Properties

Label 520.2.ca.b.101.18
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.18
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.b.381.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.449378 + 1.34092i) q^{2} +(-0.700368 + 0.404358i) q^{3} +(-1.59612 + 1.20516i) q^{4} +1.00000 q^{5} +(-0.856940 - 0.757426i) q^{6} +(3.38125 + 1.95217i) q^{7} +(-2.33328 - 1.59869i) q^{8} +(-1.17299 + 2.03168i) q^{9} +O(q^{10})\) \(q+(0.449378 + 1.34092i) q^{2} +(-0.700368 + 0.404358i) q^{3} +(-1.59612 + 1.20516i) q^{4} +1.00000 q^{5} +(-0.856940 - 0.757426i) q^{6} +(3.38125 + 1.95217i) q^{7} +(-2.33328 - 1.59869i) q^{8} +(-1.17299 + 2.03168i) q^{9} +(0.449378 + 1.34092i) q^{10} +(0.223776 + 0.387591i) q^{11} +(0.630555 - 1.48946i) q^{12} +(3.01089 - 1.98356i) q^{13} +(-1.09823 + 5.41124i) q^{14} +(-0.700368 + 0.404358i) q^{15} +(1.09519 - 3.84715i) q^{16} +(-4.00797 + 6.94201i) q^{17} +(-3.25143 - 0.659890i) q^{18} +(0.861493 - 1.49215i) q^{19} +(-1.59612 + 1.20516i) q^{20} -3.15749 q^{21} +(-0.419168 + 0.474240i) q^{22} +(-0.570237 - 0.987679i) q^{23} +(2.28060 + 0.176192i) q^{24} +1.00000 q^{25} +(4.01282 + 3.14599i) q^{26} -4.32338i q^{27} +(-7.74954 + 0.959056i) q^{28} +(-8.04039 + 4.64212i) q^{29} +(-0.856940 - 0.757426i) q^{30} +5.19873i q^{31} +(5.65086 - 0.260274i) q^{32} +(-0.313451 - 0.180971i) q^{33} +(-11.1098 - 2.25477i) q^{34} +(3.38125 + 1.95217i) q^{35} +(-0.576264 - 4.65644i) q^{36} +(-2.59519 - 4.49501i) q^{37} +(2.38799 + 0.484651i) q^{38} +(-1.30666 + 2.60670i) q^{39} +(-2.33328 - 1.59869i) q^{40} +(4.37099 - 2.52359i) q^{41} +(-1.41891 - 4.23393i) q^{42} +(-0.587643 - 0.339276i) q^{43} +(-0.824282 - 0.348956i) q^{44} +(-1.17299 + 2.03168i) q^{45} +(1.06814 - 1.20848i) q^{46} -8.71152i q^{47} +(0.788592 + 3.13727i) q^{48} +(4.12190 + 7.13934i) q^{49} +(0.449378 + 1.34092i) q^{50} -6.48262i q^{51} +(-2.41523 + 6.79460i) q^{52} +11.8993i q^{53} +(5.79729 - 1.94283i) q^{54} +(0.223776 + 0.387591i) q^{55} +(-4.76849 - 9.96051i) q^{56} +1.39340i q^{57} +(-9.83788 - 8.69543i) q^{58} +(4.67021 - 8.08904i) q^{59} +(0.630555 - 1.48946i) q^{60} +(6.84304 + 3.95083i) q^{61} +(-6.97107 + 2.33620i) q^{62} +(-7.93234 + 4.57974i) q^{63} +(2.88838 + 7.46038i) q^{64} +(3.01089 - 1.98356i) q^{65} +(0.101809 - 0.501636i) q^{66} +(-5.35905 - 9.28215i) q^{67} +(-1.96903 - 15.9105i) q^{68} +(0.798751 + 0.461159i) q^{69} +(-1.09823 + 5.41124i) q^{70} +(9.05690 + 5.22901i) q^{71} +(5.98494 - 2.86523i) q^{72} -0.118228i q^{73} +(4.86121 - 5.49990i) q^{74} +(-0.700368 + 0.404358i) q^{75} +(0.423233 + 3.41988i) q^{76} +1.74739i q^{77} +(-4.08256 - 0.580734i) q^{78} +17.2905 q^{79} +(1.09519 - 3.84715i) q^{80} +(-1.77078 - 3.06708i) q^{81} +(5.34816 + 4.72709i) q^{82} +10.1833 q^{83} +(5.03973 - 3.80528i) q^{84} +(-4.00797 + 6.94201i) q^{85} +(0.190867 - 0.940443i) q^{86} +(3.75415 - 6.50238i) q^{87} +(0.0975065 - 1.26211i) q^{88} +(7.70585 - 4.44897i) q^{89} +(-3.25143 - 0.659890i) q^{90} +(14.0528 - 0.829158i) q^{91} +(2.10048 + 0.889227i) q^{92} +(-2.10215 - 3.64103i) q^{93} +(11.6814 - 3.91477i) q^{94} +(0.861493 - 1.49215i) q^{95} +(-3.85244 + 2.46726i) q^{96} +(7.84192 + 4.52754i) q^{97} +(-7.72097 + 8.73539i) q^{98} -1.04995 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.449378 + 1.34092i 0.317759 + 0.948172i
\(3\) −0.700368 + 0.404358i −0.404358 + 0.233456i −0.688362 0.725367i \(-0.741670\pi\)
0.284005 + 0.958823i \(0.408337\pi\)
\(4\) −1.59612 + 1.20516i −0.798059 + 0.602579i
\(5\) 1.00000 0.447214
\(6\) −0.856940 0.757426i −0.349844 0.309218i
\(7\) 3.38125 + 1.95217i 1.27799 + 0.737849i 0.976479 0.215613i \(-0.0691749\pi\)
0.301513 + 0.953462i \(0.402508\pi\)
\(8\) −2.33328 1.59869i −0.824939 0.565222i
\(9\) −1.17299 + 2.03168i −0.390997 + 0.677226i
\(10\) 0.449378 + 1.34092i 0.142106 + 0.424035i
\(11\) 0.223776 + 0.387591i 0.0674710 + 0.116863i 0.897787 0.440429i \(-0.145174\pi\)
−0.830316 + 0.557292i \(0.811840\pi\)
\(12\) 0.630555 1.48946i 0.182025 0.429969i
\(13\) 3.01089 1.98356i 0.835072 0.550141i
\(14\) −1.09823 + 5.41124i −0.293515 + 1.44621i
\(15\) −0.700368 + 0.404358i −0.180834 + 0.104405i
\(16\) 1.09519 3.84715i 0.273796 0.961788i
\(17\) −4.00797 + 6.94201i −0.972076 + 1.68369i −0.282812 + 0.959175i \(0.591267\pi\)
−0.689264 + 0.724510i \(0.742066\pi\)
\(18\) −3.25143 0.659890i −0.766369 0.155538i
\(19\) 0.861493 1.49215i 0.197640 0.342323i −0.750123 0.661299i \(-0.770006\pi\)
0.947763 + 0.318976i \(0.103339\pi\)
\(20\) −1.59612 + 1.20516i −0.356903 + 0.269482i
\(21\) −3.15749 −0.689021
\(22\) −0.419168 + 0.474240i −0.0893669 + 0.101108i
\(23\) −0.570237 0.987679i −0.118903 0.205945i 0.800430 0.599426i \(-0.204604\pi\)
−0.919333 + 0.393480i \(0.871271\pi\)
\(24\) 2.28060 + 0.176192i 0.465525 + 0.0359650i
\(25\) 1.00000 0.200000
\(26\) 4.01282 + 3.14599i 0.786980 + 0.616979i
\(27\) 4.32338i 0.832034i
\(28\) −7.74954 + 0.959056i −1.46453 + 0.181245i
\(29\) −8.04039 + 4.64212i −1.49306 + 0.862020i −0.999968 0.00795571i \(-0.997468\pi\)
−0.493094 + 0.869976i \(0.664134\pi\)
\(30\) −0.856940 0.757426i −0.156455 0.138286i
\(31\) 5.19873i 0.933720i 0.884331 + 0.466860i \(0.154615\pi\)
−0.884331 + 0.466860i \(0.845385\pi\)
\(32\) 5.65086 0.260274i 0.998941 0.0460104i
\(33\) −0.313451 0.180971i −0.0545648 0.0315030i
\(34\) −11.1098 2.25477i −1.90531 0.386690i
\(35\) 3.38125 + 1.95217i 0.571535 + 0.329976i
\(36\) −0.576264 4.65644i −0.0960440 0.776073i
\(37\) −2.59519 4.49501i −0.426647 0.738974i 0.569926 0.821696i \(-0.306972\pi\)
−0.996573 + 0.0827219i \(0.973639\pi\)
\(38\) 2.38799 + 0.484651i 0.387382 + 0.0786207i
\(39\) −1.30666 + 2.60670i −0.209234 + 0.417406i
\(40\) −2.33328 1.59869i −0.368924 0.252775i
\(41\) 4.37099 2.52359i 0.682635 0.394119i −0.118212 0.992988i \(-0.537716\pi\)
0.800847 + 0.598869i \(0.204383\pi\)
\(42\) −1.41891 4.23393i −0.218942 0.653310i
\(43\) −0.587643 0.339276i −0.0896147 0.0517391i 0.454523 0.890735i \(-0.349810\pi\)
