Properties

Label 520.2.ca.b.101.20
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.20
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.b.381.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.837733 + 1.13939i) q^{2} +(0.654624 - 0.377948i) q^{3} +(-0.596406 + 1.90900i) q^{4} +1.00000 q^{5} +(0.979029 + 0.429251i) q^{6} +(0.518819 + 0.299540i) q^{7} +(-2.67472 + 0.919699i) q^{8} +(-1.21431 + 2.10325i) q^{9} +O(q^{10})\) \(q+(0.837733 + 1.13939i) q^{2} +(0.654624 - 0.377948i) q^{3} +(-0.596406 + 1.90900i) q^{4} +1.00000 q^{5} +(0.979029 + 0.429251i) q^{6} +(0.518819 + 0.299540i) q^{7} +(-2.67472 + 0.919699i) q^{8} +(-1.21431 + 2.10325i) q^{9} +(0.837733 + 1.13939i) q^{10} +(0.495825 + 0.858794i) q^{11} +(0.331082 + 1.47509i) q^{12} +(1.20206 + 3.39927i) q^{13} +(0.0933396 + 0.842071i) q^{14} +(0.654624 - 0.377948i) q^{15} +(-3.28860 - 2.27708i) q^{16} +(3.48363 - 6.03382i) q^{17} +(-3.41368 + 0.378391i) q^{18} +(-2.07109 + 3.58723i) q^{19} +(-0.596406 + 1.90900i) q^{20} +0.452842 q^{21} +(-0.563130 + 1.28438i) q^{22} +(2.57315 + 4.45684i) q^{23} +(-1.40334 + 1.61296i) q^{24} +1.00000 q^{25} +(-2.86608 + 4.21729i) q^{26} +4.10347i q^{27} +(-0.881251 + 0.811781i) q^{28} +(3.70124 - 2.13691i) q^{29} +(0.979029 + 0.429251i) q^{30} -10.2309i q^{31} +(-0.160488 - 5.65458i) q^{32} +(0.649158 + 0.374792i) q^{33} +(9.79320 - 1.08553i) q^{34} +(0.518819 + 0.299540i) q^{35} +(-3.29089 - 3.57252i) q^{36} +(3.38708 + 5.86659i) q^{37} +(-5.82226 + 0.645370i) q^{38} +(2.07164 + 1.77093i) q^{39} +(-2.67472 + 0.919699i) q^{40} +(-1.99903 + 1.15414i) q^{41} +(0.379361 + 0.515963i) q^{42} +(-8.49472 - 4.90443i) q^{43} +(-1.93516 + 0.434342i) q^{44} +(-1.21431 + 2.10325i) q^{45} +(-2.92244 + 6.66546i) q^{46} -5.84920i q^{47} +(-3.01342 - 0.247717i) q^{48} +(-3.32055 - 5.75136i) q^{49} +(0.837733 + 1.13939i) q^{50} -5.26651i q^{51} +(-7.20614 + 0.267391i) q^{52} +1.02996i q^{53} +(-4.67544 + 3.43761i) q^{54} +(0.495825 + 0.858794i) q^{55} +(-1.66319 - 0.324031i) q^{56} +3.13105i q^{57} +(5.53542 + 2.42698i) q^{58} +(0.213398 - 0.369616i) q^{59} +(0.331082 + 1.47509i) q^{60} +(7.52376 + 4.34384i) q^{61} +(11.6569 - 8.57075i) q^{62} +(-1.26002 + 0.727471i) q^{63} +(6.30831 - 4.91988i) q^{64} +(1.20206 + 3.39927i) q^{65} +(0.116789 + 1.05362i) q^{66} +(-5.26656 - 9.12195i) q^{67} +(9.44093 + 10.2489i) q^{68} +(3.36890 + 1.94504i) q^{69} +(0.0933396 + 0.842071i) q^{70} +(2.90416 + 1.67672i) q^{71} +(1.31359 - 6.74241i) q^{72} -11.3352i q^{73} +(-3.84685 + 8.77383i) q^{74} +(0.654624 - 0.377948i) q^{75} +(-5.61283 - 6.09316i) q^{76} +0.594079i q^{77} +(-0.282291 + 3.84397i) q^{78} -1.48646 q^{79} +(-3.28860 - 2.27708i) q^{80} +(-2.09204 - 3.62352i) q^{81} +(-2.98967 - 1.31081i) q^{82} -8.05860 q^{83} +(-0.270078 + 0.864478i) q^{84} +(3.48363 - 6.03382i) q^{85} +(-1.52827 - 13.7874i) q^{86} +(1.61528 - 2.79775i) q^{87} +(-2.11603 - 1.84103i) q^{88} +(4.06454 - 2.34667i) q^{89} +(-3.41368 + 0.378391i) q^{90} +(-0.394568 + 2.12367i) q^{91} +(-10.0428 + 2.25408i) q^{92} +(-3.86674 - 6.69738i) q^{93} +(6.66451 - 4.90007i) q^{94} +(-2.07109 + 3.58723i) q^{95} +(-2.24219 - 3.64097i) q^{96} +(12.6350 + 7.29481i) q^{97} +(3.77129 - 8.60150i) q^{98} -2.40834 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.837733 + 1.13939i 0.592367 + 0.805668i
\(3\) 0.654624 0.377948i 0.377948 0.218208i −0.298977 0.954260i \(-0.596646\pi\)
0.676925 + 0.736052i \(0.263312\pi\)
\(4\) −0.596406 + 1.90900i −0.298203 + 0.954502i
\(5\) 1.00000 0.447214
\(6\) 0.979029 + 0.429251i 0.399687 + 0.175241i
\(7\) 0.518819 + 0.299540i 0.196095 + 0.113216i 0.594833 0.803849i \(-0.297218\pi\)
−0.398738 + 0.917065i \(0.630552\pi\)
\(8\) −2.67472 + 0.919699i −0.945658 + 0.325163i
\(9\) −1.21431 + 2.10325i −0.404770 + 0.701083i
\(10\) 0.837733 + 1.13939i 0.264914 + 0.360306i
\(11\) 0.495825 + 0.858794i 0.149497 + 0.258936i 0.931042 0.364913i \(-0.118901\pi\)
−0.781545 + 0.623849i \(0.785568\pi\)
\(12\) 0.331082 + 1.47509i 0.0955750 + 0.425822i
\(13\) 1.20206 + 3.39927i 0.333391 + 0.942789i
\(14\) 0.0933396 + 0.842071i 0.0249460 + 0.225053i
\(15\) 0.654624 0.377948i 0.169023 0.0975856i
\(16\) −3.28860 2.27708i −0.822150 0.569271i
\(17\) 3.48363 6.03382i 0.844903 1.46342i −0.0408019 0.999167i \(-0.512991\pi\)
0.885705 0.464248i \(-0.153675\pi\)
\(18\) −3.41368 + 0.378391i −0.804613 + 0.0891875i
\(19\) −2.07109 + 3.58723i −0.475140 + 0.822967i −0.999595 0.0284718i \(-0.990936\pi\)
0.524455 + 0.851438i \(0.324269\pi\)
\(20\) −0.596406 + 1.90900i −0.133360 + 0.426866i
\(21\) 0.452842 0.0988183
\(22\) −0.563130 + 1.28438i −0.120060 + 0.273830i
\(23\) 2.57315 + 4.45684i 0.536540 + 0.929314i 0.999087 + 0.0427197i \(0.0136022\pi\)
−0.462547 + 0.886595i \(0.653064\pi\)
\(24\) −1.40334 + 1.61296i −0.286456 + 0.329245i
\(25\) 1.00000 0.200000
\(26\) −2.86608 + 4.21729i −0.562085 + 0.827080i
\(27\) 4.10347i 0.789713i
\(28\) −0.881251 + 0.811781i −0.166541 + 0.153412i
\(29\) 3.70124 2.13691i 0.687303 0.396815i −0.115298 0.993331i \(-0.536782\pi\)
0.802601 + 0.596516i \(0.203449\pi\)
\(30\) 0.979029 + 0.429251i 0.178745 + 0.0783702i
\(31\) 10.2309i 1.83752i −0.394816 0.918760i \(-0.629192\pi\)
0.394816 0.918760i \(-0.370808\pi\)
\(32\) −0.160488 5.65458i −0.0283705 0.999597i
\(33\) 0.649158 + 0.374792i 0.113004 + 0.0652429i
\(34\) 9.79320 1.08553i 1.67952 0.186167i
\(35\) 0.518819 + 0.299540i 0.0876964 + 0.0506316i
\(36\) −3.29089 3.57252i −0.548482 0.595420i
\(37\) 3.38708 + 5.86659i 0.556832 + 0.964461i 0.997758 + 0.0669179i \(0.0213166\pi\)
−0.440927 + 0.897543i \(0.645350\pi\)
\(38\) −5.82226 + 0.645370i −0.944495 + 0.104693i
\(39\) 2.07164 + 1.77093i 0.331729 + 0.283576i
\(40\) −2.67472 + 0.919699i −0.422911 + 0.145417i
\(41\) −1.99903 + 1.15414i −0.312196 + 0.180246i −0.647909 0.761718i \(-0.724356\pi\)
0.335713 + 0.941964i \(0.391023\pi\)
\(42\) 0.379361 + 0.515963i 0.0585367 + 0.0796148i
\(43\) −8.49472 4.90443i −1.29543 0.747919i −0.315822 0.948819i \(-0.602280\pi\)
