Properties

Label 520.2.ca.b.101.14
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.14
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.b.381.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0643054 - 1.41275i) q^{2} +(-0.756863 + 0.436975i) q^{3} +(-1.99173 + 0.181695i) q^{4} +1.00000 q^{5} +(0.666007 + 1.04116i) q^{6} +(-0.0742471 - 0.0428666i) q^{7} +(0.384769 + 2.80213i) q^{8} +(-1.11811 + 1.93662i) q^{9} +O(q^{10})\) \(q+(-0.0643054 - 1.41275i) q^{2} +(-0.756863 + 0.436975i) q^{3} +(-1.99173 + 0.181695i) q^{4} +1.00000 q^{5} +(0.666007 + 1.04116i) q^{6} +(-0.0742471 - 0.0428666i) q^{7} +(0.384769 + 2.80213i) q^{8} +(-1.11811 + 1.93662i) q^{9} +(-0.0643054 - 1.41275i) q^{10} +(-2.27673 - 3.94342i) q^{11} +(1.42807 - 1.00785i) q^{12} +(-3.32098 + 1.40396i) q^{13} +(-0.0557853 + 0.107649i) q^{14} +(-0.756863 + 0.436975i) q^{15} +(3.93397 - 0.723775i) q^{16} +(-1.52793 + 2.64646i) q^{17} +(2.80786 + 1.45507i) q^{18} +(-3.10816 + 5.38350i) q^{19} +(-1.99173 + 0.181695i) q^{20} +0.0749265 q^{21} +(-5.42466 + 3.47004i) q^{22} +(-0.442273 - 0.766039i) q^{23} +(-1.51568 - 1.95270i) q^{24} +1.00000 q^{25} +(2.19701 + 4.60143i) q^{26} -4.57619i q^{27} +(0.155669 + 0.0718883i) q^{28} +(-7.25294 + 4.18749i) q^{29} +(0.666007 + 1.04116i) q^{30} +0.361482i q^{31} +(-1.27549 - 5.51118i) q^{32} +(3.44635 + 1.98975i) q^{33} +(3.83704 + 1.98841i) q^{34} +(-0.0742471 - 0.0428666i) q^{35} +(1.87509 - 4.06037i) q^{36} +(5.44751 + 9.43537i) q^{37} +(7.80541 + 4.04487i) q^{38} +(1.90003 - 2.51379i) q^{39} +(0.384769 + 2.80213i) q^{40} +(-2.68015 + 1.54738i) q^{41} +(-0.00481818 - 0.105852i) q^{42} +(7.38455 + 4.26347i) q^{43} +(5.25114 + 7.44055i) q^{44} +(-1.11811 + 1.93662i) q^{45} +(-1.05378 + 0.674081i) q^{46} -1.90393i q^{47} +(-2.66121 + 2.26685i) q^{48} +(-3.49632 - 6.05581i) q^{49} +(-0.0643054 - 1.41275i) q^{50} -2.67068i q^{51} +(6.35939 - 3.39972i) q^{52} +7.26904i q^{53} +(-6.46501 + 0.294274i) q^{54} +(-2.27673 - 3.94342i) q^{55} +(0.0915499 - 0.224544i) q^{56} -5.43276i q^{57} +(6.38228 + 9.97732i) q^{58} +(3.94248 - 6.82858i) q^{59} +(1.42807 - 1.00785i) q^{60} +(-7.64214 - 4.41219i) q^{61} +(0.510684 - 0.0232453i) q^{62} +(0.166032 - 0.0958587i) q^{63} +(-7.70391 + 2.15635i) q^{64} +(-3.32098 + 1.40396i) q^{65} +(2.58940 - 4.99679i) q^{66} +(-2.77767 - 4.81106i) q^{67} +(2.56238 - 5.54865i) q^{68} +(0.669480 + 0.386524i) q^{69} +(-0.0557853 + 0.107649i) q^{70} +(-0.246775 - 0.142475i) q^{71} +(-5.85687 - 2.38793i) q^{72} +2.37550i q^{73} +(12.9795 - 8.30273i) q^{74} +(-0.756863 + 0.436975i) q^{75} +(5.21247 - 11.2872i) q^{76} +0.390383i q^{77} +(-3.67354 - 2.52262i) q^{78} -12.8740 q^{79} +(3.93397 - 0.723775i) q^{80} +(-1.35464 - 2.34630i) q^{81} +(2.35842 + 3.68687i) q^{82} -7.10893 q^{83} +(-0.149233 + 0.0136138i) q^{84} +(-1.52793 + 2.64646i) q^{85} +(5.54835 - 10.7067i) q^{86} +(3.65965 - 6.33871i) q^{87} +(10.1740 - 7.89702i) q^{88} +(10.3751 - 5.99007i) q^{89} +(2.80786 + 1.45507i) q^{90} +(0.306756 + 0.0381187i) q^{91} +(1.02007 + 1.44538i) q^{92} +(-0.157959 - 0.273593i) q^{93} +(-2.68978 + 0.122433i) q^{94} +(-3.10816 + 5.38350i) q^{95} +(3.37362 + 3.61385i) q^{96} +(13.3330 + 7.69782i) q^{97} +(-8.33052 + 5.32886i) q^{98} +10.1825 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0643054 1.41275i −0.0454708 0.998966i
\(3\) −0.756863 + 0.436975i −0.436975 + 0.252288i −0.702314 0.711868i \(-0.747850\pi\)
0.265339 + 0.964155i \(0.414516\pi\)
\(4\) −1.99173 + 0.181695i −0.995865 + 0.0908476i
\(5\) 1.00000 0.447214
\(6\) 0.666007 + 1.04116i 0.271896 + 0.425051i
\(7\) −0.0742471 0.0428666i −0.0280628 0.0162020i 0.485903 0.874013i \(-0.338491\pi\)
−0.513966 + 0.857811i \(0.671824\pi\)
\(8\) 0.384769 + 2.80213i 0.136036 + 0.990704i
\(9\) −1.11811 + 1.93662i −0.372702 + 0.645538i
\(10\) −0.0643054 1.41275i −0.0203352 0.446751i
\(11\) −2.27673 3.94342i −0.686461 1.18899i −0.972975 0.230909i \(-0.925830\pi\)
0.286514 0.958076i \(-0.407503\pi\)
\(12\) 1.42807 1.00785i 0.412248 0.290943i
\(13\) −3.32098 + 1.40396i −0.921073 + 0.389389i
\(14\) −0.0557853 + 0.107649i −0.0149092 + 0.0287704i
\(15\) −0.756863 + 0.436975i −0.195421 + 0.112827i
\(16\) 3.93397 0.723775i 0.983493 0.180944i
\(17\) −1.52793 + 2.64646i −0.370579 + 0.641861i −0.989655 0.143470i \(-0.954174\pi\)
0.619076 + 0.785331i \(0.287507\pi\)
\(18\) 2.80786 + 1.45507i 0.661818 + 0.342963i
\(19\) −3.10816 + 5.38350i −0.713061 + 1.23506i 0.250641 + 0.968080i \(0.419359\pi\)
−0.963702 + 0.266979i \(0.913975\pi\)
\(20\) −1.99173 + 0.181695i −0.445364 + 0.0406283i
\(21\) 0.0749265 0.0163503
\(22\) −5.42466 + 3.47004i −1.15654 + 0.739815i
\(23\) −0.442273 0.766039i −0.0922202 0.159730i 0.816225 0.577734i \(-0.196063\pi\)
−0.908445 + 0.418004i \(0.862730\pi\)
\(24\) −1.51568 1.95270i −0.309387 0.398593i
\(25\) 1.00000 0.200000
\(26\) 2.19701 + 4.60143i 0.430869 + 0.902415i
\(27\) 4.57619i 0.880688i
\(28\) 0.155669 + 0.0718883i 0.0294186 + 0.0135856i
\(29\) −7.25294 + 4.18749i −1.34684 + 0.777597i −0.987800 0.155727i \(-0.950228\pi\)
−0.359037 + 0.933323i \(0.616895\pi\)
\(30\) 0.666007 + 1.04116i 0.121596 + 0.190089i
\(31\) 0.361482i 0.0649241i 0.999473 + 0.0324621i \(0.0103348\pi\)
−0.999473 + 0.0324621i \(0.989665\pi\)
\(32\) −1.27549 5.51118i −0.225477 0.974249i
\(33\) 3.44635 + 1.98975i 0.599933 + 0.346371i
\(34\) 3.83704 + 1.98841i 0.658047 + 0.341009i
\(35\) −0.0742471 0.0428666i −0.0125500 0.00724577i
\(36\) 1.87509 4.06037i 0.312515 0.676728i
\(37\) 5.44751 + 9.43537i 0.895566 + 1.55117i 0.833103 + 0.553118i \(0.186562\pi\)
0.0624631 + 0.998047i \(0.480104\pi\)
\(38\) 7.80541 + 4.04487i 1.26620 + 0.656165i
\(39\) 1.90003 2.51379i 0.304248 0.402529i
\(40\) 0.384769 + 2.80213i 0.0608373 + 0.443056i
\(41\) −2.68015 + 1.54738i −0.418569 + 0.241661i −0.694465 0.719527i \(-0.744359\pi\)
0.275896 + 0.961187i \(0.411025\pi\)
\(42\) −0.00481818 0.105852i −0.000743461 0.0163334i
\(43\) 7.38455 + 4.26347i 1.12613 + 0.650173i 0.942959 0.332908i \(-0.108030\pi\)
