.0115298\pi\)
0.468310 + 0.883564i \(0.344863\pi\)
\(140\) −6.38301 + 1.29310i −0.539463 + 0.109287i
\(141\) −3.44760 5.97142i −0.290340 0.502884i
\(142\) 8.53498 + 1.39366i 0.716240 + 0.116953i
\(143\) −16.3514 2.19910i −1.36737 0.183898i
\(144\) 6.74281 + 5.09870i 0.561901 + 0.424891i
\(145\) −3.33584 + 1.92595i −0.277026 + 0.159941i
\(146\) −3.83274 10.1291i −0.317200 0.838287i
\(147\) 2.93867 + 1.69664i 0.242377 + 0.139936i
\(148\) −9.76761 3.27724i −0.802893 0.269388i
\(149\) −6.07088 + 10.5151i −0.497346 + 0.861429i −0.999995 0.00306162i \(-0.999025\pi\)
0.502649 + 0.864491i \(0.332359\pi\)
\(150\) −0.842957 + 1.03085i −0.0688272 + 0.0841687i
\(151\) 2.19357i 0.178510i −0.996009 0.0892550i \(-0.971551\pi\)
0.996009 0.0892550i \(-0.0284486\pi\)
\(152\) −9.78058 15.5443i −0.793310 1.26081i
\(153\) 7.69990 + 13.3366i 0.622500 + 1.07820i
\(154\) −7.45765 19.7089i −0.600954 1.58819i
\(155\) 2.78436i 0.223645i
\(156\) −3.77651 5.64287i −0.302363 0.451792i
\(157\) 21.5797i 1.72225i 0.508395 + 0.861124i \(0.330239\pi\)
−0.508395 + 0.861124i \(0.669761\pi\)
\(158\) −19.4440 + 7.35741i −1.54688 + 0.585324i
\(159\) −1.57111 2.72124i −0.124597 0.215808i
\(160\) 1.33312 + 5.49753i 0.105392 + 0.434618i
\(161\) 23.8240i 1.87759i
\(162\) 1.97777 + 1.61728i 0.155388 + 0.127065i
\(163\) 7.84916 13.5951i 0.614794 1.06485i −0.375627 0.926771i \(-0.622573\pi\)
0.990421 0.138083i \(-0.0440941\pi\)
\(164\) 2.55111 7.60342i 0.199208 0.593728i
\(165\) −3.73142 2.15433i −0.290490 0.167715i
\(166\) 9.98672 3.77888i 0.775120 0.293298i
\(167\) 8.80939 5.08611i 0.681691 0.393575i −0.118801 0.992918i \(-0.537905\pi\)
0.800492 + 0.599343i \(0.204572\pi\)
\(168\) 4.04760 7.66997i 0.312279 0.591751i
\(169\) −3.29457 12.5756i −0.253428 0.967354i
\(170\) −1.66070 + 10.1704i −0.127370 + 0.780033i
\(171\) −6.86121 11.8840i −0.524690 0.908790i
\(172\) 13.7890 2.79345i 1.05140 0.212998i
\(173\) −15.2799 8.82187i −1.16171 0.670714i −0.209998 0.977702i \(-0.567346\pi\)
−0.951714 + 0.306987i \(0.900679\pi\)
\(174\) 0.826603 5.06225i 0.0626646 0.383768i
\(175\) −2.82007 1.62817i −0.213177 0.123078i
\(176\) −16.8604 + 7.12370i −1.27090 + 0.536969i
\(177\) 1.80974i 0.136028i
\(178\) 4.23703 5.18146i 0.317579 0.388367i
\(179\) −1.09869 + 0.634330i −0.0821201 + 0.0474120i −0.540498 0.841345i \(-0.681764\pi\)
0.458378 + 0.888758i \(0.348431\pi\)
\(180\) 0.839233 + 4.14261i 0.0625527 + 0.308772i
\(181\) 13.4062i 0.996473i 0.867041 + 0.498237i \(0.166019\pi\)
−0.867041 + 0.498237i \(0.833981\pi\)
\(182\) 12.1304 11.3380i 0.899162 0.840432i
\(183\) 4.55796 0.336934
\(184\) 20.6784 0.786593i 1.52443 0.0579884i
\(185\) −2.57569 4.46122i −0.189368 0.327995i
\(186\) 2.87026 + 2.34710i 0.210458 + 0.172098i
\(187\) −33.3435 −2.43832
\(188\) −9.69537 10.9770i −0.707108 0.800582i
\(189\) 7.83927 13.5780i 0.570223 0.987655i
\(190\) 1.47981 9.06262i 0.107357 0.657472i
\(191\) 0.546815 0.947111i 0.0395661 0.0685306i −0.845564 0.533874i \(-0.820736\pi\)
0.885130 + 0.465343i \(0.154069\pi\)
\(192\) −6.79090 3.25994i −0.490091 0.235266i
\(193\) −17.4409 + 10.0695i −1.25543 + 0.724821i −0.972182 0.234227i \(-0.924744\pi\)
−0.283244 + 0.959048i \(0.591411\pi\)
\(194\) −11.7210 1.91390i −0.841521 0.137410i
\(195\) 0.452520 3.36471i 0.0324056 0.240952i
\(196\) 6.83309 + 2.29265i 0.488078 + 0.163760i
\(197\) 6.49688 + 11.2529i 0.462884 + 0.801738i 0.999103 0.0423403i \(-0.0134814\pi\)
−0.536219 + 0.844079i \(0.680148\pi\)
\(198\) −12.7912 + 4.84006i −0.909031 + 0.343968i
\(199\) −2.01275 + 3.48619i −0.142680 + 0.247130i −0.928505 0.371320i \(-0.878905\pi\)
0.785825 + 0.618449i \(0.212239\pi\)
\(200\) −1.32008 + 2.50148i −0.0933439 + 0.176881i
\(201\) −0.172281 0.0994662i −0.0121517 0.00701581i
\(202\) −8.67924 + 10.6138i −0.610669 + 0.746787i
\(203\) 12.5431 0.880351
\(204\) −9.08427 10.2851i −0.636026 0.720104i
\(205\) 3.47276 2.00500i 0.242548 0.140035i
\(206\) 12.7751 4.83397i 0.890083 0.336799i
\(207\) 15.4619 1.07468
\(208\) −10.2415 10.1544i −0.710122 0.704079i
\(209\) 29.7117 2.05520
\(210\) 4.05560 1.53460i 0.279863 0.105897i
\(211\) 18.4537 10.6543i 1.27041 0.733469i 0.295342 0.955392i \(-0.404566\pi\)
0.975064 + 0.221922i \(0.0712332\pi\)
\(212\) −4.41828 5.00235i −0.303449 0.343563i
\(213\) −5.75797 −0.394530
\(214\) −2.61725 + 3.20064i −0.178912 + 0.218791i
\(215\) 6.09210 + 3.51727i 0.415478 + 0.239876i
\(216\) −12.0441 6.35590i −0.819494 0.432464i
\(217\) −4.53341 + 7.85209i −0.307748 + 0.533035i