−0.979612 + 0.200900i \(0.935613\pi\)
\(44\) −1.93516 + 0.434342i −0.291736 + 0.0654796i
\(45\) −1.21431 + 2.10325i −0.181019 + 0.313534i
\(46\) −2.92244 + 6.66546i −0.430891 + 0.982768i
\(47\) 5.84920i 0.853194i −0.904442 0.426597i \(-0.859712\pi\)
0.904442 0.426597i \(-0.140288\pi\)
\(48\) −3.01342 0.247717i −0.434949 0.0357549i
\(49\) −3.32055 5.75136i −0.474364 0.821623i
\(50\) 0.837733 + 1.13939i 0.118473 + 0.161134i
\(51\) 5.26651i 0.737459i
\(52\) −7.20614 + 0.267391i −0.999312 + 0.0370804i
\(53\) 1.02996i 0.141476i 0.997495 + 0.0707381i \(0.0225355\pi\)
−0.997495 + 0.0707381i \(0.977465\pi\)
\(54\) −4.67544 + 3.43761i −0.636247 + 0.467800i
\(55\) 0.495825 + 0.858794i 0.0668570 + 0.115800i
\(56\) −1.66319 0.324031i −0.222253 0.0433004i
\(57\) 3.13105i 0.414718i
\(58\) 5.53542 + 2.42698i 0.726837 + 0.318679i
\(59\) 0.213398 0.369616i 0.0277820 0.0481198i −0.851800 0.523867i \(-0.824489\pi\)
0.879582 + 0.475747i \(0.157822\pi\)
\(60\) 0.331082 + 1.47509i 0.0427425 + 0.190433i
\(61\) 7.52376 + 4.34384i 0.963318 + 0.556172i 0.897193 0.441639i \(-0.145603\pi\)
0.0661256 + 0.997811i \(0.478936\pi\)
\(62\) 11.6569 8.57075i 1.48043 1.08849i
\(63\) −1.26002 + 0.727471i −0.158747 + 0.0916527i
\(64\) 6.30831 4.91988i 0.788538 0.614986i
\(65\) 1.20206 + 3.39927i 0.149097 + 0.421628i
\(66\) 0.116789 + 1.05362i 0.0143757 + 0.129691i
\(67\) −5.26656 9.12195i −0.643413 1.11442i −0.984666 0.174452i \(-0.944185\pi\)
0.341253 0.939971i \(-0.389149\pi\)
\(68\) 9.44093 + 10.2489i 1.14488 + 1.24286i
\(69\) 3.36890 + 1.94504i 0.405568 + 0.234155i
\(70\) 0.0933396 + 0.842071i 0.0111562 + 0.100647i
\(71\) 2.90416 + 1.67672i 0.344660 + 0.198990i 0.662331 0.749211i \(-0.269567\pi\)
−0.317671 + 0.948201i \(0.602901\pi\)
\(72\) 1.31359 6.74241i 0.154808 0.794601i
\(73\) 11.3352i 1.32669i −0.748315 0.663344i \(-0.769137\pi\)
0.748315 0.663344i \(-0.230863\pi\)
\(74\) −3.84685 + 8.77383i −0.447187 + 1.01994i
\(75\) 0.654624 0.377948i 0.0755895 0.0436416i
\(76\) −5.61283 6.09316i −0.643835 0.698933i
\(77\) 0.594079i 0.0677015i
\(78\) −0.282291 + 3.84397i −0.0319631 + 0.435244i
\(79\) −1.48646 −0.167240 −0.0836199 0.996498i \(-0.526648\pi\)
−0.0836199 + 0.996498i \(0.526648\pi\)
\(80\) −3.28860 2.27708i −0.367677 0.254586i
\(81\) −2.09204 3.62352i −0.232449 0.402613i
\(82\) −2.98967 1.31081i −0.330153 0.144754i
\(83\) −8.05860 −0.884547 −0.442273 0.896880i \(-0.645828\pi\)
−0.442273 + 0.896880i \(0.645828\pi\)
\(84\) −0.270078 + 0.864478i −0.0294679 + 0.0943223i
\(85\) 3.48363 6.03382i 0.377852 0.654459i
\(86\) −1.52827 13.7874i −0.164797 1.48673i
\(87\) 1.61528 2.79775i 0.173176 0.299950i
\(88\) −2.11603 1.84103i −0.225569 0.196254i
\(89\) 4.06454 2.34667i 0.430841 0.248746i −0.268864 0.963178i \(-0.586648\pi\)
0.699705 + 0.714432i \(0.253315\pi\)
\(90\) −3.41368 + 0.378391i −0.359834 + 0.0398859i
\(91\) −0.394568 + 2.12367i −0.0413619 + 0.222621i
\(92\) −10.0428 + 2.25408i −1.04703 + 0.235004i
\(93\) −3.86674 6.69738i −0.400962 0.694486i
\(94\) 6.66451 4.90007i 0.687391 0.505404i
\(95\) −2.07109 + 3.58723i −0.212489 + 0.368042i
\(96\) −2.24219 3.64097i −0.228843 0.371605i
\(97\) 12.6350 + 7.29481i 1.28289 + 0.740675i 0.977375 0.211513i \(-0.0678390\pi\)
0.305512 + 0.952188i \(0.401172\pi\)
\(98\) 3.77129 8.60150i 0.380958 0.868883i
\(99\) −2.40834 −0.242048
\(100\) −0.596406 + 1.90900i −0.0596406 + 0.190900i
\(101\) 12.6762 7.31860i 1.26133 0.728228i 0.287996 0.957632i \(-0.407011\pi\)
0.973331 + 0.229404i \(0.0736776\pi\)
\(102\) 6.00059 4.41193i 0.594147 0.436846i
\(103\) 10.7862 1.06280 0.531400 0.847121i \(-0.321666\pi\)
0.531400 + 0.847121i \(0.321666\pi\)
\(104\) −6.34149 7.98659i −0.621834 0.783149i
\(105\) 0.452842 0.0441929
\(106\) −1.17353 + 0.862834i −0.113983 + 0.0838058i
\(107\) −9.93426 + 5.73555i −0.960381 + 0.554476i −0.896290 0.443468i \(-0.853748\pi\)
−0.0640910 + 0.997944i \(0.520415\pi\)
\(108\) −7.83354 2.44733i −0.753783 0.235495i
\(109\) 2.97887 0.285324 0.142662 0.989771i \(-0.454434\pi\)
0.142662 + 0.989771i \(0.454434\pi\)
\(110\) −0.563130 + 1.28438i −0.0536923 + 0.122461i
\(111\) 4.43452 + 2.56027i 0.420906 + 0.243010i
\(112\) −1.02411 2.16646i −0.0967692 0.204712i
\(113\) −9.38881 + 16.2619i −0.883225 + 1.52979i −0.0354897 + 0.999370i \(0.511299\pi\)
−0.847735 + 0.530420i \(0.822034\pi\)
\(114\) −3.56748 + 2.62298i −0.334125 + 0.245665i
\(115\) 2.57315 + 4.45684i 0.239948 + 0.415602i
\(116\) 1.87193 + 8.34016i 0.173805 + 0.774364i
\(117\) −8.60919 1.59954i −0.795920 0.147878i
\(118\) 0.599905 0.0664967i 0.0552258 0.00612152i
\(119\) 3.61474 2.08697i 0.331363 0.191313i
\(120\) −1.40334 + 1.61296i −0.128107 + 0.147243i
\(121\) 5.00831 8.67466i 0.455301 0.788605i
\(122\) 1.35358 + 12.2115i 0.122548 + 1.10557i
\(123\) −0.872409 + 1.51106i −0.0786624 + 0.136247i
\(124\) 19.5308 + 6.10176i 1.75392 + 0.547954i
\(125\) 1.00000 0.0894427
\(126\) −1.88443 0.826220i −0.167878 0.0736055i
\(127\) −8.35088 14.4641i −0.741020 1.28348i −0.952031 0.306001i \(-0.901009\pi\)
0.211011 0.977484i \(-0.432324\pi\)
\(128\) 10.8903 + 3.06605i 0.962578 + 0.271003i
\(129\) −7.41447 −0.652808
\(130\) −2.86608 + 4.21729i −0.251372 + 0.369881i
\(131\) 17.0053i 1.48576i −0.669426 0.742879i \(-0.733460\pi\)
0.669426 0.742879i \(-0.266540\pi\)
\(132\) −1.10264 + 1.01572i −0.0959726 + 0.0884069i
\(133\) −2.14904 + 1.24075i −0.186345 + 0.107587i
\(134\) 5.98146 13.6424i 0.516719 1.17852i
\(135\) 4.10347i 0.353170i
\(136\) −3.76844 + 19.3427i −0.323141 + 1.65862i
\(137\) −1.14959 0.663718i −0.0982165 0.0567053i 0.450087 0.892985i \(-0.351393\pi\)
−0.548304 + 0.836279i \(0.684726\pi\)
\(138\) 0.606091 + 5.46790i 0.0515939 + 0.465459i
\(139\) 6.77015 + 3.90875i 0.574237 + 0.331536i 0.758840 0.651277i \(-0.225767\pi\)
−0.184603 + 0.982813i \(0.559100\pi\)
\(140\) −0.881251 + 0.811781i −0.0744793 + 0.0686080i
\(141\) −2.21069 3.82903i −0.186174 0.322463i
\(142\) 0.522480 + 4.71360i 0.0438456 + 0.395557i