−0.544138 + 0.838996i \(0.683143\pi\)
\(44\) −0.824282 0.348956i −0.124265 0.0526071i
\(45\) −1.17299 + 2.03168i −0.174859 + 0.302865i
\(46\) 1.06814 1.20848i 0.157489 0.178181i
\(47\) 8.71152i 1.27071i −0.772222 0.635353i \(-0.780855\pi\)
0.772222 0.635353i \(-0.219145\pi\)
\(48\) 0.788592 + 3.13727i 0.113823 + 0.452826i
\(49\) 4.12190 + 7.13934i 0.588843 + 1.01991i
\(50\) 0.449378 + 1.34092i 0.0635517 + 0.189634i
\(51\) 6.48262i 0.907748i
\(52\) −2.41523 + 6.79460i −0.334933 + 0.942242i
\(53\) 11.8993i 1.63450i 0.576286 + 0.817248i \(0.304501\pi\)
−0.576286 + 0.817248i \(0.695499\pi\)
\(54\) 5.79729 1.94283i 0.788911 0.264386i
\(55\) 0.223776 + 0.387591i 0.0301739 + 0.0522628i
\(56\) −4.76849 9.96051i −0.637217 1.33103i
\(57\) 1.39340i 0.184561i
\(58\) −9.83788 8.69543i −1.29178 1.14177i
\(59\) 4.67021 8.08904i 0.608009 1.05310i −0.383559 0.923516i \(-0.625302\pi\)
0.991568 0.129586i \(-0.0413650\pi\)
\(60\) 0.630555 1.48946i 0.0814043 0.192288i
\(61\) 6.84304 + 3.95083i 0.876162 + 0.505852i 0.869391 0.494125i \(-0.164511\pi\)
0.00677098 + 0.999977i \(0.497845\pi\)
\(62\) −6.97107 + 2.33620i −0.885327 + 0.296697i
\(63\) −7.93234 + 4.57974i −0.999381 + 0.576993i
\(64\) 2.88838 + 7.46038i 0.361048 + 0.932547i
\(65\) 3.01089 1.98356i 0.373455 0.246031i
\(66\) 0.101809 0.501636i 0.0125318 0.0617472i
\(67\) −5.35905 9.28215i −0.654713 1.13400i −0.981966 0.189059i \(-0.939456\pi\)
0.327253 0.944937i \(-0.393877\pi\)
\(68\) −1.96903 15.9105i −0.238780 1.92943i
\(69\) 0.798751 + 0.461159i 0.0961583 + 0.0555170i
\(70\) −1.09823 + 5.41124i −0.131264 + 0.646766i
\(71\) 9.05690 + 5.22901i 1.07486 + 0.620569i 0.929504 0.368811i \(-0.120235\pi\)
0.145352 + 0.989380i \(0.453568\pi\)
\(72\) 5.98494 2.86523i 0.705331 0.337670i
\(73\) 0.118228i 0.0138376i −0.999976 0.00691879i \(-0.997798\pi\)
0.999976 0.00691879i \(-0.00220234\pi\)
\(74\) 4.86121 5.49990i 0.565104 0.639350i
\(75\) −0.700368 + 0.404358i −0.0808715 + 0.0466912i
\(76\) 0.423233 + 3.41988i 0.0485481 + 0.392287i
\(77\) 1.74739i 0.199134i
\(78\) −4.08256 0.580734i −0.462259 0.0657551i
\(79\) 17.2905 1.94533 0.972666 0.232210i \(-0.0745957\pi\)
0.972666 + 0.232210i \(0.0745957\pi\)
\(80\) 1.09519 3.84715i 0.122445 0.430125i
\(81\) −1.77078 3.06708i −0.196753 0.340787i
\(82\) 5.34816 + 4.72709i 0.590606 + 0.522020i
\(83\) 10.1833 1.11776 0.558879 0.829250i \(-0.311232\pi\)
0.558879 + 0.829250i \(0.311232\pi\)
\(84\) 5.03973 3.80528i 0.549879 0.415190i
\(85\) −4.00797 + 6.94201i −0.434726 + 0.752967i
\(86\) 0.190867 0.940443i 0.0205817 0.101411i
\(87\) 3.75415 6.50238i 0.402488 0.697129i
\(88\) 0.0975065 1.26211i 0.0103942 0.134541i
\(89\) 7.70585 4.44897i 0.816818 0.471590i −0.0324998 0.999472i \(-0.510347\pi\)
0.849318 + 0.527882i \(0.177013\pi\)
\(90\) −3.25143 0.659890i −0.342731 0.0695585i
\(91\) 14.0528 0.829158i 1.47314 0.0869194i
\(92\) 2.10048 + 0.889227i 0.218990 + 0.0927083i
\(93\) −2.10215 3.64103i −0.217982 0.377557i
\(94\) 11.6814 3.91477i 1.20485 0.403778i
\(95\) 0.861493 1.49215i 0.0883873 0.153091i
\(96\) −3.85244 + 2.46726i −0.393188 + 0.251813i
\(97\) 7.84192 + 4.52754i 0.796227 + 0.459702i 0.842150 0.539243i \(-0.181290\pi\)
−0.0459234 + 0.998945i \(0.514623\pi\)
\(98\) −7.72097 + 8.73539i −0.779935 + 0.882407i
\(99\) −1.04995 −0.105524
\(100\) −1.59612 + 1.20516i −0.159612 + 0.120516i
\(101\) −0.0227944 + 0.0131604i −0.00226813 + 0.00130951i −0.501134 0.865370i \(-0.667083\pi\)
0.498866 + 0.866679i \(0.333750\pi\)
\(102\) 8.69265 2.91315i 0.860701 0.288445i
\(103\) −13.0895 −1.28974 −0.644872 0.764291i \(-0.723089\pi\)
−0.644872 + 0.764291i \(0.723089\pi\)
\(104\) −10.1964 0.185279i −0.999835 0.0181681i
\(105\) −3.15749 −0.308140
\(106\) −15.9560 + 5.34729i −1.54978 + 0.519375i
\(107\) 4.81312 2.77886i 0.465302 0.268642i −0.248969 0.968511i \(-0.580092\pi\)
0.714271 + 0.699869i \(0.246758\pi\)
\(108\) 5.21035 + 6.90062i 0.501366 + 0.664012i
\(109\) 0.584348 0.0559704 0.0279852 0.999608i \(-0.491091\pi\)
0.0279852 + 0.999608i \(0.491091\pi\)
\(110\) −0.419168 + 0.474240i −0.0399661 + 0.0452170i
\(111\) 3.63518 + 2.09877i 0.345036 + 0.199207i
\(112\) 11.2134 10.8702i 1.05956 1.02714i
\(113\) −5.65275 + 9.79084i −0.531766 + 0.921045i 0.467547 + 0.883968i \(0.345138\pi\)
−0.999312 + 0.0370767i \(0.988195\pi\)
\(114\) −1.86844 + 0.626166i −0.174995 + 0.0586458i
\(115\) −0.570237 0.987679i −0.0531749 0.0921016i
\(116\) 7.23892 17.0993i 0.672117 1.58763i
\(117\) 0.498213 + 8.44386i 0.0460598 + 0.780636i
\(118\) 12.9454 + 2.62732i 1.19172 + 0.241865i
\(119\) −27.1039 + 15.6485i −2.48461 + 1.43449i
\(120\) 2.28060 + 0.176192i 0.208189 + 0.0160840i
\(121\) 5.39985 9.35281i 0.490895 0.850256i
\(122\) −2.22262 + 10.9514i −0.201227 + 0.991491i
\(123\) −2.04087 + 3.53489i −0.184019 + 0.318730i
\(124\) −6.26530 8.29779i −0.562640 0.745163i
\(125\) 1.00000 0.0894427
\(126\) −9.70568 8.57858i −0.864650 0.764240i
\(127\) −5.85718 10.1449i −0.519740 0.900217i −0.999737 0.0229463i \(-0.992695\pi\)
0.479996 0.877271i \(-0.340638\pi\)
\(128\) −8.70577 + 7.22562i −0.769489 + 0.638660i
\(129\) 0.548755 0.0483152
\(130\) 4.01282 + 3.14599i 0.351948 + 0.275921i
\(131\) 11.7108i 1.02318i 0.859229 + 0.511591i \(0.170944\pi\)
−0.859229 + 0.511591i \(0.829056\pi\)
\(132\) 0.718403 0.0889071i 0.0625290 0.00773837i
\(133\) 5.82584 3.36355i 0.505165 0.291657i
\(134\) 10.0384 11.3572i 0.867182 0.981117i
\(135\) 4.32338i 0.372097i
\(136\) 20.4498 9.79015i 1.75356 0.839498i
\(137\) −6.49995 3.75275i −0.555329 0.320619i 0.195940 0.980616i \(-0.437224\pi\)
−0.751268 + 0.659997i \(0.770558\pi\)
\(138\) −0.259435 + 1.27829i −0.0220846 + 0.108816i
\(139\) 7.07331 + 4.08378i 0.599950 + 0.346381i 0.769022 0.639222i \(-0.220744\pi\)
−0.169072 + 0.985604i \(0.554077\pi\)
\(140\) −7.74954 + 0.959056i −0.654956 + 0.0810550i
\(141\) 3.52257 + 6.10127i 0.296654 + 0.513819i
\(142\) −2.94169 + 14.4944i −0.246861 + 1.21634i
\(143\) 1.44258 + 0.723122i 0.120634 + 0.0604705i