0.183173 + 0.983081i \(0.441363\pi\)
\(44\) 5.25114 + 7.44055i 0.791639 + 1.12171i
\(45\) −1.11811 + 1.93662i −0.166677 + 0.288694i
\(46\) −1.05378 + 0.674081i −0.155372 + 0.0993879i
\(47\) 1.90393i 0.277717i −0.990312 0.138859i \(-0.955657\pi\)
0.990312 0.138859i \(-0.0443434\pi\)
\(48\) −2.66121 + 2.26685i −0.384112 + 0.327191i
\(49\) −3.49632 6.05581i −0.499475 0.865116i
\(50\) −0.0643054 1.41275i −0.00909416 0.199793i
\(51\) 2.67068i 0.373970i
\(52\) 6.35939 3.39972i 0.881889 0.471457i
\(53\) 7.26904i 0.998479i 0.866464 + 0.499240i \(0.166387\pi\)
−0.866464 + 0.499240i \(0.833613\pi\)
\(54\) −6.46501 + 0.294274i −0.879777 + 0.0400456i
\(55\) −2.27673 3.94342i −0.306995 0.531730i
\(56\) 0.0915499 0.224544i 0.0122339 0.0300059i
\(57\) 5.43276i 0.719587i
\(58\) 6.38228 + 9.97732i 0.838034 + 1.31009i
\(59\) 3.94248 6.82858i 0.513268 0.889005i −0.486614 0.873617i \(-0.661768\pi\)
0.999882 0.0153884i \(-0.00489846\pi\)
\(60\) 1.42807 1.00785i 0.184363 0.130113i
\(61\) −7.64214 4.41219i −0.978475 0.564923i −0.0766658 0.997057i \(-0.524427\pi\)
−0.901809 + 0.432134i \(0.857761\pi\)
\(62\) 0.510684 0.0232453i 0.0648570 0.00295215i
\(63\) 0.166032 0.0958587i 0.0209181 0.0120771i
\(64\) −7.70391 + 2.15635i −0.962988 + 0.269544i
\(65\) −3.32098 + 1.40396i −0.411916 + 0.174140i
\(66\) 2.58940 4.99679i 0.318734 0.615062i
\(67\) −2.77767 4.81106i −0.339346 0.587764i 0.644964 0.764213i \(-0.276872\pi\)
−0.984310 + 0.176449i \(0.943539\pi\)
\(68\) 2.56238 5.54865i 0.310735 0.672873i
\(69\) 0.669480 + 0.386524i 0.0805959 + 0.0465321i
\(70\) −0.0557853 + 0.107649i −0.00666762 + 0.0128665i
\(71\) −0.246775 0.142475i −0.0292868 0.0169087i 0.485285 0.874356i \(-0.338716\pi\)
−0.514572 + 0.857447i \(0.672049\pi\)
\(72\) −5.85687 2.38793i −0.690238 0.281420i
\(73\) 2.37550i 0.278032i 0.990290 + 0.139016i \(0.0443939\pi\)
−0.990290 + 0.139016i \(0.955606\pi\)
\(74\) 12.9795 8.30273i 1.50884 0.965172i
\(75\) −0.756863 + 0.436975i −0.0873950 + 0.0504575i
\(76\) 5.21247 11.2872i 0.597911 1.29473i
\(77\) 0.390383i 0.0444883i
\(78\) −3.67354 2.52262i −0.415947 0.285630i
\(79\) −12.8740 −1.44844 −0.724218 0.689572i \(-0.757799\pi\)
−0.724218 + 0.689572i \(0.757799\pi\)
\(80\) 3.93397 0.723775i 0.439832 0.0809205i
\(81\) −1.35464 2.34630i −0.150515 0.260700i
\(82\) 2.35842 + 3.68687i 0.260443 + 0.407147i
\(83\) −7.10893 −0.780307 −0.390153 0.920750i \(-0.627578\pi\)
−0.390153 + 0.920750i \(0.627578\pi\)
\(84\) −0.149233 + 0.0136138i −0.0162827 + 0.00148538i
\(85\) −1.52793 + 2.64646i −0.165728 + 0.287049i
\(86\) 5.54835 10.7067i 0.598294 1.15453i
\(87\) 3.65965 6.33871i 0.392356 0.679581i
\(88\) 10.1740 7.89702i 1.08455 0.841825i
\(89\) 10.3751 5.99007i 1.09976 0.634946i 0.163602 0.986526i \(-0.447689\pi\)
0.936158 + 0.351580i \(0.114355\pi\)
\(90\) 2.80786 + 1.45507i 0.295974 + 0.153378i
\(91\) 0.306756 + 0.0381187i 0.0321568 + 0.00399592i
\(92\) 1.02007 + 1.44538i 0.106350 + 0.150692i
\(93\) −0.157959 0.273593i −0.0163796 0.0283702i
\(94\) −2.68978 + 0.122433i −0.277430 + 0.0126280i
\(95\) −3.10816 + 5.38350i −0.318891 + 0.552335i
\(96\) 3.37362 + 3.61385i 0.344319 + 0.368837i
\(97\) 13.3330 + 7.69782i 1.35376 + 0.781595i 0.988774 0.149417i \(-0.0477398\pi\)
0.364988 + 0.931012i \(0.381073\pi\)
\(98\) −8.33052 + 5.32886i −0.841510 + 0.538296i
\(99\) 10.1825 1.02338
\(100\) −1.99173 + 0.181695i −0.199173 + 0.0181695i
\(101\) −2.25454 + 1.30166i −0.224335 + 0.129520i −0.607956 0.793971i \(-0.708010\pi\)
0.383621 + 0.923491i \(0.374677\pi\)
\(102\) −3.77300 + 0.171739i −0.373583 + 0.0170047i
\(103\) −13.1891 −1.29956 −0.649780 0.760122i \(-0.725139\pi\)
−0.649780 + 0.760122i \(0.725139\pi\)
\(104\) −5.21190 8.76562i −0.511069 0.859540i
\(105\) 0.0749265 0.00731208
\(106\) 10.2693 0.467439i 0.997447 0.0454017i
\(107\) −0.686143 + 0.396145i −0.0663320 + 0.0382968i −0.532799 0.846242i \(-0.678860\pi\)
0.466467 + 0.884538i \(0.345527\pi\)
\(108\) 0.831471 + 9.11453i 0.0800083 + 0.877046i
\(109\) −4.25841 −0.407882 −0.203941 0.978983i \(-0.565375\pi\)
−0.203941 + 0.978983i \(0.565375\pi\)
\(110\) −5.42466 + 3.47004i −0.517221 + 0.330855i
\(111\) −8.24605 4.76086i −0.782680 0.451881i
\(112\) −0.323112 0.114898i −0.0305312 0.0108568i
\(113\) 9.57915 16.5916i 0.901131 1.56080i 0.0751021 0.997176i \(-0.476072\pi\)
0.826029 0.563628i \(-0.190595\pi\)
\(114\) −7.67514 + 0.349356i −0.718842 + 0.0327202i
\(115\) −0.442273 0.766039i −0.0412421 0.0714335i
\(116\) 13.6850 9.65816i 1.27062 0.896738i
\(117\) 0.994264 8.00123i 0.0919197 0.739714i
\(118\) −9.90061 5.13063i −0.911425 0.472313i
\(119\) 0.226889 0.130995i 0.0207989 0.0120083i
\(120\) −1.51568 1.95270i −0.138362 0.178256i
\(121\) −4.86703 + 8.42994i −0.442457 + 0.766358i
\(122\) −5.74189 + 11.0802i −0.519847 + 1.00315i
\(123\) 1.35234 2.34232i 0.121936 0.211199i
\(124\) −0.0656796 0.719975i −0.00589820 0.0646557i
\(125\) 1.00000 0.0894427
\(126\) −0.146101 0.228398i −0.0130157 0.0203473i
\(127\) −1.86945 3.23798i −0.165887 0.287324i 0.771083 0.636734i \(-0.219715\pi\)
−0.936970 + 0.349410i \(0.886382\pi\)
\(128\) 3.54179 + 10.7450i 0.313053 + 0.949736i
\(129\) −7.45212 −0.656123
\(130\) 2.19701 + 4.60143i 0.192690 + 0.403572i
\(131\) 14.0025i 1.22341i −0.791088 0.611703i \(-0.790485\pi\)
0.791088 0.611703i \(-0.209515\pi\)
\(132\) −7.22573 3.33686i −0.628919 0.290437i
\(133\) 0.461544 0.266473i 0.0400209 0.0231061i
\(134\) −6.61821 + 4.23353i −0.571726 + 0.365721i
\(135\) 4.57619i 0.393856i
\(136\) −8.00364 3.26320i −0.686306 0.279817i
\(137\) −0.324458 0.187326i −0.0277204 0.0160044i 0.486076 0.873917i \(-0.338428\pi\)
−0.513796 + 0.857912i \(0.671761\pi\)
\(138\) 0.503011 0.970663i 0.0428192 0.0826284i
\(139\) −5.07048 2.92744i −0.430073 0.248302i 0.269305 0.963055i \(-0.413206\pi\)
−0.699378 + 0.714752i \(0.746539\pi\)
\(140\) 0.155669 + 0.0718883i 0.0131564 + 0.00607567i
\(141\) 0.831972 + 1.44102i 0.0700647 + 0.121356i
\(142\) −0.185413 + 0.357793i −0.0155595 + 0.0300253i
\(143\) 13.0974 + 9.89955i 1.09526 + 0.827842i