\(143\) −2.32326 + 2.71777i −0.194281 + 0.227271i
\(144\) 8.78266 4.15165i 0.731888 0.345971i
\(145\) 3.70124 2.13691i 0.307371 0.177461i
\(146\) 12.9152 9.49589i 1.06887 0.785886i
\(147\) −4.34743 2.50999i −0.358570 0.207020i
\(148\) −13.2194 + 2.96708i −1.08663 + 0.243892i
\(149\) −3.16075 + 5.47457i −0.258939 + 0.448495i −0.965958 0.258700i \(-0.916706\pi\)
0.707019 + 0.707194i \(0.250039\pi\)
\(150\) 0.979029 + 0.429251i 0.0799374 + 0.0350482i
\(151\) 0.928828i 0.0755869i 0.999286 + 0.0377935i \(0.0120329\pi\)
−0.999286 + 0.0377935i \(0.987967\pi\)
\(152\) 2.24042 11.4996i 0.181722 0.932743i
\(153\) 8.46041 + 14.6539i 0.683984 + 1.18469i
\(154\) −0.676885 + 0.497679i −0.0545450 + 0.0401041i
\(155\) 10.2309i 0.821764i
\(156\) −4.61626 + 2.89858i −0.369596 + 0.232072i
\(157\) 9.31053i 0.743061i 0.928421 + 0.371531i \(0.121167\pi\)
−0.928421 + 0.371531i \(0.878833\pi\)
\(158\) −1.24526 1.69365i −0.0990673 0.134740i
\(159\) 0.389272 + 0.674239i 0.0308713 + 0.0534706i
\(160\) −0.160488 5.65458i −0.0126877 0.447034i
\(161\) 3.08306i 0.242979i
\(162\) 2.37602 5.41918i 0.186678 0.425771i
\(163\) −3.78241 + 6.55133i −0.296261 + 0.513140i −0.975278 0.220984i \(-0.929073\pi\)
0.679016 + 0.734123i \(0.262407\pi\)
\(164\) −1.01103 4.50449i −0.0789478 0.351742i
\(165\) 0.649158 + 0.374792i 0.0505369 + 0.0291775i
\(166\) −6.75096 9.18187i −0.523976 0.712651i
\(167\) −17.1080 + 9.87729i −1.32385 + 0.764328i −0.984341 0.176273i \(-0.943596\pi\)
−0.339514 + 0.940601i \(0.610262\pi\)
\(168\) −1.21123 + 0.416479i −0.0934483 + 0.0321320i
\(169\) −10.1101 + 8.17226i −0.777700 + 0.628635i
\(170\) 9.79320 1.08553i 0.751104 0.0832563i
\(171\) −5.02989 8.71202i −0.384645 0.666225i
\(172\) 14.4289 13.2914i 1.10019 1.01346i
\(173\) 17.2600 + 9.96506i 1.31225 + 0.757630i 0.982469 0.186426i \(-0.0596906\pi\)
0.329784 + 0.944056i \(0.393024\pi\)
\(174\) 4.54090 0.503337i 0.344244 0.0381579i
\(175\) 0.518819 + 0.299540i 0.0392190 + 0.0226431i
\(176\) 0.324977 3.95327i 0.0244961 0.297989i
\(177\) 0.322612i 0.0242490i
\(178\) 6.07876 + 2.66521i 0.455623 + 0.199766i
\(179\) −3.23782 + 1.86936i −0.242006 + 0.139722i −0.616099 0.787669i \(-0.711288\pi\)
0.374092 + 0.927392i \(0.377954\pi\)
\(180\) −3.29089 3.57252i −0.245288 0.266280i
\(181\) 18.1723i 1.35074i −0.737480 0.675369i \(-0.763984\pi\)
0.737480 0.675369i \(-0.236016\pi\)
\(182\) −2.75023 + 1.32951i −0.203860 + 0.0985495i
\(183\) 6.56698 0.485445
\(184\) −10.9814 9.55428i −0.809562 0.704351i
\(185\) 3.38708 + 5.86659i 0.249023 + 0.431320i
\(186\) 4.39162 10.0163i 0.322009 0.734433i
\(187\) 6.90908 0.505242
\(188\) 11.1662 + 3.48850i 0.814376 + 0.254425i
\(189\) −1.22915 + 2.12896i −0.0894078 + 0.154859i
\(190\) −5.82226 + 0.645370i −0.422391 + 0.0468201i
\(191\) −0.252672 + 0.437640i −0.0182827 + 0.0316665i −0.875022 0.484083i \(-0.839153\pi\)
0.856739 + 0.515750i \(0.172487\pi\)
\(192\) 2.27011 5.60488i 0.163831 0.404498i
\(193\) 2.77201 1.60042i 0.199534 0.115201i −0.396904 0.917860i \(-0.629915\pi\)
0.596438 + 0.802659i \(0.296582\pi\)
\(194\) 2.27313 + 20.5072i 0.163201 + 1.47233i
\(195\) 2.07164 + 1.77093i 0.148354 + 0.126819i
\(196\) 12.9598 2.90880i 0.925698 0.207771i
\(197\) 4.00968 + 6.94498i 0.285678 + 0.494809i 0.972773 0.231758i \(-0.0744478\pi\)
−0.687095 + 0.726567i \(0.741115\pi\)
\(198\) −2.01755 2.74404i −0.143381 0.195010i
\(199\) 7.24444 12.5477i 0.513544 0.889485i −0.486332 0.873774i \(-0.661665\pi\)
0.999877 0.0157111i \(-0.00500120\pi\)
\(200\) −2.67472 + 0.919699i −0.189132 + 0.0650325i
\(201\) −6.89524 3.98097i −0.486352 0.280796i
\(202\) 18.9580 + 8.31205i 1.33388 + 0.584834i
\(203\) 2.56037 0.179703
\(204\) 10.0538 + 3.14098i 0.703906 + 0.219913i
\(205\) −1.99903 + 1.15414i −0.139618 + 0.0806086i
\(206\) 9.03600 + 12.2897i 0.629568 + 0.856265i
\(207\) −12.4984 −0.868702
\(208\) 3.78734 13.9160i 0.262605 0.964904i
\(209\) −4.10759 −0.284128
\(210\) 0.379361 + 0.515963i 0.0261784 + 0.0356048i
\(211\) 9.85182 5.68795i 0.678227 0.391575i −0.120959 0.992657i \(-0.538597\pi\)
0.799187 + 0.601083i \(0.205264\pi\)
\(212\) −1.96620 0.614276i −0.135039 0.0421887i
\(213\) 2.53484 0.173685
\(214\) −14.8573 6.51411i −1.01562 0.445295i
\(215\) −8.49472 4.90443i −0.579335 0.334479i
\(216\) −3.77396 10.9757i −0.256785 0.746798i
\(217\) 3.06456 5.30798i 0.208036 0.360329i
\(218\) 2.49550 + 3.39409i 0.169017 + 0.229877i
\(219\) −4.28412 7.42031i −0.289494 0.501418i
\(220\) −1.93516 + 0.434342i −0.130468 + 0.0292834i
\(221\) 24.6981 + 4.58878i 1.66137 + 0.308675i
\(222\) 0.797805 + 7.19747i 0.0535452 + 0.483062i
\(223\) −21.0816 + 12.1715i −1.41173 + 0.815062i −0.995551 0.0942207i \(-0.969964\pi\)
−0.416178 + 0.909283i \(0.636631\pi\)
\(224\) 1.61051 2.98178i 0.107607 0.199228i
\(225\) −1.21431 + 2.10325i −0.0809541 + 0.140217i
\(226\) −26.3939 + 2.92564i −1.75570 + 0.194611i
\(227\) −13.2058 + 22.8730i −0.876497 + 1.51814i −0.0213366 + 0.999772i \(0.506792\pi\)
−0.855160 + 0.518364i \(0.826541\pi\)
\(228\) −5.97719 1.86738i −0.395849 0.123670i
\(229\) −29.1285 −1.92487 −0.962434 0.271517i \(-0.912475\pi\)
−0.962434 + 0.271517i \(0.912475\pi\)
\(230\) −2.92244 + 6.66546i −0.192700 + 0.439507i
\(231\) 0.224531 + 0.388898i 0.0147730 + 0.0255876i
\(232\) −7.93449 + 9.11968i −0.520925 + 0.598737i
\(233\) −15.3090 −1.00292 −0.501462 0.865180i \(-0.667204\pi\)
−0.501462 + 0.865180i \(0.667204\pi\)
\(234\) −5.38970 11.1492i −0.352336 0.728846i
\(235\) 5.84920i 0.381560i
\(236\) 0.578326 + 0.627818i 0.0376458 + 0.0408675i
\(237\) −0.973073 + 0.561804i −0.0632079 + 0.0364931i
\(238\) 5.40606 + 2.37027i 0.350423 + 0.153641i
\(239\) 18.7350i 1.21186i 0.795516 + 0.605932i \(0.207200\pi\)
−0.795516 + 0.605932i \(0.792800\pi\)
\(240\) −3.01342 0.247717i −0.194515 0.0159901i
\(241\) −2.21984 1.28163i −0.142992 0.0825567i 0.426797 0.904347i \(-0.359642\pi\)
−0.569789 + 0.821791i \(0.692975\pi\)
\(242\) 14.0794 1.56064i 0.905060 0.100322i
\(243\) −13.4001 7.73656i −0.859618 0.496301i