\(144\) 6.53153 + 6.73773i 0.544294 + 0.561478i
\(145\) −8.04039 + 4.64212i −0.667718 + 0.385507i
\(146\) 0.158534 0.0531293i 0.0131204 0.00439701i
\(147\) −5.77369 3.33344i −0.476206 0.274938i
\(148\) 9.55943 + 4.04694i 0.785780 + 0.332656i
\(149\) −2.65141 + 4.59238i −0.217212 + 0.376223i −0.953955 0.299951i \(-0.903030\pi\)
0.736742 + 0.676173i \(0.236363\pi\)
\(150\) −0.856940 0.757426i −0.0699689 0.0618436i
\(151\) 4.32338i 0.351831i −0.984405 0.175916i \(-0.943711\pi\)
0.984405 0.175916i \(-0.0562886\pi\)
\(152\) −4.39559 + 2.10434i −0.356529 + 0.170685i
\(153\) −9.40262 16.2858i −0.760157 1.31663i
\(154\) −2.34311 + 0.785240i −0.188813 + 0.0632764i
\(155\) 5.19873i 0.417572i
\(156\) −1.05590 5.73534i −0.0845395 0.459195i
\(157\) 9.05130i 0.722372i −0.932494 0.361186i \(-0.882372\pi\)
0.932494 0.361186i \(-0.117628\pi\)
\(158\) 7.76997 + 23.1851i 0.618146 + 1.84451i
\(159\) −4.81158 8.33390i −0.381583 0.660921i
\(160\) 5.65086 0.260274i 0.446740 0.0205765i
\(161\) 4.45279i 0.350929i
\(162\) 3.31695 3.75275i 0.260604 0.294844i
\(163\) 7.29415 12.6338i 0.571322 0.989558i −0.425109 0.905142i \(-0.639764\pi\)
0.996431 0.0844159i \(-0.0269024\pi\)
\(164\) −3.93529 + 9.29570i −0.307295 + 0.725872i
\(165\) −0.313451 0.180971i −0.0244021 0.0140886i
\(166\) 4.57613 + 13.6549i 0.355177 + 1.05983i
\(167\) −3.06989 + 1.77240i −0.237556 + 0.137153i −0.614053 0.789265i \(-0.710462\pi\)
0.376497 + 0.926418i \(0.377128\pi\)
\(168\) 7.36731 + 5.04785i 0.568400 + 0.389450i
\(169\) 5.13096 11.9446i 0.394689 0.918815i
\(170\) −11.1098 2.25477i −0.852080 0.172933i
\(171\) 2.02104 + 3.50055i 0.154553 + 0.267694i
\(172\) 1.34683 0.166679i 0.102695 0.0127091i
\(173\) −9.91643 5.72526i −0.753932 0.435283i 0.0731806 0.997319i \(-0.476685\pi\)
−0.827113 + 0.562036i \(0.810018\pi\)
\(174\) 10.4062 + 2.11198i 0.788892 + 0.160109i
\(175\) 3.38125 + 1.95217i 0.255598 + 0.147570i
\(176\) 1.73620 0.436416i 0.130871 0.0328961i
\(177\) 7.55374i 0.567774i
\(178\) 9.42855 + 8.33363i 0.706699 + 0.624632i
\(179\) −0.746881 + 0.431212i −0.0558245 + 0.0322303i −0.527652 0.849460i \(-0.676928\pi\)
0.471828 + 0.881691i \(0.343594\pi\)
\(180\) −0.576264 4.65644i −0.0429522 0.347070i
\(181\) 4.43168i 0.329404i 0.986343 + 0.164702i \(0.0526663\pi\)
−0.986343 + 0.164702i \(0.947334\pi\)
\(182\) 7.42687 + 18.4711i 0.550516 + 1.36917i
\(183\) −6.39020 −0.472377
\(184\) −0.248471 + 3.21616i −0.0183175 + 0.237099i
\(185\) −2.59519 4.49501i −0.190802 0.330479i
\(186\) 3.93765 4.45500i 0.288723 0.326657i
\(187\) −3.58755 −0.262348
\(188\) 10.4988 + 13.9046i 0.765701 + 1.01410i
\(189\) 8.43994 14.6184i 0.613915 1.06333i
\(190\) 2.38799 + 0.484651i 0.173243 + 0.0351603i
\(191\) 10.8557 18.8026i 0.785490 1.36051i −0.143216 0.989691i \(-0.545744\pi\)
0.928706 0.370817i \(-0.120922\pi\)
\(192\) −5.03959 4.05707i −0.363701 0.292794i
\(193\) 14.6746 8.47239i 1.05630 0.609856i 0.131894 0.991264i \(-0.457894\pi\)
0.924407 + 0.381408i \(0.124561\pi\)
\(194\) −2.54706 + 12.5499i −0.182868 + 0.901034i
\(195\) −1.30666 + 2.60670i −0.0935722 + 0.186670i
\(196\) −15.1831 6.42768i −1.08450 0.459120i
\(197\) −7.87779 13.6447i −0.561269 0.972147i −0.997386 0.0722567i \(-0.976980\pi\)
0.436117 0.899890i \(-0.356353\pi\)
\(198\) −0.471824 1.40789i −0.0335311 0.100055i
\(199\) −3.09592 + 5.36228i −0.219464 + 0.380122i −0.954644 0.297749i \(-0.903764\pi\)
0.735180 + 0.677871i \(0.237097\pi\)
\(200\) −2.33328 1.59869i −0.164988 0.113044i
\(201\) 7.50662 + 4.33395i 0.529476 + 0.305693i
\(202\) −0.0278903 0.0246515i −0.00196235 0.00173447i
\(203\) −36.2487 −2.54416
\(204\) 7.81258 + 10.3470i 0.546990 + 0.724437i
\(205\) 4.37099 2.52359i 0.305283 0.176255i
\(206\) −5.88212 17.5519i −0.409827 1.22290i
\(207\) 2.67553 0.185962
\(208\) −4.33358 13.7557i −0.300480 0.953788i
\(209\) 0.771125 0.0533399
\(210\) −1.41891 4.23393i −0.0979140 0.292169i
\(211\) 1.17103 0.676093i 0.0806169 0.0465442i −0.459150 0.888359i \(-0.651846\pi\)
0.539767 + 0.841815i \(0.318513\pi\)
\(212\) −14.3406 18.9927i −0.984914 1.30442i
\(213\) −8.45755 −0.579502
\(214\) 5.88913 + 5.20524i 0.402572 + 0.355823i
\(215\) −0.587643 0.339276i −0.0400769 0.0231384i
\(216\) −6.91174 + 10.0876i −0.470284 + 0.686377i
\(217\) −10.1488 + 17.5782i −0.688944 + 1.19329i
\(218\) 0.262593 + 0.783562i 0.0177851 + 0.0530695i
\(219\) 0.0478065 + 0.0828034i 0.00323047 + 0.00559533i
\(220\) −0.824282 0.348956i −0.0555731 0.0235266i
\(221\) 1.70234 + 28.8517i 0.114512 + 1.94078i
\(222\) −1.18071 + 5.81762i −0.0792439 + 0.390453i
\(223\) 9.67467 5.58567i 0.647864 0.374044i −0.139774 0.990183i \(-0.544637\pi\)
0.787637 + 0.616139i \(0.211304\pi\)
\(224\) 19.6151 + 10.1514i 1.31059 + 0.678267i
\(225\) −1.17299 + 2.03168i −0.0781993 + 0.135445i
\(226\) −15.6689 3.18007i −1.04228 0.211535i
\(227\) 5.19436 8.99690i 0.344762 0.597145i −0.640548 0.767918i \(-0.721293\pi\)
0.985311 + 0.170772i \(0.0546263\pi\)
\(228\) −1.67927 2.22404i −0.111213 0.147291i
\(229\) −23.1100 −1.52715 −0.763574 0.645720i \(-0.776557\pi\)
−0.763574 + 0.645720i \(0.776557\pi\)
\(230\) 1.06814 1.20848i 0.0704313 0.0796850i
\(231\) −0.706571 1.22382i −0.0464889 0.0805212i
\(232\) 26.1818 + 2.02272i 1.71892 + 0.132798i
\(233\) −8.57015 −0.561449 −0.280725 0.959788i \(-0.590575\pi\)
−0.280725 + 0.959788i \(0.590575\pi\)
\(234\) −11.0986 + 4.46255i −0.725541 + 0.291726i
\(235\) 8.71152i 0.568277i
\(236\) 2.29437 + 18.5394i 0.149351 + 1.20681i
\(237\) −12.1097 + 6.99154i −0.786609 + 0.454149i
\(238\) −33.1632 29.3120i −2.14965 1.90002i
\(239\) 1.02636i 0.0663899i −0.999449 0.0331950i \(-0.989432\pi\)
0.999449 0.0331950i \(-0.0105682\pi\)
\(240\) 0.788592 + 3.13727i 0.0509034 + 0.202510i
\(241\) 14.2112 + 8.20484i 0.915424 + 0.528520i 0.882172 0.470927i \(-0.156080\pi\)
0.0332518 + 0.999447i \(0.489414\pi\)
\(242\) 14.9679 + 3.03780i 0.962175 + 0.195277i
\(243\) 13.7129 + 7.91712i 0.879680 + 0.507883i
\(244\) −15.6837 + 1.94096i −1.00405 + 0.124257i