\(144\) −2.99692 + 8.42785i −0.249744 + 0.702321i
\(145\) −7.25294 + 4.18749i −0.602324 + 0.347752i
\(146\) 3.35600 0.152758i 0.277744 0.0126423i
\(147\) 5.29248 + 3.05561i 0.436516 + 0.252023i
\(148\) −12.5643 17.8029i −1.03278 1.46339i
\(149\) −4.97790 + 8.62197i −0.407805 + 0.706339i −0.994644 0.103365i \(-0.967039\pi\)
0.586838 + 0.809704i \(0.300372\pi\)
\(150\) 0.666007 + 1.04116i 0.0543793 + 0.0850103i
\(151\) 10.9163i 0.888355i 0.895939 + 0.444177i \(0.146504\pi\)
−0.895939 + 0.444177i \(0.853496\pi\)
\(152\) −16.2812 6.63809i −1.32058 0.538420i
\(153\) −3.41678 5.91804i −0.276231 0.478445i
\(154\) 0.551514 0.0251037i 0.0444422 0.00202292i
\(155\) 0.361482i 0.0290350i
\(156\) −3.32760 + 5.35202i −0.266421 + 0.428505i
\(157\) 12.2036i 0.973956i 0.873414 + 0.486978i \(0.161901\pi\)
−0.873414 + 0.486978i \(0.838099\pi\)
\(158\) 0.827866 + 18.1877i 0.0658615 + 1.44694i
\(159\) −3.17639 5.50167i −0.251904 0.436311i
\(160\) −1.27549 5.51118i −0.100836 0.435697i
\(161\) 0.0758348i 0.00597662i
\(162\) −3.22762 + 2.06464i −0.253586 + 0.162214i
\(163\) −9.93436 + 17.2068i −0.778119 + 1.34774i 0.154906 + 0.987929i \(0.450493\pi\)
−0.933025 + 0.359812i \(0.882841\pi\)
\(164\) 5.05698 3.56894i 0.394884 0.278687i
\(165\) 3.44635 + 1.98975i 0.268298 + 0.154902i
\(166\) 0.457143 + 10.0431i 0.0354812 + 0.779499i
\(167\) 21.1948 12.2369i 1.64011 0.946916i 0.659313 0.751869i \(-0.270847\pi\)
0.980794 0.195047i \(-0.0624860\pi\)
\(168\) 0.0288294 + 0.209954i 0.00222424 + 0.0161983i
\(169\) 9.05777 9.32506i 0.696752 0.717312i
\(170\) 3.83704 + 1.98841i 0.294288 + 0.152504i
\(171\) −6.95051 12.0386i −0.531519 0.920617i
\(172\) −15.4827 7.14994i −1.18054 0.545178i
\(173\) 15.9570 + 9.21276i 1.21319 + 0.700433i 0.963452 0.267882i \(-0.0863236\pi\)
0.249734 + 0.968315i \(0.419657\pi\)
\(174\) −9.19035 4.76257i −0.696719 0.361049i
\(175\) −0.0742471 0.0428666i −0.00561255 0.00324041i
\(176\) −11.8108 13.8655i −0.890269 1.04515i
\(177\) 6.89107i 0.517964i
\(178\) −9.12966 14.2723i −0.684297 1.06975i
\(179\) 21.6069 12.4748i 1.61498 0.932409i 0.626786 0.779191i \(-0.284370\pi\)
0.988193 0.153217i \(-0.0489635\pi\)
\(180\) 1.87509 4.06037i 0.139761 0.302642i
\(181\) 10.9187i 0.811581i −0.913966 0.405791i \(-0.866996\pi\)
0.913966 0.405791i \(-0.133004\pi\)
\(182\) 0.0341261 0.435821i 0.00252959 0.0323052i
\(183\) 7.71207 0.570093
\(184\) 1.97637 1.53405i 0.145700 0.113092i
\(185\) 5.44751 + 9.43537i 0.400509 + 0.693702i
\(186\) −0.376361 + 0.240750i −0.0275961 + 0.0176526i
\(187\) 13.9148 1.01755
\(188\) 0.345935 + 3.79212i 0.0252299 + 0.276569i
\(189\) −0.196165 + 0.339769i −0.0142689 + 0.0247145i
\(190\) 7.80541 + 4.04487i 0.566264 + 0.293446i
\(191\) −11.1046 + 19.2338i −0.803502 + 1.39171i 0.113796 + 0.993504i \(0.463699\pi\)
−0.917298 + 0.398202i \(0.869634\pi\)
\(192\) 4.88853 4.99848i 0.352799 0.360734i
\(193\) −9.75842 + 5.63403i −0.702427 + 0.405546i −0.808251 0.588839i \(-0.799585\pi\)
0.105824 + 0.994385i \(0.466252\pi\)
\(194\) 10.0177 19.3312i 0.719230 1.38790i
\(195\) 1.90003 2.51379i 0.136064 0.180016i
\(196\) 8.06405 + 11.4263i 0.576003 + 0.816163i
\(197\) −5.69577 9.86537i −0.405807 0.702879i 0.588608 0.808419i \(-0.299676\pi\)
−0.994415 + 0.105540i \(0.966343\pi\)
\(198\) −0.654791 14.3854i −0.0465340 1.02232i
\(199\) 1.03961 1.80067i 0.0736963 0.127646i −0.826822 0.562463i \(-0.809854\pi\)
0.900519 + 0.434817i \(0.143187\pi\)
\(200\) 0.384769 + 2.80213i 0.0272073 + 0.198141i
\(201\) 4.20463 + 2.42754i 0.296572 + 0.171226i
\(202\) 1.98390 + 3.10139i 0.139586 + 0.218213i
\(203\) 0.718012 0.0503946
\(204\) 0.485249 + 5.31927i 0.0339742 + 0.372423i
\(205\) −2.68015 + 1.54738i −0.187190 + 0.108074i
\(206\) 0.848131 + 18.6329i 0.0590921 + 1.29822i
\(207\) 1.97803 0.137483
\(208\) −12.0485 + 7.92680i −0.835412 + 0.549624i
\(209\) 28.3058 1.95796
\(210\) −0.00481818 0.105852i −0.000332486 0.00730451i
\(211\) 4.26241 2.46090i 0.293436 0.169415i −0.346054 0.938215i \(-0.612479\pi\)
0.639490 + 0.768799i \(0.279145\pi\)
\(212\) −1.32075 14.4780i −0.0907094 0.994350i
\(213\) 0.249033 0.0170635
\(214\) 0.603777 + 0.943875i 0.0412733 + 0.0645220i
\(215\) 7.38455 + 4.26347i 0.503622 + 0.290766i
\(216\) 12.8231 1.76078i 0.872501 0.119806i
\(217\) 0.0154955 0.0268390i 0.00105190 0.00182195i
\(218\) 0.273839 + 6.01607i 0.0185467 + 0.407460i
\(219\) −1.03804 1.79793i −0.0701440 0.121493i
\(220\) 5.25114 + 7.44055i 0.354032 + 0.501642i
\(221\) 1.35870 10.9340i 0.0913961 0.735500i
\(222\) −6.19564 + 11.9558i −0.415824 + 0.802418i
\(223\) −10.1721 + 5.87285i −0.681173 + 0.393275i −0.800297 0.599604i \(-0.795325\pi\)
0.119124 + 0.992879i \(0.461991\pi\)
\(224\) −0.141544 + 0.463865i −0.00945731 + 0.0309933i
\(225\) −1.11811 + 1.93662i −0.0745404 + 0.129108i
\(226\) −24.0558 12.4660i −1.60016 0.829228i
\(227\) −4.94780 + 8.56984i −0.328397 + 0.568800i −0.982194 0.187870i \(-0.939842\pi\)
0.653797 + 0.756670i \(0.273175\pi\)
\(228\) 0.987106 + 10.8206i 0.0653727 + 0.716611i
\(229\) −8.79054 −0.580895 −0.290448 0.956891i \(-0.593804\pi\)
−0.290448 + 0.956891i \(0.593804\pi\)
\(230\) −1.05378 + 0.674081i −0.0694843 + 0.0444476i
\(231\) −0.170588 0.295466i −0.0112238 0.0194403i
\(232\) −14.5246 18.7125i −0.953587 1.22853i
\(233\) 4.23373 0.277361 0.138681 0.990337i \(-0.455714\pi\)
0.138681 + 0.990337i \(0.455714\pi\)
\(234\) −11.3677 0.890124i −0.743129 0.0581893i
\(235\) 1.90393i 0.124199i
\(236\) −6.61164 + 14.3170i −0.430381 + 0.931958i
\(237\) 9.74384 5.62561i 0.632930 0.365422i
\(238\) −0.199653 0.312114i −0.0129416 0.0202314i
\(239\) 25.8561i 1.67249i 0.548356 + 0.836245i \(0.315254\pi\)
−0.548356 + 0.836245i \(0.684746\pi\)
\(240\) −2.66121 + 2.26685i −0.171780 + 0.146324i
\(241\) −8.68380 5.01359i −0.559373 0.322954i 0.193521 0.981096i \(-0.438009\pi\)
−0.752894 + 0.658142i \(0.771343\pi\)
\(242\) 12.2224 + 6.33381i 0.785684 + 0.407153i
\(243\) 13.9398 + 8.04817i 0.894241 + 0.516290i
\(244\) 16.0227 + 7.39935i 1.02575 + 0.473695i