\(244\) −12.7796 + 11.7722i −0.818132 + 0.753637i
\(245\) −3.32055 5.75136i −0.212142 0.367441i
\(246\) −2.45252 + 0.271851i −0.156367 + 0.0173326i
\(247\) −14.6835 2.72813i −0.934291 0.173587i
\(248\) 9.40933 + 27.3648i 0.597493 + 1.73767i
\(249\) −5.27536 + 3.04573i −0.334312 + 0.193015i
\(250\) 0.837733 + 1.13939i 0.0529829 + 0.0720612i
\(251\) 23.8918 + 13.7940i 1.50804 + 0.870667i 0.999956 + 0.00935859i \(0.00297897\pi\)
0.508083 + 0.861308i \(0.330354\pi\)
\(252\) −0.637263 2.83924i −0.0401438 0.178856i
\(253\) −2.55167 + 4.41962i −0.160422 + 0.277859i
\(254\) 9.48445 21.6320i 0.595107 1.35731i
\(255\) 5.26651i 0.329802i
\(256\) 5.62977 + 14.9768i 0.351861 + 0.936052i
\(257\) 3.03249 + 5.25242i 0.189161 + 0.327637i 0.944971 0.327155i \(-0.106090\pi\)
−0.755810 + 0.654792i \(0.772756\pi\)
\(258\) −6.21135 8.44795i −0.386702 0.525947i
\(259\) 4.05826i 0.252168i
\(260\) −7.20614 + 0.267391i −0.446906 + 0.0165829i
\(261\) 10.3795i 0.642476i
\(262\) 19.3756 14.2459i 1.19703 0.880113i
\(263\) 2.49677 + 4.32454i 0.153958 + 0.266662i 0.932679 0.360708i \(-0.117465\pi\)
−0.778721 + 0.627370i \(0.784131\pi\)
\(264\) −2.08102 0.405434i −0.128078 0.0249528i
\(265\) 1.02996i 0.0632701i
\(266\) −3.21401 1.40917i −0.197064 0.0864019i
\(267\) 1.77383 3.07237i 0.108557 0.188026i
\(268\) 20.5549 4.61350i 1.25559 0.281814i
\(269\) −12.0862 6.97794i −0.736906 0.425453i 0.0840375 0.996463i \(-0.473218\pi\)
−0.820943 + 0.571010i \(0.806552\pi\)
\(270\) −4.67544 + 3.43761i −0.284538 + 0.209206i
\(271\) −22.1003 + 12.7596i −1.34250 + 0.775091i −0.987173 0.159652i \(-0.948963\pi\)
−0.355324 + 0.934743i \(0.615630\pi\)
\(272\) −25.1958 + 11.9103i −1.52772 + 0.722168i
\(273\) 0.544343 + 1.53933i 0.0329452 + 0.0931647i
\(274\) −0.206821 1.86585i −0.0124945 0.112720i
\(275\) 0.495825 + 0.858794i 0.0298994 + 0.0517872i
\(276\) −5.72231 + 5.27121i −0.344443 + 0.317290i
\(277\) −6.59518 3.80773i −0.396266 0.228784i 0.288606 0.957448i \(-0.406808\pi\)
−0.684872 + 0.728664i \(0.740142\pi\)
\(278\) 1.21800 + 10.9883i 0.0730509 + 0.659035i
\(279\) 21.5181 + 12.4235i 1.28825 + 0.743774i
\(280\) −1.66319 0.324031i −0.0993944 0.0193645i
\(281\) 13.0983i 0.781377i 0.920523 + 0.390689i \(0.127763\pi\)
−0.920523 + 0.390689i \(0.872237\pi\)
\(282\) 2.51078 5.72654i 0.149515 0.341010i
\(283\) 12.7407 7.35583i 0.757354 0.437258i −0.0709910 0.997477i \(-0.522616\pi\)
0.828345 + 0.560218i \(0.189283\pi\)
\(284\) −4.93292 + 4.54405i −0.292715 + 0.269640i
\(285\) 3.13105i 0.185467i
\(286\) −5.04286 0.370334i −0.298191 0.0218983i
\(287\) −1.38285 −0.0816268
\(288\) 12.0879 + 6.52887i 0.712284 + 0.384717i
\(289\) −15.7713 27.3167i −0.927723 1.60686i
\(290\) 5.53542 + 2.42698i 0.325051 + 0.142517i
\(291\) 11.0282 0.646485
\(292\) 21.6390 + 6.76040i 1.26633 + 0.395622i
\(293\) −0.811966 + 1.40637i −0.0474356 + 0.0821608i −0.888768 0.458357i \(-0.848438\pi\)
0.841333 + 0.540518i \(0.181772\pi\)
\(294\) −0.782136 7.05610i −0.0456151 0.411520i
\(295\) 0.213398 0.369616i 0.0124245 0.0215198i
\(296\) −14.4550 12.5764i −0.840179 0.730989i
\(297\) −3.52404 + 2.03460i −0.204485 + 0.118060i
\(298\) −8.88552 + 0.984918i −0.514725 + 0.0570548i
\(299\) −12.0569 + 14.1042i −0.697269 + 0.815669i
\(300\) 0.331082 + 1.47509i 0.0191150 + 0.0851644i
\(301\) −2.93815 5.08903i −0.169352 0.293327i
\(302\) −1.05829 + 0.778110i −0.0608980 + 0.0447752i
\(303\) 5.53209 9.58186i 0.317810 0.550464i
\(304\) 14.9794 7.08092i 0.859127 0.406118i
\(305\) 7.52376 + 4.34384i 0.430809 + 0.248728i
\(306\) −9.60886 + 21.9157i −0.549302 + 1.25284i
\(307\) −15.4593 −0.882310 −0.441155 0.897431i \(-0.645431\pi\)
−0.441155 + 0.897431i \(0.645431\pi\)
\(308\) −1.13410 0.354312i −0.0646213 0.0201888i
\(309\) 7.06094 4.07663i 0.401683 0.231912i
\(310\) 11.6569 8.57075i 0.662069 0.486786i
\(311\) 9.94170 0.563742 0.281871 0.959452i \(-0.409045\pi\)
0.281871 + 0.959452i \(0.409045\pi\)
\(312\) −7.16980 2.83146i −0.405910 0.160300i
\(313\) −10.7805 −0.609350 −0.304675 0.952456i \(-0.598548\pi\)
−0.304675 + 0.952456i \(0.598548\pi\)
\(314\) −10.6083 + 7.79974i −0.598661 + 0.440165i
\(315\) −1.26002 + 0.727471i −0.0709939 + 0.0409883i
\(316\) 0.886534 2.83766i 0.0498714 0.159631i
\(317\) −8.70514 −0.488929 −0.244465 0.969658i \(-0.578612\pi\)
−0.244465 + 0.969658i \(0.578612\pi\)
\(318\) −0.442113 + 1.00836i −0.0247925 + 0.0565462i
\(319\) 3.67034 + 2.11907i 0.205499 + 0.118645i
\(320\) 6.30831 4.91988i 0.352645 0.275030i
\(321\) −4.33547 + 7.50926i −0.241983 + 0.419126i
\(322\) −3.51279 + 2.58278i −0.195760 + 0.143933i
\(323\) 14.4298 + 24.9931i 0.802895 + 1.39065i
\(324\) 8.16501 1.83262i 0.453612 0.101812i
\(325\) 1.20206 + 3.39927i 0.0666783 + 0.188558i
\(326\) −10.6332 + 1.17863i −0.588916 + 0.0652785i
\(327\) 1.95004 1.12586i 0.107838 0.0622600i
\(328\) 4.28539 4.92551i 0.236621 0.271966i
\(329\) 1.75207 3.03468i 0.0965949 0.167307i
\(330\) 0.116789 + 1.05362i 0.00642900 + 0.0579998i
\(331\) −0.941747 + 1.63115i −0.0517631 + 0.0896563i −0.890746 0.454502i \(-0.849817\pi\)
0.838983 + 0.544158i \(0.183151\pi\)
\(332\) 4.80620 15.3839i 0.263775 0.844302i
\(333\) −16.4519 −0.901556
\(334\) −25.5860 11.2181i −1.40000 0.613826i
\(335\) −5.26656 9.12195i −0.287743 0.498385i
\(336\) −1.48922 1.03116i −0.0812434 0.0562544i
\(337\) 5.17568 0.281937 0.140969 0.990014i \(-0.454978\pi\)
0.140969 + 0.990014i \(0.454978\pi\)
\(338\) −17.7809 4.67315i −0.967155 0.254186i
\(339\) 14.1939i 0.770907i
\(340\) 9.44093 + 10.2489i 0.512006 + 0.555823i
\(341\) 8.78622 5.07273i 0.475801 0.274704i
\(342\) 5.71266 13.0293i 0.308905 0.704546i
\(343\) 8.17212i 0.441253i
\(344\) 27.2317 + 5.30541i 1.46823 + 0.286049i
\(345\) 3.36890 + 1.94504i 0.181375 + 0.104717i
\(346\) 3.10521 + 28.0139i 0.166937 + 1.50604i
\(347\) 15.6650 + 9.04422i 0.840944 + 0.485519i 0.857585 0.514342i \(-0.171964\pi\)
−0.0166411 + 0.999862i \(0.505297\pi\)
\(348\) 4.37756 + 4.75218i 0.234662 + 0.254743i