\(245\) 4.12190 + 7.13934i 0.263338 + 0.456115i
\(246\) −5.65712 1.14813i −0.360685 0.0732023i
\(247\) −0.365908 6.20153i −0.0232822 0.394594i
\(248\) 8.31116 12.1301i 0.527759 0.770262i
\(249\) −7.13202 + 4.11768i −0.451974 + 0.260947i
\(250\) 0.449378 + 1.34092i 0.0284212 + 0.0848071i
\(251\) 1.63097 + 0.941643i 0.102946 + 0.0594360i 0.550589 0.834776i \(-0.314403\pi\)
−0.447643 + 0.894212i \(0.647736\pi\)
\(252\) 7.14164 16.8695i 0.449881 1.06268i
\(253\) 0.255211 0.442038i 0.0160449 0.0277907i
\(254\) 10.9714 12.4129i 0.688408 0.778855i
\(255\) 6.48262i 0.405957i
\(256\) −13.6011 8.42668i −0.850071 0.526668i
\(257\) −8.29410 14.3658i −0.517372 0.896114i −0.999796 0.0201769i \(-0.993577\pi\)
0.482424 0.875938i \(-0.339756\pi\)
\(258\) 0.246599 + 0.735835i 0.0153526 + 0.0458111i
\(259\) 20.2650i 1.25920i
\(260\) −2.41523 + 6.79460i −0.149786 + 0.421383i
\(261\) 21.7806i 1.34819i
\(262\) −15.7033 + 5.26260i −0.970151 + 0.325125i
\(263\) 10.2539 + 17.7602i 0.632281 + 1.09514i 0.987084 + 0.160202i \(0.0512147\pi\)
−0.354803 + 0.934941i \(0.615452\pi\)
\(264\) 0.442052 + 0.923367i 0.0272064 + 0.0568293i
\(265\) 11.8993i 0.730969i
\(266\) 7.12825 + 6.30047i 0.437061 + 0.386306i
\(267\) −3.59795 + 6.23184i −0.220191 + 0.381382i
\(268\) 19.7401 + 8.35690i 1.20582 + 0.510479i
\(269\) −4.99021 2.88110i −0.304258 0.175664i 0.340096 0.940391i \(-0.389540\pi\)
−0.644354 + 0.764727i \(0.722874\pi\)
\(270\) 5.79729 1.94283i 0.352812 0.118237i
\(271\) −8.20521 + 4.73728i −0.498431 + 0.287769i −0.728065 0.685508i \(-0.759580\pi\)
0.229634 + 0.973277i \(0.426247\pi\)
\(272\) 22.3175 + 23.0221i 1.35320 + 1.39592i
\(273\) −9.50687 + 6.26308i −0.575382 + 0.379059i
\(274\) 2.11119 10.4023i 0.127542 0.628426i
\(275\) 0.223776 + 0.387591i 0.0134942 + 0.0233726i
\(276\) −1.83067 + 0.226557i −0.110193 + 0.0136372i
\(277\) 2.14086 + 1.23602i 0.128632 + 0.0742655i 0.562935 0.826501i \(-0.309672\pi\)
−0.434303 + 0.900767i \(0.643005\pi\)
\(278\) −2.29741 + 11.3199i −0.137790 + 0.678921i
\(279\) −10.5621 6.09806i −0.632339 0.365081i
\(280\) −4.76849 9.96051i −0.284972 0.595255i
\(281\) 5.80779i 0.346464i 0.984881 + 0.173232i \(0.0554210\pi\)
−0.984881 + 0.173232i \(0.944579\pi\)
\(282\) −6.59833 + 7.46525i −0.392925 + 0.444549i
\(283\) −13.4435 + 7.76159i −0.799131 + 0.461379i −0.843167 0.537651i \(-0.819312\pi\)
0.0440362 + 0.999030i \(0.485978\pi\)
\(284\) −20.7577 + 2.56890i −1.23174 + 0.152436i
\(285\) 1.39340i 0.0825382i
\(286\) −0.321384 + 2.25933i −0.0190039 + 0.133597i
\(287\) 19.7059 1.16320
\(288\) −6.09961 + 11.7860i −0.359423 + 0.694499i
\(289\) −23.6277 40.9244i −1.38986 2.40732i
\(290\) −9.83788 8.69543i −0.577700 0.510613i
\(291\) −7.32297 −0.429280
\(292\) 0.142484 + 0.188706i 0.00833824 + 0.0110432i
\(293\) −15.6517 + 27.1095i −0.914381 + 1.58375i −0.106575 + 0.994305i \(0.533988\pi\)
−0.807806 + 0.589449i \(0.799345\pi\)
\(294\) 1.87530 9.24002i 0.109370 0.538889i
\(295\) 4.67021 8.08904i 0.271910 0.470962i
\(296\) −1.13081 + 14.6370i −0.0657270 + 0.850759i
\(297\) 1.67570 0.967467i 0.0972341 0.0561381i
\(298\) −7.34949 1.49161i −0.425745 0.0864065i
\(299\) −3.67605 1.84270i −0.212591 0.106566i
\(300\) 0.630555 1.48946i 0.0364051 0.0859938i
\(301\) −1.32464 2.29435i −0.0763512 0.132244i
\(302\) 5.79729 1.94283i 0.333596 0.111797i
\(303\) 0.0106430 0.0184342i 0.000611424 0.00105902i
\(304\) −4.79703 4.94847i −0.275129 0.283814i
\(305\) 6.84304 + 3.95083i 0.391832 + 0.226224i
\(306\) 17.6126 19.9266i 1.00685 1.13913i
\(307\) −3.84349 −0.219359 −0.109680 0.993967i \(-0.534982\pi\)
−0.109680 + 0.993967i \(0.534982\pi\)
\(308\) −2.10588 2.78904i −0.119994 0.158920i
\(309\) 9.16744 5.29283i 0.521518 0.301098i
\(310\) −6.97107 + 2.33620i −0.395930 + 0.132687i
\(311\) −21.8342 −1.23810 −0.619052 0.785350i \(-0.712483\pi\)
−0.619052 + 0.785350i \(0.712483\pi\)
\(312\) 7.21612 3.99321i 0.408532 0.226071i
\(313\) 10.5613 0.596961 0.298481 0.954416i \(-0.403520\pi\)
0.298481 + 0.954416i \(0.403520\pi\)
\(314\) 12.1370 4.06746i 0.684933 0.229540i
\(315\) −7.93234 + 4.57974i −0.446937 + 0.258039i
\(316\) −27.5976 + 20.8378i −1.55249 + 1.17222i
\(317\) 19.3125 1.08470 0.542350 0.840153i \(-0.317535\pi\)
0.542350 + 0.840153i \(0.317535\pi\)
\(318\) 9.01285 10.1970i 0.505415 0.571819i
\(319\) −3.59849 2.07759i −0.201477 0.116323i
\(320\) 2.88838 + 7.46038i 0.161466 + 0.417048i
\(321\) −2.24730 + 3.89244i −0.125432 + 0.217255i
\(322\) 5.97082 2.00099i 0.332741 0.111511i
\(323\) 6.90568 + 11.9610i 0.384242 + 0.665527i
\(324\) 6.52269 + 2.76135i 0.362372 + 0.153408i
\(325\) 3.01089 1.98356i 0.167014 0.110028i
\(326\) 20.2188 + 4.10347i 1.11981 + 0.227270i
\(327\) −0.409259 + 0.236286i −0.0226321 + 0.0130666i
\(328\) −14.2332 1.09961i −0.785897 0.0607159i
\(329\) 17.0063 29.4558i 0.937589 1.62395i
\(330\) 0.101809 0.501636i 0.00560440 0.0276142i
\(331\) −10.6242 + 18.4017i −0.583960 + 1.01145i 0.411044 + 0.911615i \(0.365164\pi\)
−0.995004 + 0.0998329i \(0.968169\pi\)
\(332\) −16.2537 + 12.2724i −0.892036 + 0.673537i
\(333\) 12.1765 0.667270
\(334\) −3.75619 3.31999i −0.205530 0.181662i
\(335\) −5.35905 9.28215i −0.292796 0.507138i
\(336\) −3.45804 + 12.1473i −0.188651 + 0.662692i
\(337\) −22.4148 −1.22101 −0.610506 0.792012i \(-0.709034\pi\)
−0.610506 + 0.792012i \(0.709034\pi\)
\(338\) 18.3225 + 1.51255i 0.996610 + 0.0822719i
\(339\) 9.14292i 0.496575i
\(340\) −1.96903 15.9105i −0.106786 0.862869i
\(341\) −2.01498 + 1.16335i −0.109117 + 0.0629990i
\(342\) −3.78574 + 4.28313i −0.204709 + 0.231605i
\(343\) 4.85619i 0.262210i
\(344\) 0.828738 + 1.73108i 0.0446826 + 0.0933337i
\(345\) 0.798751 + 0.461159i 0.0430033 + 0.0248280i
\(346\) 3.22086 15.8699i 0.173155 0.853172i
\(347\) −30.6557 17.6991i −1.64569 0.950137i −0.978759 0.205015i \(-0.934276\pi\)
−0.666928 0.745123i \(-0.732391\pi\)
\(348\) 1.84433 + 14.9029i 0.0988667 + 0.798881i
\(349\) −4.80203 8.31737i −0.257047 0.445219i 0.708402 0.705809i \(-0.249416\pi\)