\(245\) −3.49632 6.05581i −0.223372 0.386892i
\(246\) −3.39607 1.75989i −0.216526 0.112207i
\(247\) 2.76390 22.2422i 0.175863 1.41524i
\(248\) −1.01292 + 0.139087i −0.0643206 + 0.00883204i
\(249\) 5.38049 3.10643i 0.340975 0.196862i
\(250\) −0.0643054 1.41275i −0.00406703 0.0893502i
\(251\) 4.01319 + 2.31702i 0.253311 + 0.146249i 0.621279 0.783589i \(-0.286613\pi\)
−0.367969 + 0.929838i \(0.619947\pi\)
\(252\) −0.313274 + 0.221092i −0.0197344 + 0.0139275i
\(253\) −2.01387 + 3.48813i −0.126611 + 0.219297i
\(254\) −4.45424 + 2.84928i −0.279484 + 0.178780i
\(255\) 2.67068i 0.167244i
\(256\) 14.9523 5.69462i 0.934519 0.355914i
\(257\) 8.44614 + 14.6291i 0.526856 + 0.912541i 0.999510 + 0.0312931i \(0.00996254\pi\)
−0.472654 + 0.881248i \(0.656704\pi\)
\(258\) 0.479212 + 10.5280i 0.0298344 + 0.655444i
\(259\) 0.934065i 0.0580400i
\(260\) 6.35939 3.39972i 0.394393 0.210842i
\(261\) 18.7282i 1.15925i
\(262\) −19.7821 + 0.900438i −1.22214 + 0.0556292i
\(263\) 0.455144 + 0.788333i 0.0280654 + 0.0486107i 0.879717 0.475498i \(-0.157732\pi\)
−0.851652 + 0.524108i \(0.824399\pi\)
\(264\) −4.24950 + 10.4227i −0.261539 + 0.641475i
\(265\) 7.26904i 0.446534i
\(266\) −0.406139 0.634911i −0.0249020 0.0389289i
\(267\) −5.23503 + 9.06733i −0.320378 + 0.554912i
\(268\) 6.40651 + 9.07764i 0.391340 + 0.554505i
\(269\) 16.7083 + 9.64653i 1.01872 + 0.588159i 0.913733 0.406314i \(-0.133186\pi\)
0.104988 + 0.994473i \(0.466520\pi\)
\(270\) −6.46501 + 0.294274i −0.393448 + 0.0179089i
\(271\) 0.699374 0.403784i 0.0424840 0.0245281i −0.478608 0.878029i \(-0.658858\pi\)
0.521092 + 0.853501i \(0.325525\pi\)
\(272\) −4.09541 + 11.5170i −0.248321 + 0.698320i
\(273\) −0.248829 + 0.105194i −0.0150598 + 0.00636664i
\(274\) −0.243781 + 0.470425i −0.0147273 + 0.0284194i
\(275\) −2.27673 3.94342i −0.137292 0.237797i
\(276\) −1.40365 0.648211i −0.0844899 0.0390177i
\(277\) 25.1286 + 14.5080i 1.50983 + 0.871701i 0.999934 + 0.0114653i \(0.00364961\pi\)
0.509896 + 0.860236i \(0.329684\pi\)
\(278\) −3.80969 + 7.35158i −0.228490 + 0.440918i
\(279\) −0.700052 0.404175i −0.0419110 0.0241973i
\(280\) 0.0915499 0.224544i 0.00547115 0.0134191i
\(281\) 21.6992i 1.29447i 0.762293 + 0.647233i \(0.224074\pi\)
−0.762293 + 0.647233i \(0.775926\pi\)
\(282\) 1.98230 1.26803i 0.118044 0.0755103i
\(283\) 16.5669 9.56493i 0.984803 0.568576i 0.0810860 0.996707i \(-0.474161\pi\)
0.903717 + 0.428131i \(0.140828\pi\)
\(284\) 0.517396 + 0.238935i 0.0307018 + 0.0141782i
\(285\) 5.43276i 0.321809i
\(286\) 13.1434 19.1399i 0.777183 1.13177i
\(287\) 0.265324 0.0156616
\(288\) 12.0992 + 3.69195i 0.712951 + 0.217550i
\(289\) 3.83083 + 6.63520i 0.225343 + 0.390306i
\(290\) 6.38228 + 9.97732i 0.374780 + 0.585888i
\(291\) −13.4550 −0.788747
\(292\) −0.431617 4.73136i −0.0252585 0.276882i
\(293\) 8.51380 14.7463i 0.497381 0.861490i −0.502614 0.864511i \(-0.667628\pi\)
0.999995 + 0.00302101i \(0.000961620\pi\)
\(294\) 3.97649 7.67345i 0.231913 0.447525i
\(295\) 3.94248 6.82858i 0.229540 0.397575i
\(296\) −24.3431 + 18.8951i −1.41492 + 1.09826i
\(297\) −18.0458 + 10.4188i −1.04712 + 0.604558i
\(298\) 12.5008 + 6.47809i 0.724152 + 0.375266i
\(299\) 2.54427 + 1.92306i 0.147139 + 0.111214i
\(300\) 1.42807 1.00785i 0.0824497 0.0581885i
\(301\) −0.365521 0.633100i −0.0210683 0.0364913i
\(302\) 15.4220 0.701977i 0.887436 0.0403942i
\(303\) 1.13758 1.97035i 0.0653525 0.113194i
\(304\) −8.33099 + 23.4281i −0.477815 + 1.34370i
\(305\) −7.64214 4.41219i −0.437587 0.252641i
\(306\) −8.14100 + 5.20763i −0.465390 + 0.297700i
\(307\) 1.51638 0.0865444 0.0432722 0.999063i \(-0.486222\pi\)
0.0432722 + 0.999063i \(0.486222\pi\)
\(308\) −0.0709307 0.777537i −0.00404165 0.0443043i
\(309\) 9.98234 5.76331i 0.567876 0.327863i
\(310\) 0.510684 0.0232453i 0.0290049 0.00132024i
\(311\) −19.9984 −1.13401 −0.567003 0.823716i \(-0.691897\pi\)
−0.567003 + 0.823716i \(0.691897\pi\)
\(312\) 7.77506 + 4.35690i 0.440176 + 0.246661i
\(313\) −20.3211 −1.14861 −0.574307 0.818640i \(-0.694728\pi\)
−0.574307 + 0.818640i \(0.694728\pi\)
\(314\) 17.2407 0.784760i 0.972948 0.0442865i
\(315\) 0.166032 0.0958587i 0.00935485 0.00540102i
\(316\) 25.6415 2.33914i 1.44245 0.131587i
\(317\) 8.94280 0.502278 0.251139 0.967951i \(-0.419195\pi\)
0.251139 + 0.967951i \(0.419195\pi\)
\(318\) −7.56823 + 4.84123i −0.424405 + 0.271483i
\(319\) 33.0260 + 19.0676i 1.84910 + 1.06758i
\(320\) −7.70391 + 2.15635i −0.430661 + 0.120544i
\(321\) 0.346211 0.599655i 0.0193236 0.0334695i
\(322\) 0.107136 0.00487659i 0.00597044 0.000271762i
\(323\) −9.49814 16.4513i −0.528491 0.915372i
\(324\) 3.12438 + 4.42706i 0.173577 + 0.245948i
\(325\) −3.32098 + 1.40396i −0.184215 + 0.0778779i
\(326\) 24.9478 + 12.9283i 1.38173 + 0.716031i
\(327\) 3.22303 1.86082i 0.178234 0.102904i
\(328\) −5.36721 6.91475i −0.296355 0.381803i
\(329\) −0.0816151 + 0.141361i −0.00449959 + 0.00779351i
\(330\) 2.58940 4.99679i 0.142542 0.275064i
\(331\) −15.2247 + 26.3700i −0.836827 + 1.44943i 0.0557078 + 0.998447i \(0.482258\pi\)
−0.892534 + 0.450979i \(0.851075\pi\)
\(332\) 14.1591 1.29166i 0.777080 0.0708889i
\(333\) −24.3636 −1.33512
\(334\) −18.6506 29.1561i −1.02051 1.59535i
\(335\) −2.77767 4.81106i −0.151760 0.262856i
\(336\) 0.294759 0.0542299i 0.0160804 0.00295849i
\(337\) −24.7866 −1.35021 −0.675106 0.737721i \(-0.735902\pi\)
−0.675106 + 0.737721i \(0.735902\pi\)
\(338\) −13.7565 12.1967i −0.748252 0.663414i
\(339\) 16.7434i 0.909377i
\(340\) 2.56238 5.54865i 0.138965 0.300918i
\(341\) 1.42548 0.822999i 0.0771938 0.0445679i
\(342\) −16.5606 + 10.5935i −0.895496 + 0.572830i
\(343\) 1.19963i 0.0647741i
\(344\) −9.10547 + 22.3329i −0.490934 + 1.20411i
\(345\) 0.669480 + 0.386524i 0.0360436 + 0.0208098i
\(346\) 11.9892 23.1356i 0.644544 1.24378i
\(347\) −24.7946 14.3152i −1.33104 0.768478i −0.345583 0.938388i \(-0.612319\pi\)
−0.985459 + 0.169911i \(0.945652\pi\)
\(348\) −6.13733 + 13.2899i −0.328995 + 0.712415i
\(349\) −6.20443 10.7464i −0.332115 0.575241i 0.650811 0.759240i \(-0.274429\pi\)