\(218\) 1.48566 0.562159i 0.100622 0.0380742i
\(219\) 3.60537 + 6.24468i 0.243628 + 0.421976i
\(220\) −8.67642 2.91112i −0.584964 0.196268i
\(221\) −9.98649 24.3010i −0.671764 1.63466i
\(222\) 6.77005 + 1.10547i 0.454376 + 0.0741940i
\(223\) 8.44262 4.87435i 0.565359 0.326410i −0.189934 0.981797i \(-0.560828\pi\)
0.755294 + 0.655386i \(0.227494\pi\)
\(224\) 5.19142 17.6739i 0.346866 1.18089i
\(225\) −1.05669 + 1.83024i −0.0704461 + 0.122016i
\(226\) −1.87120 + 11.4595i −0.124470 + 0.762276i
\(227\) 5.82595 10.0908i 0.386682 0.669753i −0.605319 0.795983i \(-0.706954\pi\)
0.992001 + 0.126230i \(0.0402878\pi\)
\(228\) 8.09480 + 9.16487i 0.536091 + 0.606958i
\(229\) 21.6811 1.43273 0.716365 0.697726i \(-0.245805\pi\)
0.716365 + 0.697726i \(0.245805\pi\)
\(230\) 8.00965 + 6.54972i 0.528141 + 0.431876i
\(231\) 7.01523 + 12.1507i 0.461569 + 0.799460i
\(232\) −0.414133 10.8869i −0.0271891 0.714762i
\(233\) 16.1554 1.05838 0.529188 0.848505i \(-0.322497\pi\)
0.529188 + 0.848505i \(0.322497\pi\)
\(234\) −7.35847 7.87268i −0.481038 0.514653i
\(235\) 7.32283i 0.477689i
\(236\) 0.763224 + 3.76742i 0.0496817 + 0.245238i
\(237\) 11.9874 6.92095i 0.778667 0.449564i
\(238\) 21.2424 25.9773i 1.37694 1.68386i
\(239\) 0.979222i 0.0633406i −0.999498 0.0316703i \(-0.989917\pi\)
0.999498 0.0316703i \(-0.0100827\pi\)
\(240\) −1.46588 3.46945i −0.0946221 0.223952i
\(241\) 9.26265 + 5.34779i 0.596660 + 0.344482i 0.767726 0.640778i \(-0.221388\pi\)
−0.171067 + 0.985259i \(0.554721\pi\)
\(242\) 2.26509 13.8718i 0.145605 0.891710i
\(243\) −13.9823 8.07269i −0.896965 0.517863i
\(244\) 9.48852 1.92224i 0.607441 0.123059i
\(245\) 1.80186 + 3.12092i 0.115117 + 0.199388i
\(246\) −0.860530 + 5.27003i −0.0548654 + 0.336005i
\(247\) 8.89875 + 21.6541i 0.566214 + 1.37781i
\(248\) 6.96501 + 3.67558i 0.442279 + 0.233400i
\(249\) −6.15692 + 3.55470i −0.390179 + 0.225270i
\(250\) −1.32269 + 0.500493i −0.0836542 + 0.0316539i
\(251\) −1.41559 0.817291i −0.0893512 0.0515869i 0.454659 0.890666i \(-0.349761\pi\)
−0.544010 + 0.839079i \(0.683095\pi\)
\(252\) 4.37817 13.0489i 0.275799 0.822002i
\(253\) −16.7390 + 28.9928i −1.05237 + 1.82276i
\(254\) 4.96028 + 4.05616i 0.311235 + 0.254506i
\(255\) 6.86127i 0.429669i
\(256\) −15.5118 3.92243i −0.969485 0.245152i
\(257\) −14.2913 24.7533i −0.891469 1.54407i −0.838115 0.545494i \(-0.816342\pi\)
−0.0533543 0.998576i \(-0.516991\pi\)
\(258\) −8.76117 + 3.31514i −0.545447 + 0.206392i
\(259\) 16.7746i 1.04232i
\(260\) −0.476971 7.19531i −0.0295805 0.446234i
\(261\) 8.14053i 0.503886i
\(262\) −9.07770 23.9903i −0.560822 1.48213i
\(263\) −0.592661 1.02652i −0.0365451 0.0632979i 0.847174 0.531315i \(-0.178302\pi\)
−0.883719 + 0.468017i \(0.844969\pi\)
\(264\) 10.3148 6.49015i 0.634831 0.399441i
\(265\) 3.33709i 0.204996i
\(266\) −18.9286 + 23.1478i −1.16059 + 1.41928i
\(267\) −2.22824 + 3.85943i −0.136366 + 0.236193i
\(268\) −0.400593 0.134407i −0.0244701 0.00821024i
\(269\) −17.9663 10.3729i −1.09543 0.632444i −0.160410 0.987051i \(-0.551281\pi\)
−0.935016 + 0.354607i \(0.884615\pi\)
\(270\) −2.40976 6.36846i −0.146653 0.387572i
\(271\) −3.99411 + 2.30600i −0.242625 + 0.140079i −0.616383 0.787447i \(-0.711402\pi\)
0.373758 + 0.927526i \(0.378069\pi\)
\(272\) −23.2487 17.5799i −1.40966 1.06594i
\(273\) −6.75444 + 8.75192i −0.408798 + 0.529691i
\(274\) −16.6830 2.72413i −1.00786 0.164570i
\(275\) −2.28794 3.96283i −0.137968 0.238968i
\(276\) −13.5036 + 2.73563i −0.812821 + 0.164666i
\(277\) 17.0409 + 9.83855i 1.02389 + 0.591141i 0.915227 0.402938i \(-0.132011\pi\)
0.108659 + 0.994079i \(0.465344\pi\)
\(278\) −27.8870 4.55360i −1.67255 0.273107i
\(279\) 5.09606 + 2.94221i 0.305093 + 0.176146i
\(280\) 7.79555 4.90502i 0.465873 0.293131i
\(281\) 22.9775i 1.37072i −0.728203 0.685361i \(-0.759644\pi\)
0.728203 0.685361i \(-0.240356\pi\)
\(282\) 7.54876 + 6.17283i 0.449522 + 0.367587i
\(283\) −15.4338 + 8.91072i −0.917446 + 0.529688i −0.882819 0.469713i \(-0.844357\pi\)
−0.0346264 + 0.999400i \(0.511024\pi\)
\(284\) −11.9866 + 2.42832i −0.711276 + 0.144094i
\(285\) 6.11393i 0.362158i
\(286\) 22.7284 5.27501i 1.34396 0.311918i
\(287\) −13.0579 −0.770783
\(288\) −11.4705 3.36927i −0.675906 0.198536i
\(289\) −18.0487 31.2613i −1.06169 1.83890i
\(290\) 3.44836 4.21699i 0.202495 0.247630i
\(291\) 7.90738 0.463539
\(292\) 10.1390 + 11.4793i 0.593343 + 0.671778i
\(293\) 1.92052 3.32644i 0.112198 0.194333i −0.804458 0.594009i \(-0.797544\pi\)