\(349\) 0.595137 + 1.03081i 0.0318570 + 0.0551779i 0.881514 0.472157i \(-0.156525\pi\)
−0.849657 + 0.527335i \(0.823191\pi\)
\(350\) 0.0933396 + 0.842071i 0.00498921 + 0.0450106i
\(351\) −13.9488 + 4.93261i −0.744532 + 0.263283i
\(352\) 4.77654 2.94151i 0.254591 0.156783i
\(353\) −7.33282 + 4.23360i −0.390287 + 0.225332i −0.682284 0.731087i \(-0.739013\pi\)
0.291998 + 0.956419i \(0.405680\pi\)
\(354\) 0.367580 0.270263i 0.0195367 0.0143643i
\(355\) 2.90416 + 1.67672i 0.154137 + 0.0889909i
\(356\) 2.05568 + 9.15880i 0.108951 + 0.485416i
\(357\) 1.57753 2.73237i 0.0834919 0.144612i
\(358\) −4.84236 2.12311i −0.255926 0.112210i
\(359\) 13.9662i 0.737109i −0.929606 0.368555i \(-0.879853\pi\)
0.929606 0.368555i \(-0.120147\pi\)
\(360\) 1.31359 6.74241i 0.0692324 0.355356i
\(361\) 0.921195 + 1.59556i 0.0484840 + 0.0839767i
\(362\) 20.7053 15.2236i 1.08825 0.800133i
\(363\) 7.57152i 0.397402i
\(364\) −3.81878 2.01980i −0.200158 0.105866i
\(365\) 11.3352i 0.593313i
\(366\) 5.50138 + 7.48233i 0.287562 + 0.391108i
\(367\) 0.887977 + 1.53802i 0.0463520 + 0.0802840i 0.888271 0.459321i \(-0.151907\pi\)
−0.841919 + 0.539605i \(0.818574\pi\)
\(368\) 1.68652 20.5160i 0.0879157 1.06947i
\(369\) 5.60594i 0.291834i
\(370\) −3.84685 + 8.77383i −0.199988 + 0.456130i
\(371\) −0.308515 + 0.534364i −0.0160173 + 0.0277428i
\(372\) 15.0915 3.38726i 0.782457 0.175621i
\(373\) 1.84160 + 1.06325i 0.0953543 + 0.0550528i 0.546919 0.837186i \(-0.315801\pi\)
−0.451565 + 0.892238i \(0.649134\pi\)
\(374\) 5.78796 + 7.87211i 0.299288 + 0.407057i
\(375\) 0.654624 0.377948i 0.0338047 0.0195171i
\(376\) 5.37951 + 15.6450i 0.277427 + 0.806830i
\(377\) 11.7131 + 10.0128i 0.603253 + 0.515687i
\(378\) −3.45541 + 0.383016i −0.177727 + 0.0197002i
\(379\) −12.8653 22.2834i −0.660848 1.14462i −0.980393 0.197051i \(-0.936863\pi\)
0.319545 0.947571i \(-0.396470\pi\)
\(380\) −5.61283 6.09316i −0.287932 0.312573i
\(381\) −10.9334 6.31239i −0.560134 0.323393i
\(382\) −0.710313 + 0.0787348i −0.0363428 + 0.00402842i
\(383\) 23.3475 + 13.4797i 1.19300 + 0.688780i 0.958986 0.283453i \(-0.0914800\pi\)
0.234016 + 0.972233i \(0.424813\pi\)
\(384\) 8.28788 2.10886i 0.422939 0.107617i
\(385\) 0.594079i 0.0302770i
\(386\) 4.14571 + 1.81767i 0.211011 + 0.0925170i
\(387\) 20.6305 11.9110i 1.04871 0.605471i
\(388\) −21.4614 + 19.7696i −1.08954 + 1.00365i
\(389\) 12.7571i 0.646810i −0.946261 0.323405i \(-0.895172\pi\)
0.946261 0.323405i \(-0.104828\pi\)
\(390\) −0.282291 + 3.84397i −0.0142944 + 0.194647i
\(391\) 35.8556 1.81330
\(392\) 14.1711 + 12.3294i 0.715748 + 0.622729i
\(393\) −6.42710 11.1321i −0.324204 0.561538i
\(394\) −4.55397 + 10.3866i −0.229426 + 0.523270i
\(395\) −1.48646 −0.0747919
\(396\) 1.43635 4.59754i 0.0721794 0.231035i
\(397\) −14.0076 + 24.2618i −0.703020 + 1.21767i 0.264382 + 0.964418i \(0.414832\pi\)
−0.967401 + 0.253248i \(0.918501\pi\)
\(398\) 20.3656 2.25743i 1.02084 0.113155i
\(399\) −0.937876 + 1.62445i −0.0469525 + 0.0813241i
\(400\) −3.28860 2.27708i −0.164430 0.113854i
\(401\) 10.1181 5.84166i 0.505272 0.291719i −0.225616 0.974216i \(-0.572440\pi\)
0.730888 + 0.682497i \(0.239106\pi\)
\(402\) −1.24051 11.1913i −0.0618708 0.558173i
\(403\) 34.7775 12.2981i 1.73239 0.612613i
\(404\) 6.41108 + 28.5638i 0.318963 + 1.42110i
\(405\) −2.09204 3.62352i −0.103954 0.180054i
\(406\) 2.14490 + 2.91725i 0.106450 + 0.144781i
\(407\) −3.35879 + 5.81760i −0.166489 + 0.288368i
\(408\) 4.84360 + 14.0865i 0.239794 + 0.697384i
\(409\) −23.2368 13.4158i −1.14898 0.663367i −0.200345 0.979725i \(-0.564206\pi\)
−0.948640 + 0.316359i \(0.897540\pi\)
\(410\) −2.98967 1.31081i −0.147649 0.0647361i
\(411\) −1.00340 −0.0494942
\(412\) −6.43298 + 20.5910i −0.316930 + 1.01445i
\(413\) 0.221430 0.127842i 0.0108958 0.00629071i
\(414\) −10.4704 14.2406i −0.514590 0.699886i
\(415\) −8.05860 −0.395581
\(416\) 19.0285 7.34268i 0.932951 0.360005i
\(417\) 5.90921 0.289375
\(418\) −3.44106 4.68013i −0.168308 0.228913i
\(419\) −11.1022 + 6.40987i −0.542379 + 0.313143i −0.746043 0.665898i \(-0.768049\pi\)
0.203663 + 0.979041i \(0.434715\pi\)
\(420\) −0.270078 + 0.864478i −0.0131785 + 0.0421822i
\(421\) −29.3648 −1.43115 −0.715577 0.698534i \(-0.753836\pi\)
−0.715577 + 0.698534i \(0.753836\pi\)
\(422\) 14.7340 + 6.46005i 0.717239 + 0.314470i
\(423\) 12.3023 + 7.10275i 0.598160 + 0.345348i
\(424\) −0.947256 2.75487i −0.0460028 0.133788i
\(425\) 3.48363 6.03382i 0.168981 0.292683i
\(426\) 2.12352 + 2.88817i 0.102885 + 0.139932i
\(427\) 2.60231 + 4.50734i 0.125935 + 0.218125i
\(428\) −5.02434 22.3853i −0.242860 1.08203i
\(429\) −0.493692 + 2.65719i −0.0238357 + 0.128290i
\(430\) −1.52827 13.7874i −0.0736995 0.664887i
\(431\) 5.07218 2.92842i 0.244318 0.141057i −0.372842 0.927895i \(-0.621617\pi\)
0.617160 + 0.786838i \(0.288283\pi\)
\(432\) 9.34395 13.4947i 0.449561 0.649262i
\(433\) 15.8656 27.4800i 0.762451 1.32060i −0.179132 0.983825i \(-0.557329\pi\)
0.941584 0.336779i \(-0.109338\pi\)
\(434\) 8.61513 0.954946i 0.413539 0.0458389i
\(435\) 1.61528 2.79775i 0.0774468 0.134142i
\(436\) −1.77662 + 5.68668i −0.0850845 + 0.272343i
\(437\) −21.3169 −1.01973
\(438\) 4.86566 11.0975i 0.232490 0.530260i
\(439\) 13.1428 + 22.7640i 0.627272 + 1.08647i 0.988097 + 0.153833i \(0.0491619\pi\)
−0.360825 + 0.932634i \(0.617505\pi\)
\(440\) −2.11603 1.84103i −0.100878 0.0877676i
\(441\) 16.1287 0.768035
\(442\) 15.4620 + 31.9849i 0.735454 + 1.52137i
\(443\) 14.0541i 0.667730i 0.942621 + 0.333865i \(0.108353\pi\)
−0.942621 + 0.333865i \(0.891647\pi\)
\(444\) −7.53235 + 6.93857i −0.357470 + 0.329290i
\(445\) 4.06454 2.34667i 0.192678 0.111243i
\(446\) −31.5288 13.8237i −1.49293 0.654570i
\(447\) 4.77839i 0.226010i
\(448\) 4.74657 0.662938i 0.224255 0.0313209i
\(449\) 10.6220 + 6.13259i 0.501281 + 0.289415i 0.729243 0.684255i \(-0.239873\pi\)
−0.227961 + 0.973670i \(0.573206\pi\)
\(450\) −3.41368 + 0.378391i −0.160923 + 0.0178375i
\(451\) −1.98234 1.14450i −0.0933446 0.0538925i