−0.982926 + 0.183999i \(0.941096\pi\)
\(350\) −0.0557853 + 0.107649i −0.00298185 + 0.00575409i
\(351\) 6.42480 + 15.1974i 0.342931 + 0.811178i
\(352\) −18.8289 + 17.5773i −1.00359 + 0.936872i
\(353\) −4.14246 + 2.39165i −0.220481 + 0.127295i −0.606173 0.795333i \(-0.707296\pi\)
0.385692 + 0.922628i \(0.373963\pi\)
\(354\) 9.73536 0.443133i 0.517429 0.0235523i
\(355\) −0.246775 0.142475i −0.0130974 0.00756181i
\(356\) −19.5760 + 13.8157i −1.03753 + 0.732231i
\(357\) −0.114483 + 0.198290i −0.00605907 + 0.0104946i
\(358\) −19.0132 29.7230i −1.00488 1.57091i
\(359\) 25.7775i 1.36049i 0.732987 + 0.680243i \(0.238126\pi\)
−0.732987 + 0.680243i \(0.761874\pi\)
\(360\) −5.85687 2.38793i −0.308684 0.125855i
\(361\) −9.82135 17.0111i −0.516913 0.895320i
\(362\) −15.4254 + 0.702132i −0.810742 + 0.0369032i
\(363\) 8.50708i 0.446506i
\(364\) −0.617901 0.0201860i −0.0323868 0.00105804i
\(365\) 2.37550i 0.124340i
\(366\) −0.495928 10.8952i −0.0259226 0.569503i
\(367\) 4.48045 + 7.76036i 0.233877 + 0.405088i 0.958946 0.283589i \(-0.0915252\pi\)
−0.725068 + 0.688677i \(0.758192\pi\)
\(368\) −2.29433 2.69347i −0.119600 0.140407i
\(369\) 6.92055i 0.360270i
\(370\) 12.9795 8.30273i 0.674773 0.431638i
\(371\) 0.311599 0.539705i 0.0161774 0.0280201i
\(372\) 0.364322 + 0.516222i 0.0188892 + 0.0267649i
\(373\) −4.30847 2.48749i −0.223084 0.128798i 0.384293 0.923211i \(-0.374445\pi\)
−0.607377 + 0.794413i \(0.707778\pi\)
\(374\) −0.894797 19.6581i −0.0462689 1.01650i
\(375\) −0.756863 + 0.436975i −0.0390842 + 0.0225653i
\(376\) 5.33508 0.732575i 0.275136 0.0377796i
\(377\) 18.2078 24.0894i 0.937747 1.24067i
\(378\) 0.492623 + 0.255284i 0.0253378 + 0.0131304i
\(379\) 9.66780 + 16.7451i 0.496602 + 0.860139i 0.999992 0.00391972i \(-0.00124769\pi\)
−0.503391 + 0.864059i \(0.667914\pi\)
\(380\) 5.21247 11.2872i 0.267394 0.579021i
\(381\) 2.82983 + 1.63380i 0.144977 + 0.0837023i
\(382\) 27.8866 + 14.4512i 1.42680 + 0.739389i
\(383\) −8.59222 4.96072i −0.439042 0.253481i 0.264149 0.964482i \(-0.414909\pi\)
−0.703191 + 0.711001i \(0.748242\pi\)
\(384\) −7.37596 6.58485i −0.376403 0.336032i
\(385\) 0.390383i 0.0198958i
\(386\) 8.58700 + 13.4239i 0.437067 + 0.683260i
\(387\) −16.5134 + 9.53402i −0.839423 + 0.484641i
\(388\) −27.9544 12.9094i −1.41917 0.655377i
\(389\) 26.5193i 1.34458i −0.740287 0.672291i \(-0.765310\pi\)
0.740287 0.672291i \(-0.234690\pi\)
\(390\) −3.67354 2.52262i −0.186017 0.127738i
\(391\) 2.70305 0.136699
\(392\) 15.6239 12.1273i 0.789127 0.612519i
\(393\) 6.11875 + 10.5980i 0.308650 + 0.534598i
\(394\) −13.5710 + 8.68111i −0.683699 + 0.437348i
\(395\) −12.8740 −0.647760
\(396\) −20.2808 + 1.85011i −1.01915 + 0.0929716i
\(397\) −2.18812 + 3.78994i −0.109819 + 0.190211i −0.915697 0.401870i \(-0.868360\pi\)
0.805878 + 0.592082i \(0.201694\pi\)
\(398\) −2.61074 1.35292i −0.130865 0.0678160i
\(399\) −0.232884 + 0.403366i −0.0116588 + 0.0201936i
\(400\) 3.93397 0.723775i 0.196699 0.0361888i
\(401\) −6.25613 + 3.61198i −0.312416 + 0.180373i −0.648007 0.761634i \(-0.724397\pi\)
0.335591 + 0.942008i \(0.391064\pi\)
\(402\) 3.15913 6.09619i 0.157563 0.304051i
\(403\) −0.507508 1.20047i −0.0252808 0.0597999i
\(404\) 4.25392 3.00219i 0.211641 0.149364i
\(405\) −1.35464 2.34630i −0.0673124 0.116588i
\(406\) −0.0461721 1.01437i −0.00229148 0.0503425i
\(407\) 24.8051 42.9636i 1.22954 2.12963i
\(408\) 7.48360 1.02759i 0.370493 0.0508735i
\(409\) −14.3919 8.30916i −0.711633 0.410862i 0.100032 0.994984i \(-0.468105\pi\)
−0.811665 + 0.584123i \(0.801439\pi\)
\(410\) 2.35842 + 3.68687i 0.116474 + 0.182082i
\(411\) 0.327428 0.0161508
\(412\) 26.2691 2.39639i 1.29419 0.118062i
\(413\) −0.585435 + 0.338001i −0.0288074 + 0.0166320i
\(414\) −0.127198 2.79446i −0.00625144 0.137340i
\(415\) −7.10893 −0.348964
\(416\) 11.9734 + 16.5118i 0.587043 + 0.809556i
\(417\) 5.11688 0.250575
\(418\) −1.82022 39.9891i −0.0890298 1.95593i
\(419\) −21.7622 + 12.5644i −1.06315 + 0.613812i −0.926303 0.376780i \(-0.877031\pi\)
−0.136850 + 0.990592i \(0.543698\pi\)
\(420\) −0.149233 + 0.0136138i −0.00728184 + 0.000664284i
\(421\) 2.23994 0.109168 0.0545840 0.998509i \(-0.482617\pi\)
0.0545840 + 0.998509i \(0.482617\pi\)
\(422\) −3.75074 5.86347i −0.182583 0.285429i
\(423\) 3.68719 + 2.12880i 0.179277 + 0.103506i
\(424\) −20.3688 + 2.79690i −0.989197 + 0.135830i
\(425\) −1.52793 + 2.64646i −0.0741157 + 0.128372i
\(426\) −0.0160142 0.351822i −0.000775889 0.0170458i
\(427\) 0.378271 + 0.655184i 0.0183058 + 0.0317066i
\(428\) 1.29463 0.913683i 0.0625785 0.0441645i
\(429\) −14.2388 1.76937i −0.687455 0.0854258i
\(430\) 5.54835 10.7067i 0.267565 0.516322i
\(431\) −0.874768 + 0.505047i −0.0421361 + 0.0243273i −0.520920 0.853605i \(-0.674411\pi\)
0.478784 + 0.877933i \(0.341078\pi\)
\(432\) −3.31213 18.0026i −0.159355 0.866151i
\(433\) 9.73629 16.8637i 0.467896 0.810420i −0.531431 0.847102i \(-0.678345\pi\)
0.999327 + 0.0366819i \(0.0116788\pi\)
\(434\) −0.0389133 0.0201654i −0.00186790 0.000967970i
\(435\) 3.65965 6.33871i 0.175467 0.303918i
\(436\) 8.48160 0.773732i 0.406195 0.0370550i
\(437\) 5.49862 0.263035
\(438\) −2.47328 + 1.58210i −0.118178 + 0.0755958i
\(439\) −4.46944 7.74129i −0.213315 0.369472i 0.739435 0.673228i \(-0.235093\pi\)
−0.952750 + 0.303756i \(0.901759\pi\)
\(440\) 10.1740 7.89702i 0.485025 0.376475i
\(441\) 15.6370 0.744621
\(442\) −15.5344 1.21639i −0.738895 0.0578578i
\(443\) 27.0696i 1.28612i 0.765817 + 0.643058i \(0.222335\pi\)
−0.765817 + 0.643058i \(0.777665\pi\)
\(444\) 17.2889 + 7.98407i 0.820496 + 0.378907i
\(445\) 10.3751 5.99007i 0.491827 0.283957i
\(446\) 8.95100 + 13.9930i 0.423842 + 0.662586i
\(447\) 8.70087i 0.411537i
\(448\) 0.664428 + 0.170137i 0.0313913 + 0.00803824i
\(449\) −9.74642 5.62710i −0.459962 0.265559i 0.252066 0.967710i \(-0.418890\pi\)
−0.712028 + 0.702151i \(0.752223\pi\)
\(450\) 2.80786 + 1.45507i 0.132364 + 0.0685926i
\(451\) 12.2040 + 7.04596i 0.574662 + 0.331781i
\(452\) −16.0645 + 34.7864i −0.755609 + 1.63622i