0.916656 + 0.399677i \(0.130878\pi\)
\(294\) −4.73610 0.773346i −0.276215 0.0451025i
\(295\) −0.960988 + 1.66448i −0.0559509 + 0.0969098i
\(296\) 14.5598 0.553845i 0.846269 0.0321916i
\(297\) 19.0802 11.0159i 1.10714 0.639209i
\(298\) 2.76717 16.9466i 0.160298 0.981691i
\(299\) −26.1435 3.51605i −1.51192 0.203339i
\(300\) 0.599037 1.78539i 0.0345854 0.103080i
\(301\) −11.4534 19.8379i −0.660165 1.14344i
\(302\) 1.09786 + 2.90141i 0.0631750 + 0.166957i
\(303\) 4.56438 7.90574i 0.262217 0.454173i
\(304\) 20.7165 + 15.6651i 1.18817 + 0.898456i
\(305\) 4.19212 + 2.42032i 0.240040 + 0.138587i
\(306\) −16.8594 13.7865i −0.963790 0.788119i
\(307\) 0.0398307 0.00227326 0.00113663 0.999999i \(-0.499638\pi\)
0.00113663 + 0.999999i \(0.499638\pi\)
\(308\) 19.7283 + 22.3362i 1.12412 + 1.27273i
\(309\) −7.87599 + 4.54720i −0.448049 + 0.258681i
\(310\) 1.39355 + 3.68284i 0.0791484 + 0.209172i
\(311\) 11.5568 0.655328 0.327664 0.944794i \(-0.393739\pi\)
0.327664 + 0.944794i \(0.393739\pi\)
\(312\) 7.81937 + 5.57365i 0.442685 + 0.315546i
\(313\) −15.1522 −0.856451 −0.428226 0.903672i \(-0.640861\pi\)
−0.428226 + 0.903672i \(0.640861\pi\)
\(314\) −10.8005 28.5432i −0.609506 1.61079i
\(315\) 5.95989 3.44094i 0.335802 0.193875i
\(316\) 22.0360 19.4631i 1.23962 1.09489i
\(317\) 21.4371 1.20403 0.602013 0.798486i \(-0.294365\pi\)
0.602013 + 0.798486i \(0.294365\pi\)
\(318\) 3.44005 + 2.81302i 0.192908 + 0.157747i
\(319\) 15.2644 + 8.81292i 0.854643 + 0.493429i
\(320\) −4.51477 6.60431i −0.252383 0.369192i
\(321\) 1.37640 2.38400i 0.0768234 0.133062i
\(322\) −11.9237 31.5117i −0.664484 1.75608i
\(323\) 23.6570 + 40.9751i 1.31631 + 2.27992i
\(324\) −3.42541 1.14930i −0.190301 0.0638499i
\(325\) 2.20289 2.85434i 0.122194 0.158331i
\(326\) −3.57773 + 21.9106i −0.198152 + 1.21352i
\(327\) −0.915926 + 0.528810i −0.0506508 + 0.0292433i
\(328\) 0.431131 + 11.3338i 0.0238052 + 0.625803i
\(329\) −11.9228 + 20.6509i −0.657325 + 1.13852i
\(330\) 6.01373 + 0.981968i 0.331045 + 0.0540556i
\(331\) 11.6860 20.2407i 0.642319 1.11253i −0.342595 0.939483i \(-0.611306\pi\)
0.984914 0.173046i \(-0.0553609\pi\)
\(332\) −11.3180 + 9.99656i −0.621157 + 0.548632i
\(333\) 10.8868 0.596594
\(334\) −9.10653 + 11.1364i −0.498287 + 0.609355i
\(335\) −0.105635 0.182965i −0.00577146 0.00999645i
\(336\) −1.51496 + 12.1708i −0.0826478 + 0.663971i
\(337\) −32.2953 −1.75924 −0.879619 0.475680i \(-0.842202\pi\)
−0.879619 + 0.475680i \(0.842202\pi\)
\(338\) 10.6517 + 14.9847i 0.579375 + 0.815061i
\(339\) 7.73096i 0.419888i
\(340\) −2.89362 14.2834i −0.156928 0.774628i
\(341\) −11.0340 + 6.37046i −0.597522 + 0.344980i
\(342\) 15.0231 + 12.2848i 0.812356 + 0.664287i
\(343\) 11.0594i 0.597152i
\(344\) −16.8404 + 10.5962i −0.907976 + 0.571306i
\(345\) −5.96601 3.44448i −0.321199 0.185444i
\(346\) 24.6259 + 4.02110i 1.32390 + 0.216176i
\(347\) −4.10416 2.36954i −0.220323 0.127203i 0.385777 0.922592i \(-0.373933\pi\)
−0.606100 + 0.795389i \(0.707267\pi\)
\(348\) 1.44028 + 7.10949i 0.0772071 + 0.381109i
\(349\) −11.1002 19.2260i −0.594177 1.02915i −0.993662 0.112406i \(-0.964144\pi\)
0.399485 0.916740i \(-0.369189\pi\)
\(350\) 4.54496 + 0.742136i 0.242938 + 0.0396689i
\(351\) 13.7430 + 10.6064i 0.733549 + 0.566129i
\(352\) 18.7357 17.8609i 0.998615 0.951991i
\(353\) 17.2525 9.96076i 0.918260 0.530158i 0.0351807 0.999381i \(-0.488799\pi\)
0.883080 + 0.469223i \(0.155466\pi\)
\(354\) −0.905761 2.39372i −0.0481407 0.127225i
\(355\) −5.29581 3.05754i −0.281072 0.162277i
\(356\) −3.01099 + 8.97407i −0.159582 + 0.475625i
\(357\) −11.1713 + 19.3493i −0.591248 + 1.02407i
\(358\) 1.13575 1.38891i 0.0600263 0.0734061i
\(359\) 8.08438i 0.426677i −0.976978 0.213339i \(-0.931566\pi\)
0.976978 0.213339i \(-0.0684337\pi\)
\(360\) −3.18339 5.05936i −0.167779 0.266652i
\(361\) −11.5802 20.0576i −0.609486 1.05566i
\(362\) −6.70969 17.7322i −0.352654 0.931984i
\(363\) 9.35833i 0.491185i
\(364\) −10.3701 + 21.0679i −0.543540 + 1.10426i
\(365\) 7.65793i 0.400834i
\(366\) −6.02877 + 2.28123i −0.315129 + 0.119242i
\(367\) 0.926465 + 1.60468i 0.0483611 + 0.0837638i 0.889193 0.457533i \(-0.151267\pi\)
−0.840832 + 0.541297i \(0.817934\pi\)
\(368\) −26.9574 + 11.3898i −1.40525 + 0.593734i
\(369\) 8.47466i 0.441173i
\(370\) 5.63964 + 4.61170i 0.293191 + 0.239751i
\(371\) −5.43334 + 9.41083i −0.282085 + 0.488586i
\(372\) −4.97117 1.66793i −0.257743 0.0864784i
\(373\) −11.6966 6.75302i −0.605625 0.349658i 0.165626 0.986189i \(-0.447036\pi\)