−0.965450 + 0.260590i \(0.916083\pi\)
\(350\) −1.09823 + 5.41124i −0.0587029 + 0.289243i
\(351\) −8.57568 13.0172i −0.457736 0.694808i
\(352\) 1.36541 + 2.13198i 0.0727764 + 0.113635i
\(353\) 11.4605 6.61673i 0.609981 0.352173i −0.162977 0.986630i \(-0.552110\pi\)
0.772958 + 0.634457i \(0.218776\pi\)
\(354\) −10.1289 + 3.39449i −0.538347 + 0.180415i
\(355\) 9.05690 + 5.22901i 0.480691 + 0.277527i
\(356\) −6.93772 + 16.3879i −0.367699 + 0.868555i
\(357\) 12.6551 21.9193i 0.669781 1.16009i
\(358\) −0.913852 0.807728i −0.0482986 0.0426898i
\(359\) 34.1706i 1.80345i 0.432307 + 0.901726i \(0.357700\pi\)
−0.432307 + 0.901726i \(0.642300\pi\)
\(360\) 5.98494 2.86523i 0.315434 0.151011i
\(361\) 8.01566 + 13.8835i 0.421877 + 0.730712i
\(362\) −5.94252 + 1.99150i −0.312332 + 0.104671i
\(363\) 8.73388i 0.458410i
\(364\) −21.4307 + 18.2593i −1.12327 + 0.957048i
\(365\) 0.118228i 0.00618836i
\(366\) −2.87162 8.56873i −0.150102 0.447895i
\(367\) 7.52014 + 13.0253i 0.392548 + 0.679913i 0.992785 0.119909i \(-0.0382603\pi\)
−0.600237 + 0.799822i \(0.704927\pi\)
\(368\) −4.42427 + 1.11210i −0.230631 + 0.0579720i
\(369\) 11.8406i 0.616397i
\(370\) 4.86121 5.49990i 0.252722 0.285926i
\(371\) −23.2294 + 40.2345i −1.20601 + 2.08887i
\(372\) 7.74329 + 3.27809i 0.401471 + 0.169961i
\(373\) 5.64614 + 3.25980i 0.292346 + 0.168786i 0.638999 0.769207i \(-0.279349\pi\)
−0.346653 + 0.937993i \(0.612682\pi\)
\(374\) −1.61217 4.81061i −0.0833632 0.248751i
\(375\) −0.700368 + 0.404358i −0.0361668 + 0.0208809i
\(376\) −13.9270 + 20.3264i −0.718231 + 1.04825i
\(377\) −15.0008 + 29.9255i −0.772581 + 1.54124i
\(378\) 23.3948 + 4.74807i 1.20330 + 0.244214i
\(379\) 6.04540 + 10.4709i 0.310531 + 0.537856i 0.978477 0.206354i \(-0.0661597\pi\)
−0.667946 + 0.744210i \(0.732826\pi\)
\(380\) 0.423233 + 3.41988i 0.0217114 + 0.175436i
\(381\) 8.20436 + 4.73679i 0.420322 + 0.242673i
\(382\) 30.0910 + 6.10709i 1.53959 + 0.312466i
\(383\) 1.57440 + 0.908980i 0.0804480 + 0.0464467i 0.539684 0.841867i \(-0.318544\pi\)
−0.459236 + 0.888314i \(0.651877\pi\)
\(384\) 3.17551 8.58083i 0.162050 0.437889i
\(385\) 1.74739i 0.0890552i
\(386\) 17.9552 + 15.8701i 0.913897 + 0.807768i
\(387\) 1.37860 0.795934i 0.0700781 0.0404596i
\(388\) −17.9730 + 2.22428i −0.912442 + 0.112921i
\(389\) 3.63531i 0.184318i 0.995744 + 0.0921589i \(0.0293768\pi\)
−0.995744 + 0.0921589i \(0.970623\pi\)
\(390\) −4.08256 0.580734i −0.206728 0.0294066i
\(391\) 9.14198 0.462330
\(392\) 1.79605 23.2477i 0.0907140 1.17419i
\(393\) −4.73537 8.20190i −0.238868 0.413731i
\(394\) 14.7563 16.6951i 0.743414 0.841087i
\(395\) 17.2905 0.869979
\(396\) 1.67584 1.26535i 0.0842141 0.0635864i
\(397\) 1.49457 2.58868i 0.0750105 0.129922i −0.826080 0.563552i \(-0.809434\pi\)
0.901091 + 0.433630i \(0.142768\pi\)
\(398\) −8.58162 1.74167i −0.430158 0.0873021i
\(399\) −2.72016 + 4.71145i −0.136178 + 0.235867i
\(400\) 1.09519 3.84715i 0.0547593 0.192358i
\(401\) 11.2958 6.52161i 0.564084 0.325674i −0.190699 0.981648i \(-0.561076\pi\)
0.754783 + 0.655975i \(0.227742\pi\)
\(402\) −2.43815 + 12.0133i −0.121604 + 0.599171i
\(403\) 10.3120 + 15.6528i 0.513678 + 0.779723i
\(404\) 0.0205223 0.0484764i 0.00102102 0.00241179i
\(405\) −1.77078 3.06708i −0.0879908 0.152404i
\(406\) −16.2894 48.6066i −0.808430 2.41230i
\(407\) 1.16148 2.01175i 0.0575726 0.0997186i
\(408\) −10.3637 + 15.1258i −0.513079 + 0.748837i
\(409\) 11.7308 + 6.77276i 0.580049 + 0.334892i 0.761153 0.648572i \(-0.224634\pi\)
−0.181104 + 0.983464i \(0.557967\pi\)
\(410\) 5.34816 + 4.72709i 0.264127 + 0.233454i
\(411\) 6.06981 0.299402
\(412\) 20.8923 15.7749i 1.02929 0.777173i
\(413\) 31.5823 18.2340i 1.55406 0.897238i
\(414\) 1.20232 + 3.58766i 0.0590910 + 0.176324i
\(415\) 10.1833 0.499876
\(416\) 16.4979 11.9925i 0.808875 0.587981i
\(417\) −6.60522 −0.323459
\(418\) 0.346527 + 1.03402i 0.0169492 + 0.0505753i
\(419\) −22.8340 + 13.1832i −1.11551 + 0.644041i −0.940251 0.340481i \(-0.889410\pi\)
−0.175260 + 0.984522i \(0.556077\pi\)
\(420\) 5.03973 3.80528i 0.245914 0.185679i
\(421\) 18.3329 0.893489 0.446744 0.894662i \(-0.352583\pi\)
0.446744 + 0.894662i \(0.352583\pi\)
\(422\) 1.43282 + 1.26643i 0.0697486 + 0.0616488i
\(423\) 17.6990 + 10.2185i 0.860555 + 0.496841i
\(424\) 19.0233 27.7644i 0.923853 1.34836i
\(425\) −4.00797 + 6.94201i −0.194415 + 0.336737i
\(426\) −3.80064 11.3409i −0.184142 0.549467i
\(427\) 15.4254 + 26.7175i 0.746485 + 1.29295i
\(428\) −4.33334 + 10.2360i −0.209460 + 0.494774i
\(429\) −1.30273 + 0.0768652i −0.0628966 + 0.00371109i
\(430\) 0.190867 0.940443i 0.00920440 0.0453522i
\(431\) 16.5529 9.55682i 0.797325 0.460336i −0.0452099 0.998978i \(-0.514396\pi\)
0.842535 + 0.538642i \(0.181062\pi\)
\(432\) −16.6327 4.73490i −0.800240 0.227808i
\(433\) 9.52072 16.4904i 0.457537 0.792477i −0.541294 0.840834i \(-0.682065\pi\)
0.998830 + 0.0483571i \(0.0153986\pi\)
\(434\) −28.1316 5.70941i −1.35036 0.274060i
\(435\) 3.75415 6.50238i 0.179998 0.311765i
\(436\) −0.932689 + 0.704232i −0.0446677 + 0.0337266i
\(437\) −1.96502 −0.0939996
\(438\) −0.0895492 + 0.101315i −0.00427883 + 0.00484100i
\(439\) 4.17977 + 7.23957i 0.199490 + 0.345526i 0.948363 0.317187i \(-0.102738\pi\)
−0.748873 + 0.662713i \(0.769405\pi\)
\(440\) 0.0975065 1.26211i 0.00464844 0.0601686i
\(441\) −19.3398 −0.920942
\(442\) −37.9228 + 15.2480i −1.80380 + 0.725275i
\(443\) 27.0916i 1.28716i −0.765378 0.643580i \(-0.777448\pi\)
0.765378 0.643580i \(-0.222552\pi\)
\(444\) −8.33153 + 1.03108i −0.395397 + 0.0489329i
\(445\) 7.70585 4.44897i 0.365292 0.210902i
\(446\) 11.8375 + 10.4628i 0.560522 + 0.495430i
\(447\) 4.28848i 0.202838i
\(448\) −4.79755 + 30.8640i −0.226663 + 1.45819i
\(449\) −0.192996 0.111426i −0.00910804 0.00525853i 0.495439 0.868643i \(-0.335007\pi\)
−0.504547 + 0.863384i \(0.668341\pi\)
\(450\) −3.25143 0.659890i −0.153274 0.0311075i
\(451\) 1.95625 + 1.12944i 0.0921160 + 0.0531832i
\(452\) −2.77707 22.4398i −0.130622 1.05548i