\(453\) −4.77015 8.26214i −0.224121 0.388189i
\(454\) 12.4252 + 6.43892i 0.583145 + 0.302194i
\(455\) 0.306756 + 0.0381187i 0.0143809 + 0.00178703i
\(456\) 15.2233 2.09036i 0.712897 0.0978900i
\(457\) −12.2608 + 7.07878i −0.573537 + 0.331132i −0.758561 0.651602i \(-0.774097\pi\)
0.185024 + 0.982734i \(0.440764\pi\)
\(458\) 0.565280 + 12.4188i 0.0264138 + 0.580295i
\(459\) 12.1107 + 6.99212i 0.565279 + 0.326364i
\(460\) 1.02007 + 1.44538i 0.0475611 + 0.0673913i
\(461\) −16.4155 + 28.4325i −0.764547 + 1.32423i 0.175939 + 0.984401i \(0.443704\pi\)
−0.940486 + 0.339833i \(0.889629\pi\)
\(462\) −0.406451 + 0.259998i −0.0189098 + 0.0120962i
\(463\) 13.2835i 0.617335i 0.951170 + 0.308667i \(0.0998830\pi\)
−0.951170 + 0.308667i \(0.900117\pi\)
\(464\) −25.5021 + 21.7230i −1.18390 + 1.00846i
\(465\) −0.157959 0.273593i −0.00732516 0.0126876i
\(466\) −0.272252 5.98121i −0.0126118 0.277074i
\(467\) 12.1506i 0.562262i −0.959669 0.281131i \(-0.909290\pi\)
0.959669 0.281131i \(-0.0907096\pi\)
\(468\) −0.526520 + 16.1169i −0.0243384 + 0.745006i
\(469\) 0.476276i 0.0219924i
\(470\) −2.68978 + 0.122433i −0.124070 + 0.00564743i
\(471\) −5.33268 9.23648i −0.245717 0.425594i
\(472\) 20.6515 + 8.41994i 0.950564 + 0.387559i
\(473\) 38.8271i 1.78527i
\(474\) −8.57416 13.4039i −0.393824 0.615659i
\(475\) −3.10816 + 5.38350i −0.142612 + 0.247012i
\(476\) −0.428101 + 0.302130i −0.0196220 + 0.0138481i
\(477\) −14.0773 8.12755i −0.644557 0.372135i
\(478\) 36.5282 1.66269i 1.67076 0.0760494i
\(479\) 15.2490 8.80400i 0.696743 0.402265i −0.109390 0.993999i \(-0.534890\pi\)
0.806133 + 0.591734i \(0.201556\pi\)
\(480\) 3.37362 + 3.61385i 0.153984 + 0.164949i
\(481\) −31.3380 23.6865i −1.42889 1.08001i
\(482\) −6.52454 + 12.5904i −0.297185 + 0.573479i
\(483\) −0.0331379 0.0573966i −0.00150783 0.00261163i
\(484\) 8.16213 17.6745i 0.371006 0.803385i
\(485\) 13.3330 + 7.69782i 0.605421 + 0.349540i
\(486\) 10.4736 20.2111i 0.475094 0.916792i
\(487\) −12.1147 6.99445i −0.548971 0.316949i 0.199736 0.979850i \(-0.435992\pi\)
−0.748707 + 0.662901i \(0.769325\pi\)
\(488\) 9.42309 23.1120i 0.426563 1.04623i
\(489\) 17.3643i 0.785239i
\(490\) −8.33052 + 5.32886i −0.376335 + 0.240733i
\(491\) 15.1321 8.73650i 0.682900 0.394273i −0.118047 0.993008i \(-0.537663\pi\)
0.800947 + 0.598735i \(0.204330\pi\)
\(492\) −2.26790 + 4.91097i −0.102245 + 0.221404i
\(493\) 25.5928i 1.15264i
\(494\) −31.6004 2.47441i −1.42177 0.111329i
\(495\) 10.1825 0.457670
\(496\) 0.261632 + 1.42206i 0.0117476 + 0.0638525i
\(497\) 0.0122149 + 0.0211568i 0.000547912 + 0.000949011i
\(498\) −4.73460 7.40153i −0.212163 0.331670i
\(499\) 27.4989 1.23102 0.615509 0.788130i \(-0.288950\pi\)
0.615509 + 0.788130i \(0.288950\pi\)
\(500\) −1.99173 + 0.181695i −0.0890729 + 0.00812565i
\(501\) −10.6944 + 18.5232i −0.477791 + 0.827558i
\(502\) 3.01530 5.81864i 0.134579 0.259699i
\(503\) −1.38755 + 2.40330i −0.0618676 + 0.107158i −0.895300 0.445463i \(-0.853039\pi\)
0.833433 + 0.552621i \(0.186372\pi\)
\(504\) 0.332493 + 0.428361i 0.0148104 + 0.0190807i
\(505\) −2.25454 + 1.30166i −0.100326 + 0.0579230i
\(506\) 5.05736 + 2.62080i 0.224827 + 0.116509i
\(507\) −2.78067 + 11.0158i −0.123494 + 0.489230i
\(508\) 4.31176 + 6.10951i 0.191303 + 0.271066i
\(509\) −2.21856 3.84266i −0.0983359 0.170323i 0.812660 0.582738i \(-0.198019\pi\)
−0.910996 + 0.412415i \(0.864685\pi\)
\(510\) −3.77300 + 0.171739i −0.167071 + 0.00760473i
\(511\) 0.101830 0.176374i 0.00450468 0.00780234i
\(512\) −9.00660 20.7577i −0.398039 0.917368i
\(513\) 24.6359 + 14.2235i 1.08770 + 0.627985i
\(514\) 20.1242 12.8730i 0.887641 0.567805i
\(515\) −13.1891 −0.581181
\(516\) 14.8426 1.35401i 0.653409 0.0596071i
\(517\) −7.50801 + 4.33475i −0.330202 + 0.190642i
\(518\) −1.31960 + 0.0600654i −0.0579799 + 0.00263912i
\(519\) −16.1030 −0.706843
\(520\) −5.21190 8.76562i −0.228557 0.384398i
\(521\) −12.5748 −0.550911 −0.275455 0.961314i \(-0.588829\pi\)
−0.275455 + 0.961314i \(0.588829\pi\)
\(522\) −26.4583 + 1.20433i −1.15805 + 0.0527119i
\(523\) −17.4083 + 10.0507i −0.761211 + 0.439485i −0.829730 0.558165i \(-0.811506\pi\)
0.0685196 + 0.997650i \(0.478172\pi\)
\(524\) 2.54419 + 27.8892i 0.111143 + 1.21835i
\(525\) 0.0749265 0.00327006
\(526\) 1.08445 0.693700i 0.0472843 0.0302467i
\(527\) −0.956648 0.552321i −0.0416723 0.0240595i
\(528\) 14.9980 + 5.33325i 0.652704 + 0.232100i
\(529\) 11.1088 19.2410i 0.482991 0.836565i
\(530\) 10.2693 0.467439i 0.446072 0.0203042i
\(531\) 8.81622 + 15.2701i 0.382591 + 0.662668i
\(532\) −0.870854 + 0.614601i −0.0377563 + 0.0266464i
\(533\) 6.72824 8.90165i 0.291432 0.385573i
\(534\) 13.1465 + 6.81271i 0.568906 + 0.294815i
\(535\) −0.686143 + 0.396145i −0.0296646 + 0.0171268i
\(536\) 12.4125 9.63454i 0.536137 0.416149i
\(537\) −10.9023 + 18.8834i −0.470470 + 0.814879i
\(538\) 12.5537 24.2250i 0.541229 1.04441i
\(539\) −15.9204 + 27.5749i −0.685740 + 1.18774i
\(540\) 0.831471 + 9.11453i 0.0357808 + 0.392227i
\(541\) 9.45913 0.406680 0.203340 0.979108i \(-0.434820\pi\)
0.203340 + 0.979108i \(0.434820\pi\)
\(542\) −0.615420 0.962076i −0.0264345 0.0413247i
\(543\) 4.77120 + 8.26397i 0.204752 + 0.354641i
\(544\) 16.5340 + 5.04519i 0.708889 + 0.216311i
\(545\) −4.25841 −0.182410
\(546\) 0.164614 + 0.344769i 0.00704483 + 0.0147548i
\(547\) 29.6756i 1.26884i 0.772990 + 0.634418i \(0.218760\pi\)
−0.772990 + 0.634418i \(0.781240\pi\)
\(548\) 0.680270 + 0.314151i 0.0290597 + 0.0134198i
\(549\) 17.0894 9.86659i 0.729359 0.421096i
\(550\) −5.42466 + 3.47004i −0.231308 + 0.147963i
\(551\) 52.0616i 2.21790i
\(552\) −0.825498 + 2.02469i −0.0351355 + 0.0861767i
\(553\) 0.955855 + 0.551863i 0.0406471 + 0.0234676i
\(554\) 18.8803 36.4334i 0.802146 1.54791i
\(555\) −8.24605 4.76086i −0.350025 0.202087i
\(556\) 10.6309 + 4.90939i 0.450852 + 0.208205i
\(557\) 20.2892 + 35.1420i 0.859682 + 1.48901i 0.872232 + 0.489092i \(0.162672\pi\)
−0.0125505 + 0.999921i \(0.503995\pi\)
\(558\) −0.525982 + 1.01499i −0.0222666 + 0.0429679i