−0.771251 + 0.636531i \(0.780369\pi\)
\(374\) 44.1031 16.6882i 2.28052 0.862926i
\(375\) 0.815452 0.470802i 0.0421098 0.0243121i
\(376\) 18.3179 + 9.66673i 0.944673 + 0.498524i
\(377\) −1.85116 + 13.7643i −0.0953397 + 0.708897i
\(378\) −3.57322 + 21.8830i −0.183787 + 1.12554i
\(379\) 16.0577 + 27.8128i 0.824830 + 1.42865i 0.902049 + 0.431633i \(0.142063\pi\)
−0.0772193 + 0.997014i \(0.524604\pi\)
\(380\) 2.57844 + 12.7277i 0.132271 + 0.652916i
\(381\) −3.69467 2.13312i −0.189284 0.109283i
\(382\) −0.249244 + 1.52641i −0.0127524 + 0.0780980i
\(383\) 31.7402 + 18.3252i 1.62185 + 0.936375i 0.986425 + 0.164212i \(0.0525082\pi\)
0.635424 + 0.772163i \(0.280825\pi\)
\(384\) 10.6138 + 0.913089i 0.541634 + 0.0465959i
\(385\) 14.9006i 0.759406i
\(386\) 18.0292 22.0479i 0.917663 1.12221i
\(387\) −12.8749 + 7.43335i −0.654470 + 0.377858i
\(388\) 16.4612 3.33479i 0.835689 0.169298i
\(389\) 19.7184i 0.999763i −0.866094 0.499881i \(-0.833377\pi\)
0.866094 0.499881i \(-0.166623\pi\)
\(390\) 1.08547 + 4.67694i 0.0549647 + 0.236826i
\(391\) −53.3116 −2.69608
\(392\) −10.1855 + 0.387451i −0.514446 + 0.0195692i
\(393\) 8.53918 + 14.7903i 0.430745 + 0.746072i
\(394\) −14.2254 11.6325i −0.716664 0.586036i
\(395\) 14.7003 0.739655
\(396\) 14.4964 12.8038i 0.728470 0.643415i
\(397\) −5.90055 + 10.2200i −0.296140 + 0.512929i −0.975249 0.221108i \(-0.929033\pi\)
0.679109 + 0.734037i \(0.262366\pi\)
\(398\) 0.917435 5.61852i 0.0459869 0.281631i
\(399\) 9.95451 17.2417i 0.498349 0.863165i
\(400\) 0.494087 3.96937i 0.0247044 0.198468i
\(401\) −15.0742 + 8.70308i −0.752769 + 0.434611i −0.826693 0.562653i \(-0.809781\pi\)
0.0739247 + 0.997264i \(0.476448\pi\)
\(402\) 0.277656 + 0.0453378i 0.0138482 + 0.00226124i
\(403\) −7.94753 6.13364i −0.395894 0.305538i
\(404\) 6.16779 18.3827i 0.306859 0.914573i
\(405\) −0.903270 1.56451i −0.0448838 0.0777411i
\(406\) −16.5906 + 6.27771i −0.823377 + 0.311558i
\(407\) −11.7860 + 20.4140i −0.584213 + 1.01189i
\(408\) 17.1633 + 9.05744i 0.849710 + 0.448410i
\(409\) −5.92031 3.41809i −0.292740 0.169014i 0.346437 0.938073i \(-0.387392\pi\)
−0.639177 + 0.769060i \(0.720725\pi\)
\(410\) −3.58989 + 4.39008i −0.177292 + 0.216811i
\(411\) 11.2549 0.555162
\(412\) −14.4781 + 12.7877i −0.713286 + 0.630004i
\(413\) 5.42011 3.12930i 0.266706 0.153983i
\(414\) −20.4513 + 7.73858i −1.00513 + 0.380330i
\(415\) −7.55031 −0.370630
\(416\) 18.6285 + 8.30527i 0.913339 + 0.407199i
\(417\) 18.8134 0.921298
\(418\) −39.2994 + 14.8705i −1.92220 + 0.727340i
\(419\) 19.7820 11.4211i 0.966412 0.557958i 0.0682714 0.997667i \(-0.478252\pi\)
0.898140 + 0.439709i \(0.144918\pi\)
\(420\) −4.59624 + 4.05959i −0.224274 + 0.198088i
\(421\) −30.1915 −1.47144 −0.735722 0.677283i \(-0.763157\pi\)
−0.735722 + 0.677283i \(0.763157\pi\)
\(422\) −19.0762 + 23.3282i −0.928613 + 1.13560i
\(423\) 13.4026 + 7.73797i 0.651655 + 0.376233i
\(424\) 8.34765 + 4.40523i 0.405398 + 0.213937i
\(425\) 3.64340 6.31055i 0.176731 0.306107i
\(426\) 7.61601 2.88182i 0.368997 0.139625i
\(427\) −7.88137 13.6509i −0.381406 0.660615i
\(428\) 1.85992 5.54337i 0.0899025 0.267949i
\(429\) −14.3691 + 5.90499i −0.693747 + 0.285096i
\(430\) −9.81832 1.60321i −0.473482 0.0773137i
\(431\) 6.22337 3.59306i 0.299769 0.173072i −0.342570 0.939492i \(-0.611297\pi\)
0.642339 + 0.766421i \(0.277964\pi\)
\(432\) 19.1116 + 2.37892i 0.919508 + 0.114456i
\(433\) 17.2895 29.9463i 0.830882 1.43913i −0.0664584 0.997789i \(-0.521170\pi\)
0.897340 0.441340i \(-0.145497\pi\)
\(434\) 2.06638 12.6548i 0.0991892 0.607451i
\(435\) −1.81348 + 3.14104i −0.0869497 + 0.150601i
\(436\) −1.68371 + 1.48712i −0.0806351 + 0.0712203i
\(437\) 47.5049 2.27247
\(438\) −7.89419 6.45531i −0.377199 0.308447i
\(439\) 1.44165 + 2.49701i 0.0688063 + 0.119176i 0.898376 0.439227i \(-0.144748\pi\)
−0.829570 + 0.558403i \(0.811414\pi\)
\(440\) 12.9332 0.491972i 0.616566 0.0234538i
\(441\) −7.61605 −0.362669
\(442\) 25.3715 + 27.1444i 1.20680 + 1.29113i
\(443\) 1.83786i 0.0873193i 0.999046 + 0.0436596i \(0.0139017\pi\)
−0.999046 + 0.0436596i \(0.986098\pi\)
\(444\) −9.50795 + 1.92617i −0.451228 + 0.0914121i
\(445\) −4.09878 + 2.36643i −0.194301 + 0.112180i
\(446\) −8.72738 + 10.6727i −0.413254 + 0.505368i
\(447\) 11.4327i 0.540750i
\(448\) 1.97904 + 25.9754i 0.0935010 + 1.22722i
\(449\) −9.68862 5.59373i −0.457234 0.263984i 0.253646 0.967297i \(-0.418370\pi\)
−0.710881 + 0.703313i \(0.751703\pi\)