\(453\) 1.74819 + 3.02795i 0.0821371 + 0.142266i
\(454\) 14.3983 + 2.92220i 0.675747 + 0.137146i
\(455\) 14.0528 0.829158i 0.658807 0.0388715i
\(456\) 2.22762 3.25120i 0.104318 0.152251i
\(457\) −6.68503 + 3.85960i −0.312712 + 0.180545i −0.648140 0.761522i \(-0.724453\pi\)
0.335427 + 0.942066i \(0.391119\pi\)
\(458\) −10.3851 30.9885i −0.485265 1.44800i
\(459\) 30.0129 + 17.3280i 1.40088 + 0.808800i
\(460\) 2.10048 + 0.889227i 0.0979352 + 0.0414604i
\(461\) 5.52913 9.57673i 0.257517 0.446033i −0.708059 0.706153i \(-0.750429\pi\)
0.965576 + 0.260120i \(0.0837622\pi\)
\(462\) 1.32352 1.49741i 0.0615756 0.0696658i
\(463\) 28.7883i 1.33791i −0.743304 0.668954i \(-0.766742\pi\)
0.743304 0.668954i \(-0.233258\pi\)
\(464\) 9.05322 + 36.0166i 0.420285 + 1.67203i
\(465\) −2.10215 3.64103i −0.0974847 0.168848i
\(466\) −3.85124 11.4919i −0.178405 0.532350i
\(467\) 33.8862i 1.56806i −0.620720 0.784032i \(-0.713160\pi\)
0.620720 0.784032i \(-0.286840\pi\)
\(468\) −10.9714 12.8770i −0.507153 0.595239i
\(469\) 41.8470i 1.93232i
\(470\) 11.6814 3.91477i 0.538824 0.180575i
\(471\) 3.65996 + 6.33924i 0.168642 + 0.292097i
\(472\) −23.8288 + 11.4078i −1.09681 + 0.525085i
\(473\) 0.303687i 0.0139635i
\(474\) −14.8169 13.0963i −0.680563 0.601531i
\(475\) 0.861493 1.49215i 0.0395280 0.0684645i
\(476\) 24.4022 57.6413i 1.11847 2.64198i
\(477\) −24.1756 13.9578i −1.10692 0.639082i
\(478\) 1.37627 0.461226i 0.0629490 0.0210960i
\(479\) −14.6419 + 8.45349i −0.669004 + 0.386250i −0.795699 0.605692i \(-0.792896\pi\)
0.126695 + 0.991942i \(0.459563\pi\)
\(480\) −3.85244 + 2.46726i −0.175839 + 0.112614i
\(481\) −16.7300 8.38626i −0.762821 0.382380i
\(482\) −4.61581 + 22.7431i −0.210244 + 1.03592i
\(483\) 1.80052 + 3.11859i 0.0819264 + 0.141901i
\(484\) 2.65283 + 21.4359i 0.120583 + 0.974358i
\(485\) 7.84192 + 4.52754i 0.356083 + 0.205585i
\(486\) −4.45394 + 21.9456i −0.202035 + 0.995472i
\(487\) 28.6541 + 16.5434i 1.29844 + 0.749654i 0.980135 0.198334i \(-0.0635530\pi\)
0.318305 + 0.947988i \(0.396886\pi\)
\(488\) −9.65058 20.1583i −0.436861 0.912523i
\(489\) 11.7978i 0.533514i
\(490\) −7.72097 + 8.73539i −0.348798 + 0.394625i
\(491\) 26.6188 15.3683i 1.20129 0.693564i 0.240446 0.970663i \(-0.422706\pi\)
0.960841 + 0.277099i \(0.0893730\pi\)
\(492\) −1.00263 8.10167i −0.0452023 0.365252i
\(493\) 74.4220i 3.35180i
\(494\) 8.15130 3.27749i 0.366744 0.147461i
\(495\) −1.04995 −0.0471916
\(496\) 20.0003 + 5.69357i 0.898040 + 0.255649i
\(497\) 20.4158 + 35.3611i 0.915772 + 1.58616i
\(498\) −8.72644 7.71306i −0.391041 0.345630i
\(499\) −6.58714 −0.294881 −0.147440 0.989071i \(-0.547103\pi\)
−0.147440 + 0.989071i \(0.547103\pi\)
\(500\) −1.59612 + 1.20516i −0.0713806 + 0.0538963i
\(501\) 1.43337 2.48267i 0.0640383 0.110918i
\(502\) −0.529741 + 2.61015i −0.0236435 + 0.116497i
\(503\) −20.7723 + 35.9786i −0.926190 + 1.60421i −0.136555 + 0.990633i \(0.543603\pi\)
−0.789636 + 0.613576i \(0.789730\pi\)
\(504\) 25.8300 + 1.99554i 1.15056 + 0.0888885i
\(505\) −0.0227944 + 0.0131604i −0.00101434 + 0.000585629i
\(506\) 0.707422 + 0.143574i 0.0314487 + 0.00638264i
\(507\) 1.23633 + 10.4404i 0.0549072 + 0.463672i
\(508\) 21.5750 + 9.13367i 0.957236 + 0.405241i
\(509\) 8.56097 + 14.8280i 0.379458 + 0.657241i 0.990984 0.133984i \(-0.0427770\pi\)
−0.611525 + 0.791225i \(0.709444\pi\)
\(510\) 8.69265 2.91315i 0.384917 0.128996i
\(511\) 0.230801 0.399760i 0.0102100 0.0176843i
\(512\) 5.18743 22.0248i 0.229254 0.973367i
\(513\) −6.45112 3.72456i −0.284824 0.164443i
\(514\) 15.5362 17.5774i 0.685271 0.775305i
\(515\) −13.0895 −0.576791
\(516\) −0.875877 + 0.661337i −0.0385584 + 0.0291137i
\(517\) 3.37651 1.94943i 0.148499 0.0857357i
\(518\) 27.1737 9.10665i 1.19394 0.400123i
\(519\) 9.26020 0.406478
\(520\) −10.1964 0.185279i −0.447140 0.00812504i
\(521\) −23.5385 −1.03124 −0.515621 0.856817i \(-0.672439\pi\)
−0.515621 + 0.856817i \(0.672439\pi\)
\(522\) 29.2060 9.78775i 1.27831 0.428398i
\(523\) 1.93140 1.11509i 0.0844542 0.0487597i −0.457178 0.889375i \(-0.651140\pi\)
0.541632 + 0.840615i \(0.317806\pi\)
\(524\) −14.1134 18.6919i −0.616548 0.816559i
\(525\) −3.15749 −0.137804
\(526\) −19.2071 + 21.7307i −0.837471 + 0.947503i
\(527\) −36.0897 20.8364i −1.57209 0.907647i
\(528\) −1.03951 + 1.00770i −0.0452388 + 0.0438544i
\(529\) 10.8497 18.7922i 0.471724 0.817051i
\(530\) −15.9560 + 5.34729i −0.693084 + 0.232272i
\(531\) 10.9562 + 18.9767i 0.475459 + 0.823519i
\(532\) −5.24512 + 12.3897i −0.227405 + 0.537161i
\(533\) 8.15489 16.2684i 0.353227 0.704663i
\(534\) −9.97322 2.02410i −0.431583 0.0875915i
\(535\) 4.81312 2.77886i 0.208089 0.120140i
\(536\) −2.33511 + 30.2253i −0.100862 + 1.30553i
\(537\) 0.348728 0.604014i 0.0150487 0.0260651i
\(538\) 1.62082 7.98616i 0.0698786 0.344308i
\(539\) −1.84476 + 3.19522i −0.0794596 + 0.137628i
\(540\) 5.21035 + 6.90062i 0.224218 + 0.296955i
\(541\) −27.5466 −1.18432 −0.592161 0.805820i \(-0.701725\pi\)
−0.592161 + 0.805820i \(0.701725\pi\)
\(542\) −10.0395 8.87367i −0.431235 0.381157i
\(543\) −1.79198 3.10381i −0.0769014 0.133197i
\(544\) −20.8417 + 40.2715i −0.893580 + 1.72663i
\(545\) 0.584348 0.0250307
\(546\) −12.6705 9.93343i −0.542245 0.425112i
\(547\) 40.5419i 1.73345i 0.498788 + 0.866724i \(0.333779\pi\)
−0.498788 + 0.866724i \(0.666221\pi\)
\(548\) 14.8974 1.84364i 0.636383 0.0787566i
\(549\) −16.0536 + 9.26857i −0.685153 + 0.395573i
\(550\) −0.419168 + 0.474240i −0.0178734 + 0.0202217i
\(551\) 15.9966i 0.681479i
\(552\) −1.12646 2.35297i −0.0479453 0.100149i
\(553\) 58.4634 + 33.7539i 2.48612 + 1.43536i
\(554\) −0.695351 + 3.42615i −0.0295426 + 0.145563i
\(555\) 3.63518 + 2.09877i 0.154305 + 0.0890879i
\(556\) −16.2114 + 2.00627i −0.687518 + 0.0850848i
\(557\) 14.4872 + 25.0925i 0.613841 + 1.06320i 0.990587 + 0.136887i \(0.0437098\pi\)
−0.376746 + 0.926317i \(0.622957\pi\)
\(558\) 3.43059 16.9033i 0.145228 0.715574i
\(559\) −2.44230 + 0.144103i −0.103298 + 0.00609491i