\(559\) −30.5097 3.79125i −1.29042 0.160353i
\(560\) −0.323112 0.114898i −0.0136540 0.00485532i
\(561\) −10.5316 + 6.08042i −0.444644 + 0.256716i
\(562\) 30.6555 1.39538i 1.29313 0.0588604i
\(563\) −9.61963 5.55390i −0.405419 0.234069i 0.283400 0.959002i \(-0.408537\pi\)
−0.688820 + 0.724933i \(0.741871\pi\)
\(564\) −1.91889 2.71895i −0.0807998 0.114489i
\(565\) 9.57915 16.5916i 0.402998 0.698013i
\(566\) −14.5782 22.7899i −0.612768 0.957930i
\(567\) 0.232274i 0.00975460i
\(568\) 0.304284 0.746316i 0.0127675 0.0313147i
\(569\) −7.45431 12.9112i −0.312501 0.541268i 0.666402 0.745592i \(-0.267833\pi\)
−0.978903 + 0.204325i \(0.934500\pi\)
\(570\) −7.67514 + 0.349356i −0.321476 + 0.0146329i
\(571\) 35.4496i 1.48352i 0.670666 + 0.741759i \(0.266008\pi\)
−0.670666 + 0.741759i \(0.733992\pi\)
\(572\) −27.8852 17.3375i −1.16594 0.724917i
\(573\) 19.4098i 0.810855i
\(574\) −0.0170618 0.374837i −0.000712145 0.0156454i
\(575\) −0.442273 0.766039i −0.0184440 0.0319460i
\(576\) 4.43776 17.3305i 0.184907 0.722105i
\(577\) 26.8210i 1.11657i 0.829648 + 0.558287i \(0.188541\pi\)
−0.829648 + 0.558287i \(0.811459\pi\)
\(578\) 9.12754 5.83869i 0.379656 0.242858i
\(579\) 4.92386 8.52838i 0.204629 0.354427i
\(580\) 13.6850 9.65816i 0.568241 0.401033i
\(581\) 0.527817 + 0.304735i 0.0218975 + 0.0126426i
\(582\) 0.865231 + 19.0086i 0.0358650 + 0.787931i
\(583\) 28.6649 16.5497i 1.18718 0.685417i
\(584\) −6.65648 + 0.914020i −0.275447 + 0.0378224i
\(585\) 0.994264 8.00123i 0.0411078 0.330810i
\(586\) −21.3804 11.0796i −0.883215 0.457694i
\(587\) −15.9431 27.6143i −0.658043 1.13976i −0.981122 0.193391i \(-0.938051\pi\)
0.323079 0.946372i \(-0.395282\pi\)
\(588\) −11.0964 5.12434i −0.457607 0.211324i
\(589\) −1.94604 1.12355i −0.0801851 0.0462949i
\(590\) −9.90061 5.13063i −0.407601 0.211225i
\(591\) 8.62184 + 4.97782i 0.354655 + 0.204760i
\(592\) 28.2595 + 33.1757i 1.16146 + 1.36351i
\(593\) 9.27008i 0.380677i −0.981719 0.190338i \(-0.939042\pi\)
0.981719 0.190338i \(-0.0609585\pi\)
\(594\) 15.8796 + 24.8243i 0.651546 + 1.01855i
\(595\) 0.226889 0.130995i 0.00930155 0.00537025i
\(596\) 8.34806 18.0771i 0.341950 0.740467i
\(597\) 1.81714i 0.0743707i
\(598\) 2.55320 3.71808i 0.104408 0.152044i
\(599\) −14.8455 −0.606572 −0.303286 0.952900i \(-0.598084\pi\)
−0.303286 + 0.952900i \(0.598084\pi\)
\(600\) −1.51568 1.95270i −0.0618774 0.0797185i
\(601\) 22.3119 + 38.6453i 0.910121 + 1.57638i 0.813891 + 0.581017i \(0.197345\pi\)
0.0962298 + 0.995359i \(0.469322\pi\)
\(602\) −0.870908 + 0.557101i −0.0354956 + 0.0227058i
\(603\) 12.4229 0.505899
\(604\) −1.98344 21.7423i −0.0807049 0.884681i
\(605\) −4.86703 + 8.42994i −0.197873 + 0.342726i
\(606\) −2.85677 1.48042i −0.116048 0.0601379i
\(607\) −5.30922 + 9.19583i −0.215494 + 0.373247i −0.953425 0.301629i \(-0.902470\pi\)
0.737931 + 0.674876i \(0.235803\pi\)
\(608\) 33.6339 + 10.2631i 1.36403 + 0.416222i
\(609\) −0.543437 + 0.313754i −0.0220212 + 0.0127139i
\(610\) −5.74189 + 11.0802i −0.232482 + 0.448623i
\(611\) 2.67305 + 6.32292i 0.108140 + 0.255798i
\(612\) 7.88059 + 11.1663i 0.318554 + 0.451372i
\(613\) 0.229598 + 0.397675i 0.00927337 + 0.0160619i 0.870625 0.491948i \(-0.163715\pi\)
−0.861351 + 0.508009i \(0.830381\pi\)
\(614\) −0.0975115 2.14227i −0.00393524 0.0864549i
\(615\) 1.35234 2.34232i 0.0545315 0.0944513i
\(616\) −1.09391 + 0.150207i −0.0440747 + 0.00605202i
\(617\) 14.5888 + 8.42284i 0.587323 + 0.339091i 0.764038 0.645171i \(-0.223214\pi\)
−0.176716 + 0.984262i \(0.556547\pi\)
\(618\) −8.78404 13.7320i −0.353346 0.552380i
\(619\) −17.9722 −0.722364 −0.361182 0.932495i \(-0.617627\pi\)
−0.361182 + 0.932495i \(0.617627\pi\)
\(620\) −0.0656796 0.719975i −0.00263775 0.0289149i
\(621\) −3.50554 + 2.02392i −0.140672 + 0.0812172i
\(622\) 1.28601 + 28.2528i 0.0515642 + 1.13283i
\(623\) −1.02710 −0.0411497
\(624\) 5.65524 11.2644i 0.226391 0.450936i
\(625\) 1.00000 0.0400000
\(626\) 1.30675 + 28.7086i 0.0522284 + 1.14743i
\(627\) −21.4236 + 12.3689i −0.855578 + 0.493968i
\(628\) −2.21734 24.3063i −0.0884815 0.969928i
\(629\) −33.2938 −1.32751
\(630\) −0.146101 0.228398i −0.00582081 0.00909958i
\(631\) 27.5020 + 15.8783i 1.09484 + 0.632105i 0.934860 0.355015i \(-0.115524\pi\)
0.159978 + 0.987121i \(0.448858\pi\)
\(632\) −4.95350 36.0746i −0.197040 1.43497i
\(633\) −2.15071 + 3.72513i −0.0854829 + 0.148061i
\(634\) −0.575071 12.6340i −0.0228390 0.501758i
\(635\) −1.86945 3.23798i −0.0741867 0.128495i
\(636\) 7.32614 + 10.3807i 0.290500 + 0.411622i
\(637\) 20.1134 + 15.2025i 0.796920 + 0.602345i
\(638\) 24.8140 47.8837i 0.982395 1.89573i
\(639\) 0.551840 0.318605i 0.0218305 0.0126038i
\(640\) 3.54179 + 10.7450i 0.140001 + 0.424735i
\(641\) 19.3471 33.5101i 0.764163 1.32357i −0.176525 0.984296i \(-0.556486\pi\)
0.940688 0.339273i \(-0.110181\pi\)
\(642\) −0.869427 0.450549i −0.0343135 0.0177817i
\(643\) −4.32632 + 7.49341i −0.170614 + 0.295511i −0.938635 0.344913i \(-0.887908\pi\)
0.768021 + 0.640425i \(0.221242\pi\)
\(644\) −0.0137788 0.151042i −0.000542961 0.00595191i
\(645\) −7.45212 −0.293427
\(646\) −22.6307 + 14.4764i −0.890395 + 0.569567i
\(647\) −3.23005 5.59461i −0.126986 0.219947i 0.795521 0.605926i \(-0.207197\pi\)
−0.922508 + 0.385979i \(0.873864\pi\)
\(648\) 6.05342 4.69865i 0.237801 0.184580i
\(649\) −35.9039 −1.40935
\(650\) 2.19701 + 4.60143i 0.0861737 + 0.180483i
\(651\) 0.0270846i 0.00106153i
\(652\) 16.6602 36.0763i 0.652462 1.41286i
\(653\) 8.91032 5.14438i 0.348688 0.201315i −0.315419 0.948952i \(-0.602145\pi\)
0.664107 + 0.747637i \(0.268812\pi\)
\(654\) −2.83613 4.43368i −0.110902 0.173371i
\(655\) 14.0025i 0.547123i
\(656\) −9.42367 + 8.02719i −0.367933 + 0.313409i
\(657\) −4.60044 2.65606i −0.179480 0.103623i
\(658\) 0.204957 + 0.106211i 0.00799005 + 0.00414055i
\(659\) −13.1886 7.61444i −0.513755 0.296616i 0.220621 0.975360i \(-0.429192\pi\)
−0.734376 + 0.678743i \(0.762525\pi\)
\(660\) −7.22573 3.33686i −0.281261 0.129887i
\(661\) −0.728643 1.26205i −0.0283409 0.0490879i 0.851507 0.524343i \(-0.175689\pi\)