\(450\) 0.481651 2.94971i 0.0227053 0.139051i
\(451\) −15.8909 9.17464i −0.748275 0.432017i
\(452\) −3.26039 16.0939i −0.153356 0.756994i
\(453\) −1.03273 1.78875i −0.0485221 0.0840428i
\(454\) −2.65553 + 16.2629i −0.124630 + 0.763256i
\(455\) −10.8597 + 4.46278i −0.509108 + 0.209218i
\(456\) −15.2939 8.07089i −0.716201 0.377954i
\(457\) 16.7719 9.68325i 0.784555 0.452963i −0.0534869 0.998569i \(-0.517034\pi\)
0.838042 + 0.545605i \(0.183700\pi\)
\(458\) −28.6774 + 10.8512i −1.34001 + 0.507046i
\(459\) 30.3839 + 17.5422i 1.41820 + 0.818798i
\(460\) −13.8724 4.65448i −0.646803 0.217016i
\(461\) 10.7162 18.5611i 0.499105 0.864476i −0.500894 0.865509i \(-0.666995\pi\)
0.999999 + 0.00103265i \(0.000328703\pi\)
\(462\) −15.3603 12.5606i −0.714627 0.584371i
\(463\) 23.6913i 1.10103i −0.834825 0.550515i \(-0.814431\pi\)
0.834825 0.550515i \(-0.185569\pi\)
\(464\) 5.99660 + 14.1928i 0.278385 + 0.658882i
\(465\) −1.31088 2.27051i −0.0607907 0.105293i
\(466\) −21.3686 + 8.08566i −0.989880 + 0.374561i
\(467\) 1.19692i 0.0553869i −0.999616 0.0276934i \(-0.991184\pi\)
0.999616 0.0276934i \(-0.00881622\pi\)
\(468\) 13.6732 + 6.73025i 0.632043 + 0.311106i
\(469\) 0.687966i 0.0317673i
\(470\) 3.66502 + 9.68583i 0.169055 + 0.446774i
\(471\) 10.1598 + 17.5972i 0.468137 + 0.810837i
\(472\) −2.89507 4.60114i −0.133257 0.211785i
\(473\) 32.1893i 1.48006i
\(474\) −12.3918 + 15.1539i −0.569173 + 0.696041i
\(475\) −3.24655 + 5.62320i −0.148962 + 0.258010i
\(476\) −15.0956 + 44.9916i −0.691907 + 2.06219i
\(477\) 6.10769 + 3.52628i 0.279652 + 0.161457i
\(478\) 0.490093 + 1.29521i 0.0224163 + 0.0592413i
\(479\) 9.74703 5.62745i 0.445353 0.257125i −0.260513 0.965470i \(-0.583892\pi\)
0.705866 + 0.708346i \(0.250558\pi\)
\(480\) 3.67534 + 3.85534i 0.167755 + 0.175971i
\(481\) −18.4078 2.47567i −0.839324 0.112881i
\(482\) −14.9281 2.43758i −0.679958 0.111029i
\(483\) 11.2164 + 19.4273i 0.510363 + 0.883974i
\(484\) 3.94670 + 19.4817i 0.179396 + 0.885531i
\(485\) 7.27269 + 4.19889i 0.330236 + 0.190662i
\(486\) 22.5346 + 3.67962i 1.02219 + 0.166911i
\(487\) −10.4861 6.05415i −0.475170 0.274340i 0.243231 0.969968i \(-0.421793\pi\)
−0.718401 + 0.695629i \(0.755126\pi\)
\(488\) −11.5883 + 7.29146i −0.524578 + 0.330069i
\(489\) 14.7816i 0.668447i
\(490\) −3.94530 3.22618i −0.178230 0.145744i
\(491\) 2.03007 1.17206i 0.0916159 0.0528945i −0.453492 0.891260i \(-0.649822\pi\)
0.545108 + 0.838366i \(0.316489\pi\)
\(492\) −1.49940 7.40130i −0.0675980 0.333676i
\(493\) 28.0680i 1.26412i
\(494\) −22.6080 24.1878i −1.01718 1.08826i
\(495\) 9.67060 0.434661
\(496\) −11.0522 1.37572i −0.496256 0.0617715i
\(497\) 9.95636 + 17.2449i 0.446604 + 0.773541i
\(498\) 6.36459 7.78326i 0.285204 0.348776i
\(499\) −0.0649069 −0.00290563 −0.00145282 0.999999i \(-0.500462\pi\)
−0.00145282 + 0.999999i \(0.500462\pi\)
\(500\) 1.49901 1.32399i 0.0670380 0.0592107i
\(501\) 4.78909 8.29495i 0.213961 0.370591i
\(502\) 2.28143 + 0.372530i 0.101825 + 0.0166268i
\(503\) −17.2819 + 29.9331i −0.770560 + 1.33465i 0.166697 + 0.986008i \(0.446690\pi\)
−0.937256 + 0.348641i \(0.886643\pi\)
\(504\) 0.739899 + 19.4508i 0.0329577 + 0.866410i
\(505\) 8.39604 4.84746i 0.373619 0.215709i
\(506\) 7.62983 46.7263i 0.339187 2.07724i
\(507\) −8.60718 8.70372i −0.382258 0.386546i
\(508\) −8.59098 2.88246i −0.381163 0.127888i
\(509\) 4.66463 + 8.07937i 0.206756 + 0.358112i 0.950691 0.310140i \(-0.100376\pi\)
−0.743935 + 0.668252i \(0.767043\pi\)
\(510\) 3.43402 + 9.07533i 0.152061 + 0.401862i
\(511\) 12.4684 21.5959i 0.551569 0.955346i
\(512\) 22.4804 2.57536i 0.993502 0.113816i
\(513\) −27.0745 15.6314i −1.19537 0.690145i
\(514\) 31.2919 + 25.5882i 1.38022 + 1.12865i
\(515\) −9.65843 −0.425601
\(516\) 9.92910 8.76980i 0.437104 0.386069i
\(517\) −29.0191 + 16.7542i −1.27626 + 0.736849i
\(518\) −8.39557 22.1876i −0.368880 0.974867i
\(519\) −16.6134 −0.729247
\(520\) 4.23208 + 9.27844i 0.185589 + 0.406887i
\(521\) 12.9021 0.565251 0.282626 0.959230i \(-0.408795\pi\)
0.282626 + 0.959230i \(0.408795\pi\)
\(522\) 4.07428 + 10.7674i 0.178326 + 0.471276i
\(523\) 6.38548 3.68666i 0.279218 0.161206i −0.353852 0.935302i \(-0.615128\pi\)
0.633069 + 0.774095i \(0.281795\pi\)
\(524\) 24.0140 + 27.1884i 1.04905 + 1.18773i
\(525\) −3.06618 −0.133819
\(526\) 1.29767 + 1.06114i 0.0565812 + 0.0462681i
\(527\) −17.5708 10.1445i −0.765398 0.441903i
\(528\) −10.3950 + 13.7469i −0.452384 + 0.598258i
\(529\) −15.2634 + 26.4369i −0.663624 + 1.14943i