\(560\) 11.2134 10.8702i 0.473851 0.459350i
\(561\) 2.51261 1.45065i 0.106082 0.0612466i
\(562\) −7.78776 + 2.60990i −0.328507 + 0.110092i
\(563\) −23.2595 13.4289i −0.980272 0.565961i −0.0779201 0.996960i \(-0.524828\pi\)
−0.902352 + 0.430999i \(0.858161\pi\)
\(564\) −12.9754 5.49309i −0.546364 0.231301i
\(565\) −5.65275 + 9.79084i −0.237813 + 0.411904i
\(566\) −16.4489 14.5387i −0.691397 0.611106i
\(567\) 13.8274i 0.580697i
\(568\) −12.7727 26.6799i −0.535932 1.11946i
\(569\) −3.53392 6.12094i −0.148150 0.256603i 0.782394 0.622784i \(-0.213998\pi\)
−0.930544 + 0.366181i \(0.880665\pi\)
\(570\) −1.86844 + 0.626166i −0.0782604 + 0.0262272i
\(571\) 14.6144i 0.611594i −0.952097 0.305797i \(-0.901077\pi\)
0.952097 0.305797i \(-0.0989230\pi\)
\(572\) −3.17400 + 0.584345i −0.132712 + 0.0244327i
\(573\) 17.5583i 0.733509i
\(574\) 8.85540 + 26.4240i 0.369617 + 1.10292i
\(575\) −0.570237 0.987679i −0.0237805 0.0411891i
\(576\) −18.5451 2.88268i −0.772714 0.120112i
\(577\) 5.48671i 0.228415i 0.993457 + 0.114207i \(0.0364328\pi\)
−0.993457 + 0.114207i \(0.963567\pi\)
\(578\) 44.2584 50.0733i 1.84091 2.08278i
\(579\) −6.85175 + 11.8676i −0.284749 + 0.493200i
\(580\) 7.23892 17.0993i 0.300580 0.710010i
\(581\) 34.4321 + 19.8794i 1.42848 + 0.824736i
\(582\) −3.29079 9.81950i −0.136408 0.407031i
\(583\) −4.61207 + 2.66278i −0.191012 + 0.110281i
\(584\) −0.189010 + 0.275860i −0.00782131 + 0.0114152i
\(585\) 0.498213 + 8.44386i 0.0205986 + 0.349111i
\(586\) −43.3851 8.80518i −1.79222 0.363738i
\(587\) −9.53461 16.5144i −0.393536 0.681623i 0.599378 0.800466i \(-0.295415\pi\)
−0.992913 + 0.118843i \(0.962081\pi\)
\(588\) 13.2328 1.63765i 0.545712 0.0675354i
\(589\) 7.75728 + 4.47867i 0.319633 + 0.184540i
\(590\) 12.9454 + 2.62732i 0.532954 + 0.108165i
\(591\) 11.0347 + 6.37089i 0.453907 + 0.262063i
\(592\) −20.1352 + 5.06123i −0.827551 + 0.208015i
\(593\) 28.8284i 1.18384i −0.805997 0.591920i \(-0.798370\pi\)
0.805997 0.591920i \(-0.201630\pi\)
\(594\) 2.05032 + 1.81222i 0.0841256 + 0.0743563i
\(595\) −27.1039 + 15.6485i −1.11115 + 0.641524i
\(596\) −1.30258 10.5254i −0.0533558 0.431135i
\(597\) 5.00743i 0.204940i
\(598\) 0.818967 5.75734i 0.0334901 0.235435i
\(599\) −4.08040 −0.166721 −0.0833603 0.996519i \(-0.526565\pi\)
−0.0833603 + 0.996519i \(0.526565\pi\)
\(600\) 2.28060 + 0.176192i 0.0931049 + 0.00719300i
\(601\) −8.92004 15.4500i −0.363856 0.630217i 0.624736 0.780836i \(-0.285207\pi\)
−0.988592 + 0.150619i \(0.951873\pi\)
\(602\) 2.48127 2.80727i 0.101129 0.114416i
\(603\) 25.1445 1.02396
\(604\) 5.21035 + 6.90062i 0.212006 + 0.280782i
\(605\) 5.39985 9.35281i 0.219535 0.380246i
\(606\) 0.0295015 + 0.00598744i 0.00119842 + 0.000243223i
\(607\) 13.6841 23.7016i 0.555421 0.962018i −0.442449 0.896793i \(-0.645890\pi\)
0.997871 0.0652243i \(-0.0207763\pi\)
\(608\) 4.47981 8.65616i 0.181680 0.351054i
\(609\) 25.3875 14.6575i 1.02875 0.593950i
\(610\) −2.22262 + 10.9514i −0.0899914 + 0.443408i
\(611\) −17.2798 26.2294i −0.699067 1.06113i
\(612\) 34.6347 + 14.6624i 1.40002 + 0.592694i
\(613\) −2.05530 3.55988i −0.0830127 0.143782i 0.821530 0.570165i \(-0.193121\pi\)
−0.904543 + 0.426383i \(0.859788\pi\)
\(614\) −1.72718 5.15380i −0.0697033 0.207990i
\(615\) −2.04087 + 3.53489i −0.0822958 + 0.142540i
\(616\) 2.79353 4.07715i 0.112555 0.164273i
\(617\) −26.8289 15.4897i −1.08009 0.623591i −0.149170 0.988812i \(-0.547660\pi\)
−0.930921 + 0.365220i \(0.880994\pi\)
\(618\) 11.2169 + 9.91430i 0.451210 + 0.398812i
\(619\) −43.4702 −1.74722 −0.873608 0.486631i \(-0.838226\pi\)
−0.873608 + 0.486631i \(0.838226\pi\)
\(620\) −6.26530 8.29779i −0.251620 0.333247i
\(621\) −4.27011 + 2.46535i −0.171354 + 0.0989310i
\(622\) −9.81182 29.2779i −0.393418 1.17393i
\(623\) 34.7405 1.39185
\(624\) 8.59733 + 7.88176i 0.344169 + 0.315523i
\(625\) 1.00000 0.0400000
\(626\) 4.74603 + 14.1619i 0.189690 + 0.566022i
\(627\) −0.540071 + 0.311810i −0.0215684 + 0.0124525i
\(628\) 10.9083 + 14.4469i 0.435287 + 0.576496i
\(629\) 41.6059 1.65893
\(630\) −9.70568 8.57858i −0.386683 0.341779i
\(631\) 2.39053 + 1.38018i 0.0951657 + 0.0549439i 0.546828 0.837245i \(-0.315835\pi\)
−0.451662 + 0.892189i \(0.649169\pi\)
\(632\) −40.3435 27.6421i −1.60478 1.09954i
\(633\) −0.546767 + 0.947028i −0.0217320 + 0.0376410i
\(634\) 8.67863 + 25.8965i 0.344673 + 1.02848i
\(635\) −5.85718 10.1449i −0.232435 0.402589i
\(636\) 17.7235 + 7.50317i 0.702783 + 0.297520i
\(637\) 26.5719 + 13.3197i 1.05282 + 0.527747i
\(638\) 1.16879 5.75890i 0.0462729 0.227997i
\(639\) −21.2473 + 12.2671i −0.840531 + 0.485281i
\(640\) −8.70577 + 7.22562i −0.344126 + 0.285618i
\(641\) 5.00752 8.67328i 0.197785 0.342574i −0.750025 0.661410i \(-0.769958\pi\)
0.947810 + 0.318836i \(0.103292\pi\)
\(642\) −6.22933 1.26427i −0.245852 0.0498966i
\(643\) 14.2515 24.6843i 0.562024 0.973454i −0.435296 0.900287i \(-0.643356\pi\)
0.997320 0.0731662i \(-0.0233104\pi\)
\(644\) 5.36631 + 7.10717i 0.211462 + 0.280062i
\(645\) 0.548755 0.0216072
\(646\) −12.9354 + 14.6350i −0.508938 + 0.575805i
\(647\) −7.53191 13.0456i −0.296110 0.512877i 0.679133 0.734016i \(-0.262356\pi\)
−0.975242 + 0.221138i \(0.929023\pi\)
\(648\) −0.771587 + 9.98728i −0.0303108 + 0.392338i
\(649\) 4.18032 0.164092
\(650\) 4.01282 + 3.14599i 0.157396 + 0.123396i
\(651\) 16.4150i 0.643353i
\(652\) 3.58345 + 28.9557i 0.140339 + 1.13399i
\(653\) −14.7901 + 8.53909i −0.578783 + 0.334161i −0.760650 0.649163i \(-0.775119\pi\)
0.181867 + 0.983323i \(0.441786\pi\)
\(654\) −0.500751 0.442600i −0.0195809 0.0173070i
\(655\) 11.7108i 0.457581i
\(656\) −4.92160 19.5797i −0.192156 0.764458i
\(657\) 0.240202 + 0.138681i 0.00937117 + 0.00541045i
\(658\) 47.1401 + 9.56726i 1.83771 + 0.372971i
\(659\) 32.4049 + 18.7090i 1.26232 + 0.728799i 0.973522 0.228593i \(-0.0734124\pi\)
0.288794 + 0.957391i \(0.406746\pi\)
\(660\) 0.718403 0.0889071i 0.0279638 0.00346070i
\(661\) −8.83203 15.2975i −0.343526 0.595005i 0.641559 0.767074i \(-0.278288\pi\)