\(452\) −25.4445 27.6220i −1.19681 1.29923i
\(453\) 0.351048 + 0.608033i 0.0164937 + 0.0285679i
\(454\) −37.1241 + 4.11503i −1.74232 + 0.193128i
\(455\) −0.394568 + 2.12367i −0.0184976 + 0.0995593i
\(456\) −2.87962 8.37470i −0.134851 0.392181i
\(457\) 33.1389 19.1327i 1.55017 0.894991i 0.552043 0.833815i \(-0.313848\pi\)
0.998127 0.0611760i \(-0.0194851\pi\)
\(458\) −24.4019 33.1887i −1.14023 1.55080i
\(459\) 24.7596 + 14.2949i 1.15568 + 0.667231i
\(460\) −10.0428 + 2.25408i −0.468246 + 0.105097i
\(461\) 7.29249 12.6310i 0.339645 0.588283i −0.644721 0.764418i \(-0.723026\pi\)
0.984366 + 0.176135i \(0.0563597\pi\)
\(462\) −0.255009 + 0.581620i −0.0118641 + 0.0270594i
\(463\) 29.0145i 1.34842i −0.738540 0.674210i \(-0.764484\pi\)
0.738540 0.674210i \(-0.235516\pi\)
\(464\) −17.0378 1.40059i −0.790962 0.0650208i
\(465\) −3.86674 6.69738i −0.179316 0.310584i
\(466\) −12.8248 17.4428i −0.594099 0.808024i
\(467\) 12.3366i 0.570868i −0.958398 0.285434i \(-0.907862\pi\)
0.958398 0.285434i \(-0.0921377\pi\)
\(468\) 8.18811 15.4810i 0.378496 0.715610i
\(469\) 6.31019i 0.291377i
\(470\) 6.66451 4.90007i 0.307411 0.226023i
\(471\) 3.51889 + 6.09490i 0.162142 + 0.280838i
\(472\) −0.230845 + 1.18488i −0.0106255 + 0.0545386i
\(473\) 9.72696i 0.447246i
\(474\) −1.45529 0.638065i −0.0668436 0.0293073i
\(475\) −2.07109 + 3.58723i −0.0950280 + 0.164593i
\(476\) 1.82819 + 8.14525i 0.0837948 + 0.373337i
\(477\) −2.16627 1.25070i −0.0991866 0.0572654i
\(478\) −21.3464 + 15.6949i −0.976361 + 0.717868i
\(479\) 2.36253 1.36401i 0.107947 0.0623231i −0.445055 0.895503i \(-0.646816\pi\)
0.553001 + 0.833180i \(0.313482\pi\)
\(480\) −2.24219 3.64097i −0.102342 0.166187i
\(481\) −15.8707 + 18.5656i −0.723640 + 0.846518i
\(482\) −0.399366 3.60292i −0.0181906 0.164108i
\(483\) 1.16523 + 2.01824i 0.0530199 + 0.0918332i
\(484\) 13.5730 + 14.7345i 0.616953 + 0.669751i
\(485\) 12.6350 + 7.29481i 0.573725 + 0.331240i
\(486\) −2.41079 21.7491i −0.109355 0.986559i
\(487\) 6.48966 + 3.74681i 0.294074 + 0.169784i 0.639778 0.768560i \(-0.279026\pi\)
−0.345703 + 0.938344i \(0.612360\pi\)
\(488\) −24.1190 4.69899i −1.09182 0.212713i
\(489\) 5.71821i 0.258587i
\(490\) 3.77129 8.60150i 0.170370 0.388576i
\(491\) −2.52120 + 1.45562i −0.113780 + 0.0656910i −0.555810 0.831309i \(-0.687592\pi\)
0.442030 + 0.897000i \(0.354259\pi\)
\(492\) −2.36430 2.56664i −0.106591 0.115713i
\(493\) 29.7768i 1.34108i
\(494\) −9.19249 19.0157i −0.413590 0.855556i
\(495\) −2.40834 −0.108247
\(496\) −23.2966 + 33.6453i −1.04605 + 1.51072i
\(497\) 1.00449 + 1.73982i 0.0450575 + 0.0780418i
\(498\) −7.88961 3.45917i −0.353542 0.155009i
\(499\) 20.6054 0.922425 0.461212 0.887290i \(-0.347415\pi\)
0.461212 + 0.887290i \(0.347415\pi\)
\(500\) −0.596406 + 1.90900i −0.0266721 + 0.0853733i
\(501\) −7.46620 + 12.9318i −0.333565 + 0.577752i
\(502\) 4.29832 + 38.7777i 0.191844 + 1.73073i
\(503\) 3.06791 5.31377i 0.136791 0.236929i −0.789489 0.613765i \(-0.789654\pi\)
0.926280 + 0.376835i \(0.122988\pi\)
\(504\) 2.70114 3.10462i 0.120318 0.138291i
\(505\) 12.6762 7.31860i 0.564083 0.325673i
\(506\) −7.17328 + 0.795124i −0.318891 + 0.0353476i
\(507\) −3.52964 + 9.17085i −0.156757 + 0.407292i
\(508\) 32.5926 7.31536i 1.44606 0.324567i
\(509\) −8.00411 13.8635i −0.354776 0.614490i 0.632304 0.774721i \(-0.282109\pi\)
−0.987080 + 0.160231i \(0.948776\pi\)
\(510\) 6.00059 4.41193i 0.265711 0.195364i
\(511\) 3.39536 5.88093i 0.150202 0.260157i
\(512\) −12.3482 + 18.9611i −0.545717 + 0.837969i
\(513\) −14.7201 8.49864i −0.649907 0.375224i
\(514\) −3.44413 + 7.85530i −0.151914 + 0.346483i
\(515\) 10.7862 0.475299
\(516\) 4.42204 14.1543i 0.194669 0.623107i
\(517\) 5.02326 2.90018i 0.220923 0.127550i
\(518\) −4.62393 + 3.39974i −0.203164 + 0.149376i
\(519\) 15.0651 0.661284
\(520\) −6.34149 7.98659i −0.278093 0.350235i
\(521\) 6.62990 0.290461 0.145231 0.989398i \(-0.453608\pi\)
0.145231 + 0.989398i \(0.453608\pi\)
\(522\) −11.8263 + 8.69526i −0.517622 + 0.380581i
\(523\) −1.39915 + 0.807797i −0.0611804 + 0.0353225i −0.530278 0.847824i \(-0.677913\pi\)
0.469098 + 0.883146i \(0.344579\pi\)
\(524\) 32.4631 + 10.1420i 1.41816 + 0.443057i
\(525\) 0.452842 0.0197637
\(526\) −2.83569 + 6.46760i −0.123642 + 0.282001i
\(527\) −61.7312 35.6406i −2.68906 1.55253i
\(528\) −1.28139 2.71073i −0.0557653 0.117969i
\(529\) −1.74225 + 3.01767i −0.0757501 + 0.131203i
\(530\) −1.17353 + 0.862834i −0.0509747 + 0.0374791i
\(531\) 0.518262 + 0.897657i 0.0224907 + 0.0389550i
\(532\) −1.08689 4.84252i −0.0471229 0.209950i
\(533\) −6.32619 5.40790i −0.274018 0.234242i
\(534\) 4.98662 0.552743i 0.215792 0.0239195i
\(535\) −9.93426 + 5.73555i −0.429496 + 0.247969i
\(536\) 22.4760 + 19.5551i 0.970817 + 0.844650i
\(537\) −1.41304 + 2.44746i −0.0609771 + 0.105615i
\(538\) −2.17439 19.6165i −0.0937447 0.845726i
\(539\) 3.29283 5.70334i 0.141832 0.245660i
\(540\) −7.83354 2.44733i −0.337102 0.105317i
\(541\) −3.92342 −0.168681 −0.0843405 0.996437i \(-0.526878\pi\)
−0.0843405 + 0.996437i \(0.526878\pi\)
\(542\) −33.0523 14.4916i −1.41972 0.622469i
\(543\) −6.86819 11.8960i −0.294742 0.510508i
\(544\) −34.6778 18.7301i −1.48680 0.803045i
\(545\) 2.97887 0.127601
\(546\) −1.29788 + 1.90977i −0.0555443 + 0.0817306i
\(547\) 12.1793i 0.520748i −0.965508 0.260374i \(-0.916154\pi\)
0.965508 0.260374i \(-0.0838459\pi\)
\(548\) 1.95267 1.79873i 0.0834138 0.0768381i
\(549\) −18.2724 + 10.5496i −0.779846 + 0.450244i
\(550\) −0.563130 + 1.28438i −0.0240119 + 0.0547660i
\(551\) 17.7029i 0.754170i
\(552\) −10.7997 2.10406i −0.459667 0.0895547i
\(553\) −0.771204 0.445255i −0.0327949 0.0189342i
\(554\) −1.18652 10.7043i −0.0504106 0.454783i
\(555\) 4.43452 + 2.56027i 0.188235 + 0.108678i
\(556\) −11.4996 + 10.5931i −0.487691 + 0.449245i
\(557\) −7.09192 12.2836i −0.300494 0.520472i 0.675754 0.737128i \(-0.263818\pi\)
−0.976248 + 0.216656i \(0.930485\pi\)
\(558\) 3.87127 + 34.9250i 0.163884 + 1.47849i
\(559\) 6.46033 34.7713i 0.273243 1.47067i