\(530\) 1.67019 + 4.41393i 0.0725484 + 0.191729i
\(531\) −2.03094 3.51768i −0.0881351 0.152654i
\(532\) 13.4514 40.0910i 0.583192 1.73817i
\(533\) 1.92714 14.3292i 0.0834738 0.620668i
\(534\) 1.01566 6.22004i 0.0439517 0.269167i
\(535\) 2.53186 1.46177i 0.109462 0.0631977i
\(536\) 0.597130 0.0227145i 0.0257921 0.000981116i
\(537\) −0.597287 + 1.03453i −0.0257748 + 0.0446433i
\(538\) 28.9554 + 4.72806i 1.24836 + 0.203841i
\(539\) 8.24511 14.2810i 0.355142 0.615124i
\(540\) 6.37473 + 7.21742i 0.274325 + 0.310588i
\(541\) 10.9267 0.469775 0.234888 0.972023i \(-0.424528\pi\)
0.234888 + 0.972023i \(0.424528\pi\)
\(542\) 4.12883 5.04914i 0.177348 0.216879i
\(543\) 6.31165 + 10.9321i 0.270859 + 0.469141i
\(544\) 39.5495 + 11.6170i 1.69567 + 0.498074i
\(545\) −1.12321 −0.0481131
\(546\) 4.55376 14.9566i 0.194883 0.640085i
\(547\) 37.9154i 1.62114i −0.585639 0.810572i \(-0.699157\pi\)
0.585639 0.810572i \(-0.300843\pi\)
\(548\) 23.4298 4.74654i 1.00087 0.202762i
\(549\) −8.85955 + 5.11506i −0.378116 + 0.218306i
\(550\) 5.00960 + 4.09650i 0.213610 + 0.174675i
\(551\) 25.0108i 1.06550i
\(552\) 16.4919 10.3768i 0.701942 0.441668i
\(553\) −41.4560 23.9346i −1.76289 1.01780i
\(554\) −27.4639 4.48451i −1.16683 0.190529i
\(555\) −4.20070 2.42528i −0.178310 0.102947i
\(556\) 39.1649 7.93423i 1.66096 0.336486i
\(557\) −7.58932 13.1451i −0.321570 0.556975i 0.659242 0.751931i \(-0.270877\pi\)
−0.980812 + 0.194955i \(0.937544\pi\)
\(558\) −8.21306 1.34109i −0.347686 0.0567729i
\(559\) 23.4597 9.64079i 0.992241 0.407762i
\(560\) −7.85616 + 10.3894i −0.331983 + 0.439034i
\(561\) −27.1901 + 15.6982i −1.14797 + 0.662778i
\(562\) 11.5001 + 30.3921i 0.485101 + 1.28201i
\(563\) −9.61390 5.55059i −0.405178 0.233929i 0.283538 0.958961i \(-0.408492\pi\)
−0.688716 + 0.725032i \(0.741825\pi\)
\(564\) −13.0741 4.38664i −0.550520 0.184711i
\(565\) 4.10521 7.11043i 0.172707 0.299138i
\(566\) 15.9544 19.5106i 0.670614 0.820093i
\(567\) 5.88270i 0.247050i
\(568\) 14.6393 9.21114i 0.614249 0.386491i
\(569\) −2.01815 3.49553i −0.0846051 0.146540i 0.820618 0.571477i \(-0.193630\pi\)
−0.905223 + 0.424937i \(0.860296\pi\)
\(570\) −3.05998 8.08683i −0.128168 0.338720i
\(571\) 12.7832i 0.534960i −0.963563 0.267480i \(-0.913809\pi\)
0.963563 0.267480i \(-0.0861909\pi\)
\(572\) −27.4225 + 18.3526i −1.14659 + 0.767361i
\(573\) 1.02977i 0.0430191i
\(574\) 17.2715 6.53538i 0.720900 0.272781i
\(575\) −3.65810 6.33601i −0.152553 0.264230i
\(576\) 16.8582 1.28441i 0.702425 0.0535172i
\(577\) 25.9751i 1.08136i −0.841229 0.540679i \(-0.818168\pi\)
0.841229 0.540679i \(-0.181832\pi\)
\(578\) 39.5188 + 32.3157i 1.64377 + 1.34416i
\(579\) −9.48150 + 16.4224i −0.394038 + 0.682493i
\(580\) −2.45053 + 7.30365i −0.101753 + 0.303268i
\(581\) 21.2924 + 12.2932i 0.883358 + 0.510007i
\(582\) −10.4590 + 3.95758i −0.433540 + 0.164047i
\(583\) −13.2243 + 7.63507i −0.547696 + 0.316212i
\(584\) −19.1561 10.1091i −0.792686 0.418317i
\(585\) 2.89637 + 7.04798i 0.119750 + 0.291398i
\(586\) −0.875393 + 5.36105i −0.0361622 + 0.221463i
\(587\) −14.5416 25.1867i −0.600194 1.03957i −0.992791 0.119856i \(-0.961757\pi\)
0.392597 0.919711i \(-0.371577\pi\)
\(588\) 6.65144 1.34748i 0.274301 0.0555693i
\(589\) 15.6570 + 9.03958i 0.645136 + 0.372469i
\(590\) 0.438029 2.68256i 0.0180334 0.110439i
\(591\) 10.5958 + 6.11749i 0.435853 + 0.251640i
\(592\) −18.9808 + 8.01961i −0.780108 + 0.329604i
\(593\) 25.3253i 1.03998i 0.854171 + 0.519992i \(0.174065\pi\)
−0.854171 + 0.519992i \(0.825935\pi\)
\(594\) −19.7237 + 24.1201i −0.809274 + 0.989661i
\(595\) −20.5493 + 11.8641i −0.842438 + 0.486382i
\(596\) 4.82155 + 23.8001i 0.197498 + 0.974888i
\(597\) 3.79043i 0.155132i
\(598\) 36.3395 8.43400i 1.48603 0.344892i
\(599\) 17.8764 0.730409 0.365205 0.930927i \(-0.380999\pi\)
0.365205 + 0.930927i \(0.380999\pi\)
\(600\) 0.101236 + 2.66133i 0.00413292 + 0.108648i
\(601\) −10.6079 18.3734i −0.432705 0.749467i 0.564400 0.825501i \(-0.309108\pi\)
−0.997105 + 0.0760342i \(0.975774\pi\)
\(602\) 25.0781 + 20.5070i 1.02211 + 0.835805i
\(603\) 0.446494 0.0181827
\(604\) −2.90427 3.28819i −0.118173 0.133794i
\(605\) −4.96936 + 8.60718i −0.202033 + 0.349932i
\(606\) −2.08049 + 12.7413i −0.0845142 + 0.517579i
\(607\) 3.60796 6.24918i 0.146443 0.253646i −0.783468 0.621433i \(-0.786551\pi\)
0.929910 + 0.367786i \(0.119884\pi\)
\(608\) −35.2417 10.3517i −1.42924 0.419815i
\(609\) 10.2283 5.90530i 0.414471 0.239295i