−0.879848 + 0.475255i \(0.842356\pi\)
\(662\) 38.2333 + 19.8130i 1.48598 + 0.770054i
\(663\) 3.74953 + 8.86926i 0.145620 + 0.344453i
\(664\) −2.73530 19.9202i −0.106150 0.773053i
\(665\) 0.461544 0.266473i 0.0178979 0.0103334i
\(666\) 1.56671 + 34.4197i 0.0607088 + 1.33374i
\(667\) 6.41555 + 3.70402i 0.248411 + 0.143420i
\(668\) −39.9910 + 28.2235i −1.54730 + 1.09200i
\(669\) 5.13258 8.88989i 0.198437 0.343703i
\(670\) −6.61821 + 4.23353i −0.255684 + 0.163555i
\(671\) 40.1815i 1.55119i
\(672\) −0.0955680 0.412934i −0.00368661 0.0159293i
\(673\) 1.68543 + 2.91925i 0.0649685 + 0.112529i 0.896680 0.442679i \(-0.145972\pi\)
−0.831712 + 0.555208i \(0.812639\pi\)
\(674\) 1.59391 + 35.0173i 0.0613952 + 1.34881i
\(675\) 4.57619i 0.176138i
\(676\) −16.3463 + 20.2188i −0.628704 + 0.777644i
\(677\) 2.79883i 0.107568i 0.998553 + 0.0537838i \(0.0171282\pi\)
−0.998553 + 0.0537838i \(0.982872\pi\)
\(678\) 23.6543 1.07669i 0.908436 0.0413501i
\(679\) −0.659958 1.14308i −0.0253269 0.0438674i
\(680\) −8.00364 3.26320i −0.306925 0.125138i
\(681\) 8.64827i 0.331402i
\(682\) −1.25436 1.96092i −0.0480318 0.0750874i
\(683\) 23.4208 40.5661i 0.896174 1.55222i 0.0638289 0.997961i \(-0.479669\pi\)
0.832345 0.554258i \(-0.186998\pi\)
\(684\) 16.0309 + 22.7148i 0.612956 + 0.868523i
\(685\) −0.324458 0.187326i −0.0123969 0.00715736i
\(686\) 1.69478 0.0771430i 0.0647071 0.00294533i
\(687\) 6.65324 3.84125i 0.253837 0.146553i
\(688\) 32.1364 + 11.4276i 1.22519 + 0.435674i
\(689\) −10.2055 24.1403i −0.388797 0.919673i
\(690\) 0.503011 0.970663i 0.0191493 0.0369525i
\(691\) −20.8294 36.0776i −0.792388 1.37246i −0.924484 0.381220i \(-0.875504\pi\)
0.132096 0.991237i \(-0.457829\pi\)
\(692\) −33.4559 15.4500i −1.27180 0.587322i
\(693\) −0.756022 0.436489i −0.0287189 0.0165809i
\(694\) −18.6293 + 35.9491i −0.707159 + 1.36461i
\(695\) −5.07048 2.92744i −0.192334 0.111044i
\(696\) 19.1700 + 7.81590i 0.726638 + 0.296261i
\(697\) 9.45720i 0.358217i
\(698\) −14.7830 + 9.45636i −0.559544 + 0.357928i
\(699\) −3.20436 + 1.85004i −0.121200 + 0.0699748i
\(700\) 0.155669 + 0.0718883i 0.00588372 + 0.00271712i
\(701\) 31.2373i 1.17982i −0.807470 0.589909i \(-0.799164\pi\)
0.807470 0.589909i \(-0.200836\pi\)
\(702\) 21.0570 10.0539i 0.794746 0.379461i
\(703\) −67.7271 −2.55437
\(704\) 26.0431 + 25.4703i 0.981537 + 0.959948i
\(705\) 0.831972 + 1.44102i 0.0313339 + 0.0542718i
\(706\) 3.64519 + 5.69847i 0.137188 + 0.214465i
\(707\) 0.223190 0.00839393
\(708\) −1.25207 13.7251i −0.0470558 0.515823i
\(709\) −9.77477 + 16.9304i −0.367099 + 0.635835i −0.989111 0.147174i \(-0.952982\pi\)
0.622011 + 0.783008i \(0.286316\pi\)
\(710\) −0.185413 + 0.357793i −0.00695844 + 0.0134277i
\(711\) 14.3945 24.9319i 0.539834 0.935021i
\(712\) 20.7770 + 26.7677i 0.778651 + 1.00316i
\(713\) 0.276909 0.159874i 0.0103703 0.00598732i
\(714\) 0.287496 + 0.148984i 0.0107593 + 0.00557560i
\(715\) 13.0974 + 9.89955i 0.489815 + 0.370222i
\(716\) −40.7686 + 28.7723i −1.52359 + 1.07527i
\(717\) −11.2985 19.5695i −0.421949 0.730836i
\(718\) 36.4172 1.65763i 1.35908 0.0618624i
\(719\) −21.1163 + 36.5745i −0.787506 + 1.36400i 0.139985 + 0.990154i \(0.455295\pi\)
−0.927491 + 0.373846i \(0.878039\pi\)
\(720\) −2.99692 + 8.42785i −0.111689 + 0.314087i
\(721\) 0.979252 + 0.565371i 0.0364692 + 0.0210555i
\(722\) −23.4009 + 14.9690i −0.870890 + 0.557090i
\(723\) 8.76326 0.325909
\(724\) 1.98388 + 21.7471i 0.0737302 + 0.808225i
\(725\) −7.25294 + 4.18749i −0.269367 + 0.155519i
\(726\) −12.0184 + 0.547052i −0.446044 + 0.0203030i
\(727\) 20.5563 0.762390 0.381195 0.924495i \(-0.375513\pi\)
0.381195 + 0.924495i \(0.375513\pi\)
\(728\) 0.0112165 + 0.874238i 0.000415713 + 0.0324014i
\(729\) −5.93958 −0.219985
\(730\) 3.35600 0.152758i 0.124211 0.00565382i
\(731\) −22.5662 + 13.0286i −0.834641 + 0.481880i
\(732\) −15.3604 + 1.40125i −0.567735 + 0.0517915i
\(733\) −29.3314 −1.08338 −0.541689 0.840579i \(-0.682215\pi\)
−0.541689 + 0.840579i \(0.682215\pi\)
\(734\) 10.6753 6.82879i 0.394034 0.252055i
\(735\) 5.29248 + 3.05561i 0.195216 + 0.112708i
\(736\) −3.65766 + 3.41452i −0.134823 + 0.125861i
\(737\) −12.6480 + 21.9070i −0.465895 + 0.806955i
\(738\) −9.77702 + 0.445029i −0.359897 + 0.0163817i
\(739\) 22.5437 + 39.0468i 0.829282 + 1.43636i 0.898603 + 0.438764i \(0.144583\pi\)
−0.0693208 + 0.997594i \(0.522083\pi\)
\(740\) −12.5643 17.8029i −0.461874 0.654448i
\(741\) 7.62740 + 18.0421i 0.280199 + 0.662792i
\(742\) −0.782506 0.405505i −0.0287267 0.0148866i
\(743\) −12.6235 + 7.28818i −0.463111 + 0.267377i −0.713352 0.700806i \(-0.752824\pi\)
0.250240 + 0.968184i \(0.419490\pi\)
\(744\) 0.705865 0.547892i 0.0258783 0.0200867i
\(745\) −4.97790 + 8.62197i −0.182376 + 0.315885i
\(746\) −3.23715 + 6.24675i −0.118521 + 0.228710i
\(747\) 7.94853 13.7673i 0.290822 0.503718i
\(748\) −27.7145 + 2.52825i −1.01334 + 0.0924420i
\(749\) 0.0679255 0.00248194
\(750\) 0.666007 + 1.04116i 0.0243192 + 0.0380178i
\(751\) 10.4721 + 18.1383i 0.382134 + 0.661875i 0.991367 0.131116i \(-0.0418559\pi\)
−0.609233 + 0.792991i \(0.708523\pi\)
\(752\) −1.37802 7.49002i −0.0502512 0.273133i
\(753\) −4.04992 −0.147587
\(754\) −35.2032 24.1739i −1.28202 0.880363i
\(755\) 10.9163i 0.397284i
\(756\) 0.328974 0.712369i 0.0119647 0.0259086i
\(757\) 8.14420 4.70205i 0.296006 0.170899i −0.344641 0.938734i \(-0.611999\pi\)
0.640647 + 0.767835i \(0.278666\pi\)
\(758\) 23.0350 14.7350i 0.836669 0.535199i
\(759\) 3.52005i 0.127770i
\(760\) −16.2812 6.63809i −0.590581 0.240789i
\(761\) 9.47857 + 5.47245i 0.343598 + 0.198376i 0.661862 0.749626i \(-0.269767\pi\)
−0.318264 + 0.948002i \(0.603100\pi\)
\(762\) 2.12618 4.10291i 0.0770235 0.148633i
\(763\) 0.316174 + 0.182543i 0.0114463 + 0.00660851i
\(764\) 18.6227 40.3261i 0.673746 1.45895i
\(765\) −3.41678 5.91804i −0.123534 0.213967i
\(766\) −6.45574 + 12.4577i −0.233255 + 0.450114i
\(767\) −3.50581 + 28.2127i −0.126588 + 1.01870i
\(768\) −8.82844 + 10.8438i −0.318569 + 0.391293i
\(769\) 27.0299