−0.985085 + 0.172069i \(0.944955\pi\)
\(662\) −29.4494 5.97688i −1.14458 0.232298i
\(663\) −12.8587 19.5185i −0.499390 0.758035i
\(664\) −23.7604 16.2799i −0.922081 0.631781i
\(665\) 5.82584 3.36355i 0.225917 0.130433i
\(666\) 5.47187 + 16.3277i 0.212031 + 0.632687i
\(667\) 9.16985 + 5.29422i 0.355058 + 0.204993i
\(668\) 2.76388 6.52868i 0.106938 0.252602i
\(669\) −4.51722 + 7.82405i −0.174646 + 0.302495i
\(670\) 10.0384 11.3572i 0.387815 0.438769i
\(671\) 3.53641i 0.136521i
\(672\) −17.8426 + 0.821814i −0.688291 + 0.0317022i
\(673\) 11.1111 + 19.2450i 0.428302 + 0.741841i 0.996722 0.0808970i \(-0.0257785\pi\)
−0.568420 + 0.822738i \(0.692445\pi\)
\(674\) −10.0727 30.0564i −0.387987 1.15773i
\(675\) 4.32338i 0.166407i
\(676\) 6.20551 + 25.2486i 0.238673 + 0.971100i
\(677\) 5.99382i 0.230361i −0.993345 0.115181i \(-0.963255\pi\)
0.993345 0.115181i \(-0.0367447\pi\)
\(678\) 12.2599 4.10863i 0.470839 0.157791i
\(679\) 17.6770 + 30.6175i 0.678381 + 1.17499i
\(680\) 20.4498 9.79015i 0.784216 0.375435i
\(681\) 8.40152i 0.321947i
\(682\) −2.46545 2.17914i −0.0944069 0.0834436i
\(683\) 4.56662 7.90963i 0.174737 0.302653i −0.765333 0.643634i \(-0.777426\pi\)
0.940070 + 0.340981i \(0.110759\pi\)
\(684\) −7.44455 3.15161i −0.284649 0.120505i
\(685\) −6.49995 3.75275i −0.248350 0.143385i
\(686\) −6.51175 + 2.18227i −0.248620 + 0.0833193i
\(687\) 16.1855 9.34469i 0.617514 0.356522i
\(688\) −1.94882 + 1.88918i −0.0742981 + 0.0720243i
\(689\) 23.6030 + 35.8276i 0.899204 + 1.36492i
\(690\) −0.259435 + 1.27829i −0.00987651 + 0.0486638i
\(691\) 9.65327 + 16.7200i 0.367228 + 0.636057i 0.989131 0.147037i \(-0.0469736\pi\)
−0.621903 + 0.783094i \(0.713640\pi\)
\(692\) 22.7276 2.81269i 0.863975 0.106923i
\(693\) −3.55013 2.04967i −0.134858 0.0778606i
\(694\) 9.95700 49.0604i 0.377962 1.86231i
\(695\) 7.07331 + 4.08378i 0.268306 + 0.154906i
\(696\) −19.1548 + 9.17015i −0.726060 + 0.347594i
\(697\) 40.4580i 1.53246i
\(698\) 8.99497 10.1768i 0.340465 0.385197i
\(699\) 6.00226 3.46541i 0.227026 0.131074i
\(700\) −7.74954 + 0.959056i −0.292905 + 0.0362489i
\(701\) 11.3698i 0.429432i 0.976677 + 0.214716i \(0.0688825\pi\)
−0.976677 + 0.214716i \(0.931117\pi\)
\(702\) 13.6013 17.3489i 0.513348 0.654794i
\(703\) −8.94296 −0.337290
\(704\) −2.24523 + 2.78896i −0.0846202 + 0.105113i
\(705\) 3.52257 + 6.10127i 0.132668 + 0.229787i
\(706\) 14.0226 + 12.3942i 0.527747 + 0.466461i
\(707\) −0.102765 −0.00386487
\(708\) −9.10345 12.0567i −0.342129 0.453117i
\(709\) −2.70275 + 4.68129i −0.101504 + 0.175810i −0.912304 0.409513i \(-0.865699\pi\)
0.810801 + 0.585322i \(0.199032\pi\)
\(710\) −2.94169 + 14.4944i −0.110400 + 0.543964i
\(711\) −20.2816 + 35.1287i −0.760618 + 1.31743i
\(712\) −25.0924 1.93856i −0.940378 0.0726507i
\(713\) 5.13468 2.96451i 0.192295 0.111022i
\(714\) 35.0790 + 7.11941i 1.31280 + 0.266437i
\(715\) 1.44258 + 0.723122i 0.0539493 + 0.0270432i
\(716\) 0.672432 1.58838i 0.0251299 0.0593604i
\(717\) 0.415018 + 0.718832i 0.0154991 + 0.0268453i
\(718\) −45.8199 + 15.3555i −1.70998 + 0.573063i
\(719\) 3.58826 6.21504i 0.133819 0.231782i −0.791326 0.611394i \(-0.790609\pi\)
0.925146 + 0.379612i \(0.123942\pi\)
\(720\) 6.53153 + 6.73773i 0.243416 + 0.251100i
\(721\) −44.2587 25.5528i −1.64828 0.951636i
\(722\) −15.0146 + 16.9873i −0.558786 + 0.632202i
\(723\) −13.2708 −0.493545
\(724\) −5.34088 7.07349i −0.198492 0.262884i
\(725\) −8.04039 + 4.64212i −0.298613 + 0.172404i
\(726\) −11.7114 + 3.92482i −0.434651 + 0.145664i
\(727\) −13.9387 −0.516958 −0.258479 0.966017i \(-0.583221\pi\)
−0.258479 + 0.966017i \(0.583221\pi\)
\(728\) −34.1147 20.5314i −1.26438 0.760946i
\(729\) −2.18071 −0.0807670
\(730\) 0.158534 0.0531293i 0.00586762 0.00196640i
\(731\) 4.71051 2.71962i 0.174225 0.100589i
\(732\) 10.1995 7.70120i 0.376985 0.284645i
\(733\) −51.7217 −1.91039 −0.955193 0.295983i \(-0.904353\pi\)
−0.955193 + 0.295983i \(0.904353\pi\)
\(734\) −14.0864 + 15.9372i −0.519939 + 0.588251i
\(735\) −5.77369 3.33344i −0.212966 0.122956i
\(736\) −3.47940 5.43282i −0.128252 0.200256i
\(737\) 2.39845 4.15424i 0.0883482 0.153024i
\(738\) −15.8773 + 5.32091i −0.584450 + 0.195865i
\(739\) −3.70149 6.41116i −0.136161 0.235838i 0.789879 0.613263i \(-0.210143\pi\)
−0.926041 + 0.377424i \(0.876810\pi\)
\(740\) 9.55943 + 4.04694i 0.351412 + 0.148768i
\(741\) 2.76391 + 4.19539i 0.101535 + 0.154122i
\(742\) −64.3900 13.0682i −2.36383 0.479749i
\(743\) −38.2295 + 22.0718i −1.40251 + 0.809737i −0.994649 0.103309i \(-0.967057\pi\)
−0.407856 + 0.913046i \(0.633724\pi\)
\(744\) −0.915974 + 11.8562i −0.0335812 + 0.434670i
\(745\) −2.65141 + 4.59238i −0.0971403 + 0.168252i
\(746\) −1.83387 + 9.03589i −0.0671427 + 0.330827i
\(747\) −11.9449 + 20.6891i −0.437039 + 0.756974i
\(748\) 5.72616 4.32357i 0.209369 0.158085i
\(749\) 21.6991 0.792869
\(750\) −0.856940 0.757426i −0.0312910 0.0276573i
\(751\) −0.525634 0.910425i −0.0191807 0.0332219i 0.856276 0.516519i \(-0.172772\pi\)
−0.875456 + 0.483297i \(0.839439\pi\)
\(752\) −33.5145 9.54072i −1.22215 0.347914i
\(753\) −1.52304 −0.0555027
\(754\) −46.8687 6.66696i −1.70686 0.242796i
\(755\) 4.32338i 0.157344i
\(756\) 4.14636 + 33.5042i 0.150802 + 1.21854i
\(757\) −25.1218 + 14.5041i −0.913068 + 0.527160i −0.881417 0.472339i \(-0.843410\pi\)
−0.0316510 + 0.999499i \(0.510076\pi\)
\(758\) −11.3240 + 12.8118i −0.411306 + 0.465345i
\(759\) 0.412785i 0.0149832i
\(760\) −4.39559 + 2.10434i −0.159445 + 0.0763325i
\(761\) 9.61433 + 5.55084i 0.348519 + 0.201218i 0.664033 0.747703i \(-0.268843\pi\)
−0.315514 + 0.948921i \(0.602177\pi\)
\(762\) −2.66478 + 13.1300i −0.0965348 + 0.475649i
\(763\) 1.97583 + 1.14074i 0.0715297 + 0.0412977i
\(764\) 5.33316 + 43.0940i 0.192947 + 1.55909i
\(765\) −9.40262 16.2858i −0.339953 0.588815i
\(766\) −0.511366 + 2.51962i −0.0184764 + 0.0910374i
\(767\) −1.98361 33.6189i −0.0716241 1.21391i
\(768\) 12.9332 + 0.402055i 0.466686 + 0.0145079i
\(769\) −13.7216 + 7.92220i −0.494815