\(610\) −6.75622 1.10321i −0.273551 0.0446676i
\(611\) −20.9019 16.1314i −0.845600 0.652606i
\(612\) 29.1998 + 9.79717i 1.18033 + 0.396027i
\(613\) −6.41919 11.1184i −0.259269 0.449067i 0.706777 0.707436i \(-0.250148\pi\)
−0.966046 + 0.258369i \(0.916815\pi\)
\(614\) −0.0526836 + 0.0199350i −0.00212614 + 0.000804510i
\(615\) 1.88791 3.26996i 0.0761280 0.131858i
\(616\) −37.2735 19.6700i −1.50179 0.792528i
\(617\) −15.5078 8.95345i −0.624322 0.360452i 0.154228 0.988035i \(-0.450711\pi\)
−0.778550 + 0.627583i \(0.784044\pi\)
\(618\) 8.14164 9.95641i 0.327505 0.400506i
\(619\) −21.6358 −0.869618 −0.434809 0.900523i \(-0.643184\pi\)
−0.434809 + 0.900523i \(0.643184\pi\)
\(620\) −3.68647 4.17380i −0.148052 0.167624i
\(621\) 30.5065 17.6129i 1.22418 0.706782i
\(622\) −15.2861 + 5.78411i −0.612916 + 0.231922i
\(623\) 15.4118 0.617461
\(624\) −13.1322 3.45868i −0.525707 0.138458i
\(625\) 1.00000 0.0400000
\(626\) 20.0416 7.58355i 0.801024 0.303100i
\(627\) 24.2285 13.9883i 0.967593 0.558640i
\(628\) 28.5714 + 32.3483i 1.14012 + 1.29084i
\(629\) −37.5370 −1.49670
\(630\) −6.16091 + 7.53418i −0.245457 + 0.300169i
\(631\) 11.0070 + 6.35490i 0.438182 + 0.252985i 0.702826 0.711361i \(-0.251921\pi\)
−0.264644 + 0.964346i \(0.585254\pi\)
\(632\) −19.4057 + 36.7726i −0.771916 + 1.46273i
\(633\) 10.0321 17.3761i 0.398739 0.690637i
\(634\) −28.3546 + 10.7291i −1.12610 + 0.426107i
\(635\) −2.26541 3.92381i −0.0899002 0.155712i
\(636\) −5.95801 1.99904i −0.236251 0.0792671i
\(637\) 12.8775 + 1.73189i 0.510224 + 0.0686202i
\(638\) −24.6009 4.01702i −0.973958 0.159035i
\(639\) 11.1921 6.46174i 0.442751 0.255623i
\(640\) 9.27704 + 6.47584i 0.366707 + 0.255980i
\(641\) 23.4415 40.6018i 0.925882 1.60367i 0.135745 0.990744i \(-0.456657\pi\)
0.790137 0.612931i \(-0.210009\pi\)
\(642\) −0.627380 + 3.84218i −0.0247607 + 0.151639i
\(643\) −4.08952 + 7.08325i −0.161275 + 0.279336i −0.935326 0.353787i \(-0.884894\pi\)
0.774051 + 0.633123i \(0.218227\pi\)
\(644\) 31.5428 + 35.7125i 1.24296 + 1.40727i
\(645\) 6.62375 0.260810
\(646\) −51.7986 42.3572i −2.03799 1.66652i
\(647\) 0.875253 + 1.51598i 0.0344097 + 0.0595994i 0.882717 0.469904i \(-0.155712\pi\)
−0.848308 + 0.529504i \(0.822378\pi\)
\(648\) 5.10597 0.194228i 0.200582 0.00763001i
\(649\) 8.79474 0.345224
\(650\) −1.48516 + 4.87794i −0.0582527 + 0.191329i
\(651\) 8.53734i 0.334605i
\(652\) −6.23387 30.7716i −0.244137 1.20511i
\(653\) −28.9507 + 16.7147i −1.13293 + 0.654096i −0.944669 0.328024i \(-0.893617\pi\)
−0.188258 + 0.982120i \(0.560284\pi\)
\(654\) 0.946820 1.15787i 0.0370236 0.0452761i
\(655\) 18.1375i 0.708692i
\(656\) −6.24273 14.7753i −0.243737 0.576878i
\(657\) −14.0159 8.09207i −0.546811 0.315702i
\(658\) 5.43454 33.2820i 0.211860 1.29747i
\(659\) −24.5902 14.1972i −0.957899 0.553043i −0.0623733 0.998053i \(-0.519867\pi\)
−0.895526 + 0.445010i \(0.853200\pi\)
\(660\) −8.44577 + 1.71099i −0.328751 + 0.0666002i
\(661\) −16.0451 27.7908i −0.624080 1.08094i −0.988718 0.149789i \(-0.952140\pi\)
0.364638 0.931149i \(-0.381193\pi\)
\(662\) −5.32659 + 32.6209i −0.207024 + 1.26785i
\(663\) −19.5844 15.1146i −0.760596 0.587003i
\(664\) 9.96703 18.8869i 0.386796 0.732955i
\(665\) 18.3110 10.5719i 0.710071 0.409960i
\(666\) −14.3999 + 5.44878i −0.557984 + 0.211136i
\(667\) 24.4057 + 14.0906i 0.944991 + 0.545591i
\(668\) 6.47144 19.2877i 0.250388 0.746264i
\(669\) 4.58970 7.94959i 0.177448 0.307349i
\(670\) 0.231295 + 0.189137i 0.00893570 + 0.00730698i
\(671\) 22.1502i 0.855099i
\(672\) −4.08757 16.8564i −0.157681 0.650249i
\(673\) 22.3377 + 38.6901i 0.861056 + 1.49139i 0.870911 + 0.491441i \(0.163530\pi\)
−0.00985491 + 0.999951i \(0.503137\pi\)
\(674\) 42.7166 16.1636i 1.64538 0.622597i
\(675\) 4.81478i 0.185321i
\(676\) −21.5886 14.4890i −0.830331 0.557270i
\(677\) 38.4184i 1.47654i 0.674506 + 0.738270i \(0.264357\pi\)
−0.674506 + 0.738270i \(0.735643\pi\)
\(678\) 3.86929 + 10.2257i 0.148599 + 0.392714i
\(679\) −13.6730 23.6823i −0.524722 0.908844i
\(680\) 10.9761 + 17.4443i 0.420915 + 0.668959i
\(681\) 10.9715i 0.420428i
\(682\) 11.4061 13.9485i 0.436763 0.534117i
\(683\) −11.6110 + 20.1108i −0.444281 + 0.769518i −0.998002 0.0631848i \(-0.979874\pi\)
0.553721 + 0.832703i \(0.313208\pi\)
\(684\) −26.0193 8.73005i −0.994875 0.333802i
\(685\) 10.3515 + 5.97644i 0.395511 + 0.228348i
\(686\) −5.53516 14.6282i −0.211333 0.558506i
\(687\) 17.6799 10.2075i 0.674531 0.389441i
\(688\) 16.9714 22.4439i 0.647028 0.855667i