\(560\) −1.02411 2.16646i −0.0432765 0.0915498i
\(561\) 4.52285 2.61127i 0.190955 0.110248i
\(562\) −14.9240 + 10.9729i −0.629531 + 0.462862i
\(563\) −27.7240 16.0065i −1.16843 0.674593i −0.215120 0.976588i \(-0.569014\pi\)
−0.953310 + 0.301995i \(0.902347\pi\)
\(564\) 8.62811 1.93656i 0.363309 0.0815440i
\(565\) −9.38881 + 16.2619i −0.394990 + 0.684143i
\(566\) 19.0544 + 8.35433i 0.800917 + 0.351159i
\(567\) 2.50660i 0.105267i
\(568\) −9.30990 1.81380i −0.390635 0.0761055i
\(569\) 6.16030 + 10.6700i 0.258253 + 0.447308i 0.965774 0.259385i \(-0.0835198\pi\)
−0.707521 + 0.706692i \(0.750186\pi\)
\(570\) −3.56748 + 2.62298i −0.149425 + 0.109865i
\(571\) 19.7389i 0.826047i −0.910720 0.413024i \(-0.864473\pi\)
0.910720 0.413024i \(-0.135527\pi\)
\(572\) −3.80262 6.05602i −0.158996 0.253215i
\(573\) 0.381986i 0.0159577i
\(574\) −1.15846 1.57560i −0.0483530 0.0657642i
\(575\) 2.57315 + 4.45684i 0.107308 + 0.185863i
\(576\) 2.68749 + 19.2422i 0.111979 + 0.801759i
\(577\) 39.5967i 1.64843i 0.566276 + 0.824216i \(0.308384\pi\)
−0.566276 + 0.824216i \(0.691616\pi\)
\(578\) 17.9121 40.8537i 0.745047 1.69929i
\(579\) 1.20975 2.09535i 0.0502756 0.0870799i
\(580\) 1.87193 + 8.34016i 0.0777278 + 0.346306i
\(581\) −4.18096 2.41388i −0.173455 0.100144i
\(582\) 9.23870 + 12.5654i 0.382957 + 0.520853i
\(583\) −0.884526 + 0.510681i −0.0366333 + 0.0211503i
\(584\) 10.4250 + 30.3186i 0.431389 + 1.25459i
\(585\) −8.60919 1.59954i −0.355946 0.0661330i
\(586\) −2.28261 + 0.253016i −0.0942936 + 0.0104520i
\(587\) −3.51186 6.08272i −0.144950 0.251061i 0.784404 0.620250i \(-0.212969\pi\)
−0.929354 + 0.369189i \(0.879635\pi\)
\(588\) 7.38441 6.80229i 0.304528 0.280522i
\(589\) 36.7005 + 21.1890i 1.51222 + 0.873079i
\(590\) 0.599905 0.0664967i 0.0246977 0.00273762i
\(591\) 5.24967 + 3.03090i 0.215943 + 0.124675i
\(592\) 2.21998 27.0055i 0.0912407 1.10992i
\(593\) 9.30743i 0.382210i −0.981570 0.191105i \(-0.938793\pi\)
0.981570 0.191105i \(-0.0612071\pi\)
\(594\) −5.27040 2.31079i −0.216247 0.0948127i
\(595\) 3.61474 2.08697i 0.148190 0.0855576i
\(596\) −8.56590 9.29895i −0.350873 0.380900i
\(597\) 10.9521i 0.448238i
\(598\) −26.1707 1.92190i −1.07020 0.0785924i
\(599\) 45.3221 1.85181 0.925906 0.377755i \(-0.123304\pi\)
0.925906 + 0.377755i \(0.123304\pi\)
\(600\) −1.40334 + 1.61296i −0.0572912 + 0.0658489i
\(601\) −12.1464 21.0382i −0.495462 0.858166i 0.504524 0.863398i \(-0.331668\pi\)
−0.999986 + 0.00523169i \(0.998335\pi\)
\(602\) 3.33698 7.61094i 0.136005 0.310199i
\(603\) 25.5810 1.04174
\(604\) −1.77314 0.553959i −0.0721479 0.0225403i
\(605\) 5.00831 8.67466i 0.203617 0.352675i
\(606\) 15.5519 1.72385i 0.631752 0.0700267i
\(607\) 2.64776 4.58606i 0.107469 0.186143i −0.807275 0.590175i \(-0.799059\pi\)
0.914744 + 0.404033i \(0.132392\pi\)
\(608\) 20.6166 + 11.1354i 0.836115 + 0.451601i
\(609\) 1.67608 0.967684i 0.0679181 0.0392126i
\(610\) 1.35358 + 12.2115i 0.0548049 + 0.494427i
\(611\) 19.8830 7.03109i 0.804381 0.284448i
\(612\) −33.0201 + 7.41131i −1.33476 + 0.299585i
\(613\) −6.59886 11.4296i −0.266526 0.461636i 0.701437 0.712732i \(-0.252542\pi\)
−0.967962 + 0.251096i \(0.919209\pi\)
\(614\) −12.9508 17.6142i −0.522651 0.710849i
\(615\) −0.872409 + 1.51106i −0.0351789 + 0.0609317i
\(616\) −0.546374 1.58900i −0.0220140 0.0640225i
\(617\) 14.0952 + 8.13787i 0.567452 + 0.327619i 0.756131 0.654420i \(-0.227087\pi\)
−0.188679 + 0.982039i \(0.560421\pi\)
\(618\) 10.5600 + 4.63001i 0.424787 + 0.186246i
\(619\) 13.8522 0.556767 0.278384 0.960470i \(-0.410201\pi\)
0.278384 + 0.960470i \(0.410201\pi\)
\(620\) 19.5308 + 6.10176i 0.784376 + 0.245053i
\(621\) −18.2885 + 10.5589i −0.733892 + 0.423713i
\(622\) 8.32850 + 11.3274i 0.333942 + 0.454189i
\(623\) 2.81168 0.112648
\(624\) −2.78025 10.5412i −0.111299 0.421985i
\(625\) 1.00000 0.0400000
\(626\) −9.03118 12.2832i −0.360959 0.490934i
\(627\) −2.68893 + 1.55245i −0.107385 + 0.0619990i
\(628\) −17.7738 5.55286i −0.709254 0.221583i
\(629\) 47.1972 1.88188
\(630\) −1.88443 0.826220i −0.0750774 0.0329174i
\(631\) −10.7183 6.18820i −0.426688 0.246348i 0.271247 0.962510i \(-0.412564\pi\)
−0.697935 + 0.716161i \(0.745897\pi\)
\(632\) 3.97587 1.36710i 0.158152 0.0543802i
\(633\) 4.29950 7.44694i 0.170890 0.295989i
\(634\) −7.29259 9.91853i −0.289626 0.393915i
\(635\) −8.35088 14.4641i −0.331394 0.573992i
\(636\) −1.51929 + 0.341002i −0.0602437 + 0.0135216i
\(637\) 15.5589 18.2009i 0.616468 0.721147i
\(638\) 0.660322 + 5.95715i 0.0261424 + 0.235846i
\(639\) −7.05310 + 4.07211i −0.279016 + 0.161090i
\(640\) 10.8903 + 3.06605i 0.430478 + 0.121196i
\(641\) 7.47650 12.9497i 0.295304 0.511481i −0.679752 0.733442i \(-0.737912\pi\)
0.975056 + 0.221961i \(0.0712458\pi\)
\(642\) −12.1879 + 1.35097i −0.481019 + 0.0533187i
\(643\) −2.15763 + 3.73713i −0.0850887 + 0.147378i −0.905429 0.424498i \(-0.860451\pi\)
0.820340 + 0.571876i \(0.193784\pi\)
\(644\) −5.88557 1.83875i −0.231924 0.0724570i
\(645\) −7.41447 −0.291945
\(646\) −16.3885 + 37.3787i −0.644798 + 1.47064i
\(647\) −11.5479 20.0016i −0.453995 0.786343i 0.544634 0.838674i \(-0.316668\pi\)
−0.998630 + 0.0523305i \(0.983335\pi\)
\(648\) 8.92817 + 7.76786i 0.350732 + 0.305151i
\(649\) 0.423232 0.0166133
\(650\) −2.86608 + 4.21729i −0.112417 + 0.165416i
\(651\) 4.63297i 0.181581i
\(652\) −10.2507 11.1279i −0.401447 0.435802i
\(653\) −19.3791 + 11.1885i −0.758363 + 0.437841i −0.828708 0.559681i \(-0.810923\pi\)
0.0703444 + 0.997523i \(0.477590\pi\)
\(654\) 2.91640 + 1.27868i 0.114040 + 0.0500005i
\(655\) 17.0053i 0.664451i
\(656\) 9.20208 + 0.756455i 0.359281 + 0.0295346i
\(657\) 23.8408 + 13.7645i 0.930118 + 0.537004i
\(658\) 4.92544 0.545962i 0.192014 0.0212838i
\(659\) 6.15426 + 3.55316i 0.239736 + 0.138412i 0.615055 0.788484i \(-0.289134\pi\)
−0.375320 + 0.926895i \(0.622467\pi\)
\(660\) −1.10264 + 1.01572i −0.0429203 + 0.0395368i
\(661\) 8.83848 + 15.3087i 0.343777 + 0.595439i 0.985131 0.171806i \(-0.0549602\pi\)