\(689\) −9.52521 7.35124i −0.362881 0.280060i
\(690\) 9.61511 + 1.57003i 0.366041 + 0.0597700i
\(691\) 24.0825 + 41.7121i 0.916140 + 1.58680i 0.805223 + 0.592972i \(0.202045\pi\)
0.110917 + 0.993830i \(0.464621\pi\)
\(692\) −34.5849 + 7.00640i −1.31472 + 0.266343i
\(693\) −27.2718 15.7454i −1.03597 0.598117i
\(694\) 6.61446 + 1.08006i 0.251081 + 0.0409985i
\(695\) 17.3034 + 9.99011i 0.656355 + 0.378947i
\(696\) −5.46329 8.68280i −0.207086 0.329121i
\(697\) 29.2200i 1.10679i
\(698\) 24.3045 + 19.8745i 0.919940 + 0.752262i
\(699\) 13.1740 7.60599i 0.498285 0.287685i
\(700\) −6.38301 + 1.29310i −0.241255 + 0.0488747i
\(701\) 40.5311i 1.53084i 0.643533 + 0.765419i \(0.277468\pi\)
−0.643533 + 0.765419i \(0.722532\pi\)
\(702\) −23.4862 7.15071i −0.886430 0.269886i
\(703\) 33.4484 1.26153
\(704\) −15.8422 + 33.0015i −0.597076 + 1.24379i
\(705\) −3.44760 5.97142i −0.129844 0.224897i
\(706\) −17.8345 + 21.8098i −0.671209 + 0.820821i
\(707\) −31.5699 −1.18731
\(708\) 2.39608 + 2.71282i 0.0900502 + 0.101954i
\(709\) 18.1735 31.4774i 0.682520 1.18216i −0.291690 0.956513i \(-0.594218\pi\)
0.974209 0.225646i \(-0.0724491\pi\)
\(710\) 8.53498 + 1.39366i 0.320312 + 0.0523030i
\(711\) −15.5337 + 26.9052i −0.582560 + 1.00902i
\(712\) −0.508849 13.3769i −0.0190699 0.501320i
\(713\) −17.6417 + 10.1855i −0.660688 + 0.381449i
\(714\) 5.09200 31.1842i 0.190563 1.16704i
\(715\) −16.3514 2.19910i −0.611507 0.0822417i
\(716\) −0.807106 + 2.40553i −0.0301630 + 0.0898988i
\(717\) −0.461019 0.798509i −0.0172171 0.0298208i
\(718\) 4.04617 + 10.6931i 0.151002 + 0.399064i
\(719\) −21.8623 + 37.8667i −0.815327 + 1.41219i 0.0937658 + 0.995594i \(0.470110\pi\)
−0.909093 + 0.416594i \(0.863224\pi\)
\(720\) 6.74281 + 5.09870i 0.251290 + 0.190017i
\(721\) 27.2374 + 15.7255i 1.01438 + 0.585650i
\(722\) 25.3557 + 20.7341i 0.943642 + 0.771643i
\(723\) 10.0710 0.374544
\(724\) 17.7497 + 20.0960i 0.659662 + 0.746864i
\(725\) −3.33584 + 1.92595i −0.123890 + 0.0715279i
\(726\) −4.68377 12.3782i −0.173831 0.459397i
\(727\) −4.55677 −0.169001 −0.0845005 0.996423i \(-0.526929\pi\)
−0.0845005 + 0.996423i \(0.526929\pi\)
\(728\) 3.17209 33.0564i 0.117565 1.22515i
\(729\) −9.78292 −0.362330
\(730\) −3.83274 10.1291i −0.141856 0.374893i
\(731\) 44.3919 25.6297i 1.64189 0.947947i
\(732\) 6.83245 6.03471i 0.252535 0.223049i
\(733\) −12.6156 −0.465968 −0.232984 0.972481i \(-0.574849\pi\)
−0.232984 + 0.972481i \(0.574849\pi\)
\(734\) −2.02856 1.65881i −0.0748754 0.0612278i
\(735\) 2.93867 + 1.69664i 0.108394 + 0.0625815i
\(736\) 29.9557 28.5571i 1.10418 1.05263i
\(737\) −0.483373 + 0.837227i −0.0178053 + 0.0308397i
\(738\) −4.24150 11.2093i −0.156132 0.412621i
\(739\) 16.5996 + 28.7514i 0.610626 + 1.05764i 0.991135 + 0.132858i \(0.0424156\pi\)
−0.380509 + 0.924777i \(0.624251\pi\)
\(740\) −9.76761 3.27724i −0.359065 0.120474i
\(741\) 17.4513 + 13.4683i 0.641088 + 0.494771i
\(742\) 2.47658 15.1670i 0.0909180 0.556796i
\(743\) −11.7877 + 6.80565i −0.432450 + 0.249675i −0.700390 0.713760i \(-0.746991\pi\)
0.267940 + 0.963436i \(0.413657\pi\)
\(744\) 7.41011 0.281876i 0.271668 0.0103341i
\(745\) −6.07088 + 10.5151i −0.222420 + 0.385243i
\(746\) 18.8508 + 3.07810i 0.690175 + 0.112697i
\(747\) 7.97835 13.8189i 0.291913 0.505607i
\(748\) −49.9824 + 44.1466i −1.82754 + 1.61416i
\(749\) −9.52001 −0.347854
\(750\) −0.842957 + 1.03085i −0.0307805 + 0.0376414i
\(751\) 1.60795 + 2.78505i 0.0586748 + 0.101628i 0.893871 0.448325i \(-0.147979\pi\)
−0.835196 + 0.549952i \(0.814646\pi\)
\(752\) −29.0670 3.61812i −1.05996 0.131939i
\(753\) −1.53913 −0.0560889
\(754\) −4.44041 19.1324i −0.161710 0.696760i
\(755\) 2.19357i 0.0798321i
\(756\) −6.22601 30.7328i −0.226438 1.11774i
\(757\) −18.8023 + 10.8555i −0.683381 + 0.394550i −0.801128 0.598493i \(-0.795766\pi\)
0.117746 + 0.993044i \(0.462433\pi\)
\(758\) −35.1595 28.7509i −1.27705 1.04428i
\(759\) 31.5230i 1.14421i
\(760\) −9.78058 15.5443i −0.354779 0.563850i
\(761\) 9.68269 + 5.59031i 0.350997 + 0.202648i 0.665124 0.746733i \(-0.268378\pi\)
−0.314127 + 0.949381i \(0.601712\pi\)
\(762\) 5.95452 + 0.972299i 0.215709 + 0.0352227i
\(763\) 3.16754 + 1.82878i 0.114672 + 0.0662062i
\(764\) −0.434285 2.14371i −0.0157119 0.0775568i
\(765\) 7.69990 + 13.3366i 0.278390 + 0.482186i
\(766\) −51.1541 8.35283i −1.84827 0.301800i
\(767\) 2.63405 + 6.40965i 0.0951101 + 0.231439i
\(768\) −14.4958 + 4.10441i −0.523072 + 0.148105i
\(769\) 17.5967 10.1595i 0.634553 0.366360i