−0.641354 + 0.767245i \(0.721627\pi\)
\(662\) −2.64745 + 0.293457i −0.102896 + 0.0114055i
\(663\) 17.9023 6.33066i 0.695268 0.245862i
\(664\) 21.5545 7.41149i 0.836479 0.287622i
\(665\) −2.14904 + 1.24075i −0.0833362 + 0.0481142i
\(666\) −13.7823 18.7450i −0.534052 0.726355i
\(667\) 19.0477 + 10.9972i 0.737531 + 0.425814i
\(668\) −8.65250 38.5501i −0.334775 1.49155i
\(669\) −9.20036 + 15.9355i −0.355706 + 0.616102i
\(670\) 5.98146 13.6424i 0.231084 0.527052i
\(671\) 8.61515i 0.332584i
\(672\) −0.0726755 2.56063i −0.00280352 0.0987785i
\(673\) −17.9948 31.1679i −0.693649 1.20143i −0.970634 0.240560i \(-0.922669\pi\)
0.276986 0.960874i \(-0.410665\pi\)
\(674\) 4.33584 + 5.89710i 0.167010 + 0.227148i
\(675\) 4.10347i 0.157943i
\(676\) −9.57115 24.1742i −0.368121 0.929778i
\(677\) 9.79680i 0.376522i −0.982119 0.188261i \(-0.939715\pi\)
0.982119 0.188261i \(-0.0602850\pi\)
\(678\) −16.1724 + 11.8907i −0.621096 + 0.456660i
\(679\) 4.37018 + 7.56937i 0.167712 + 0.290486i
\(680\) −3.76844 + 19.3427i −0.144513 + 0.741758i
\(681\) 19.9643i 0.765035i
\(682\) 13.1403 + 5.76132i 0.503168 + 0.220612i
\(683\) −24.3965 + 42.2560i −0.933507 + 1.61688i −0.156232 + 0.987720i \(0.549935\pi\)
−0.777275 + 0.629161i \(0.783399\pi\)
\(684\) 19.6312 4.40618i 0.750616 0.168474i
\(685\) −1.14959 0.663718i −0.0439237 0.0253594i
\(686\) 9.31121 6.84606i 0.355504 0.261384i
\(687\) −19.0682 + 11.0091i −0.727499 + 0.420022i
\(688\) 16.7679 + 35.4719i 0.639272 + 1.35235i
\(689\) −3.50112 + 1.23808i −0.133382 + 0.0471670i
\(690\) 0.606091 + 5.46790i 0.0230735 + 0.208159i
\(691\) 19.5264 + 33.8207i 0.742819 + 1.28660i 0.951207 + 0.308555i \(0.0998453\pi\)
−0.208387 + 0.978046i \(0.566821\pi\)
\(692\) −29.3173 + 27.0062i −1.11448 + 1.02662i
\(693\) −1.24950 0.721396i −0.0474644 0.0274036i
\(694\) 2.81826 + 25.4252i 0.106980 + 0.965127i
\(695\) 6.77015 + 3.90875i 0.256806 + 0.148267i
\(696\) −1.74735 + 8.96879i −0.0662330 + 0.339961i
\(697\) 16.0824i 0.609163i
\(698\) −0.675923 + 1.54163i −0.0255841 + 0.0583517i
\(699\) −10.0216 + 5.78599i −0.379053 + 0.218846i
\(700\) −0.881251 + 0.811781i −0.0333082 + 0.0306824i
\(701\) 25.8238i 0.975353i −0.873024 0.487677i \(-0.837845\pi\)
0.873024 0.487677i \(-0.162155\pi\)
\(702\) −17.3055 11.7609i −0.653155 0.443886i
\(703\) −28.0597 −1.05829
\(704\) 7.35299 + 2.97814i 0.277126 + 0.112243i
\(705\) −2.21069 3.82903i −0.0832595 0.144210i
\(706\) −10.9667 4.80829i −0.412736 0.180962i
\(707\) 8.76886 0.329787
\(708\) 0.615869 + 0.192408i 0.0231458 + 0.00723114i
\(709\) 1.19551 2.07069i 0.0448985 0.0777665i −0.842703 0.538379i \(-0.819037\pi\)
0.887601 + 0.460613i \(0.152370\pi\)
\(710\) 0.522480 + 4.71360i 0.0196083 + 0.176898i
\(711\) 1.80503 3.12640i 0.0676937 0.117249i
\(712\) −8.71331 + 10.0148i −0.326545 + 0.375322i
\(713\) 45.5973 26.3256i 1.70763 0.985903i
\(714\) 4.43477 0.491574i 0.165967 0.0183967i
\(715\) −2.32326 + 2.71777i −0.0868852 + 0.101639i
\(716\) −1.63756 7.29592i −0.0611984 0.272661i
\(717\) 7.08083 + 12.2644i 0.264439 + 0.458021i
\(718\) 15.9129 11.7000i 0.593866 0.436639i
\(719\) −18.4354 + 31.9311i −0.687524 + 1.19083i 0.285112 + 0.958494i \(0.407969\pi\)
−0.972636 + 0.232333i \(0.925364\pi\)
\(720\) 8.78266 4.15165i 0.327310 0.154723i
\(721\) 5.59611 + 3.23092i 0.208410 + 0.120326i
\(722\) −1.04624 + 2.38625i −0.0389371 + 0.0888070i
\(723\) −1.93755 −0.0720582
\(724\) 34.6911 + 10.8381i 1.28928 + 0.402794i
\(725\) 3.70124 2.13691i 0.137461 0.0793630i
\(726\) 8.62689 6.34291i 0.320174 0.235408i
\(727\) 25.8787 0.959789 0.479895 0.877326i \(-0.340675\pi\)
0.479895 + 0.877326i \(0.340675\pi\)
\(728\) −0.897780 6.04312i −0.0332739 0.223973i
\(729\) 0.856167 0.0317099
\(730\) 12.9152 9.49589i 0.478013 0.351459i
\(731\) −59.1849 + 34.1704i −2.18903 + 1.26384i
\(732\) −3.91659 + 12.5364i −0.144761 + 0.463358i
\(733\) −4.42298 −0.163366 −0.0816832 0.996658i \(-0.526030\pi\)
−0.0816832 + 0.996658i \(0.526030\pi\)
\(734\) −1.00851 + 2.30020i −0.0372249 + 0.0849020i
\(735\) −4.34743 2.50999i −0.160357 0.0925823i
\(736\) 24.7886 15.2654i 0.913718 0.562689i
\(737\) 5.22258 9.04578i 0.192376 0.333206i
\(738\) 6.38734 4.69628i 0.235121 0.172873i
\(739\) 5.69026 + 9.85581i 0.209319 + 0.362552i 0.951500 0.307648i \(-0.0995418\pi\)
−0.742181 + 0.670200i \(0.766208\pi\)
\(740\) −13.2194 + 2.96708i −0.485955 + 0.109072i
\(741\) −10.6433 + 3.76371i −0.390991 + 0.138263i
\(742\) −0.867302 + 0.0961363i −0.0318396 + 0.00352927i
\(743\) 19.7214 11.3861i 0.723507 0.417717i −0.0925354 0.995709i \(-0.529497\pi\)
0.816042 + 0.577993i \(0.196164\pi\)
\(744\) 16.5020 + 14.3574i 0.604994 + 0.526369i
\(745\) −3.16075 + 5.47457i −0.115801 + 0.200573i
\(746\) 0.331317 + 2.98901i 0.0121304 + 0.109435i
\(747\) 9.78565 16.9492i 0.358038 0.620141i
\(748\) −4.12062 + 13.1895i −0.150665 + 0.482254i
\(749\) −6.87211 −0.251102
\(750\) 0.979029 + 0.429251i 0.0357491 + 0.0156740i
\(751\) −6.37962 11.0498i −0.232796 0.403214i 0.725834 0.687870i \(-0.241454\pi\)
−0.958630 + 0.284656i \(0.908121\pi\)
\(752\) −13.3191 + 19.2357i −0.485699 + 0.701453i
\(753\) 20.8536 0.759946
\(754\) −1.59607 + 21.7338i −0.0581255 + 0.791498i
\(755\) 0.928828i 0.0338035i
\(756\) −3.33112 3.61619i −0.121152 0.131519i
\(757\) −38.1489 + 22.0253i −1.38654 + 0.800522i −0.992924 0.118751i \(-0.962111\pi\)
−0.393620 + 0.919273i \(0.628777\pi\)
\(758\) 14.6117 33.3262i 0.530722 1.21046i
\(759\) 3.85759i 0.140022i
\(760\) 2.24042 11.4996i 0.0812685 0.417135i
\(761\) 0.405243 + 0.233967i 0.0146900 + 0.00848130i 0.507327 0.861754i \(-0.330634\pi\)
−0.492637 + 0.870235i \(0.663967\pi\)
\(762\) −1.96700 17.7454i −0.0712568 0.642849i
\(763\) 1.54550 + 0.892292i 0.0559507 + 0.0323031i
\(764\) −0.684762 0.743362i −0.0247738 0.0268939i
\(765\) 8.46041 + 14.6539i 0.305887 + 0.529812i
\(766\) 4.20040 + 37.8942i 0.151766 + 1.36917i
\(767\) 1.51294 + 0.281097i 0.0546291 + 0.0101498i
\(768\) 9.34584 + 7.67645i 0.337239 + 0.277000i
\(769\) −45.7185 + 26.3956i −1.64865 +