Properties

Label 520.2.ca.b.101.12
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.12
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.b.381.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.417482 + 1.35119i) q^{2} +(-1.00502 + 0.580249i) q^{3} +(-1.65142 - 1.12819i) q^{4} +1.00000 q^{5} +(-0.364447 - 1.60022i) q^{6} +(-2.74313 - 1.58374i) q^{7} +(2.21384 - 1.76037i) q^{8} +(-0.826622 + 1.43175i) q^{9} +O(q^{10})\) \(q+(-0.417482 + 1.35119i) q^{2} +(-1.00502 + 0.580249i) q^{3} +(-1.65142 - 1.12819i) q^{4} +1.00000 q^{5} +(-0.364447 - 1.60022i) q^{6} +(-2.74313 - 1.58374i) q^{7} +(2.21384 - 1.76037i) q^{8} +(-0.826622 + 1.43175i) q^{9} +(-0.417482 + 1.35119i) q^{10} +(-1.23270 - 2.13510i) q^{11} +(2.31434 + 0.175626i) q^{12} +(3.60242 - 0.150193i) q^{13} +(3.28514 - 3.04529i) q^{14} +(-1.00502 + 0.580249i) q^{15} +(1.45435 + 3.72624i) q^{16} +(0.369228 - 0.639522i) q^{17} +(-1.58946 - 1.71465i) q^{18} +(4.31749 - 7.47811i) q^{19} +(-1.65142 - 1.12819i) q^{20} +3.67586 q^{21} +(3.39956 - 0.774244i) q^{22} +(2.88507 + 4.99708i) q^{23} +(-1.20350 + 3.05379i) q^{24} +1.00000 q^{25} +(-1.30101 + 4.93025i) q^{26} -5.40008i q^{27} +(2.74327 + 5.71020i) q^{28} +(1.59257 - 0.919468i) q^{29} +(-0.364447 - 1.60022i) q^{30} -9.05883i q^{31} +(-5.64202 + 0.409467i) q^{32} +(2.47778 + 1.43055i) q^{33} +(0.709967 + 0.765885i) q^{34} +(-2.74313 - 1.58374i) q^{35} +(2.98039 - 1.43183i) q^{36} +(1.35800 + 2.35212i) q^{37} +(8.30185 + 8.95571i) q^{38} +(-3.53336 + 2.24125i) q^{39} +(2.21384 - 1.76037i) q^{40} +(0.165016 - 0.0952718i) q^{41} +(-1.53461 + 4.96678i) q^{42} +(7.43510 + 4.29266i) q^{43} +(-0.373106 + 4.91667i) q^{44} +(-0.826622 + 1.43175i) q^{45} +(-7.95646 + 1.81207i) q^{46} +8.23945i q^{47} +(-3.62380 - 2.90106i) q^{48} +(1.51649 + 2.62664i) q^{49} +(-0.417482 + 1.35119i) q^{50} +0.856977i q^{51} +(-6.11855 - 3.81620i) q^{52} -4.18560i q^{53} +(7.29652 + 2.25444i) q^{54} +(-1.23270 - 2.13510i) q^{55} +(-8.86082 + 1.32277i) q^{56} +10.0209i q^{57} +(0.577506 + 2.53572i) q^{58} +(5.72512 - 9.91620i) q^{59} +(2.31434 + 0.175626i) q^{60} +(-4.03040 - 2.32695i) q^{61} +(12.2402 + 3.78190i) q^{62} +(4.53506 - 2.61832i) q^{63} +(1.80218 - 7.79437i) q^{64} +(3.60242 - 0.150193i) q^{65} +(-2.96737 + 2.75072i) q^{66} +(-1.66496 - 2.88379i) q^{67} +(-1.33125 + 0.639556i) q^{68} +(-5.79911 - 3.34812i) q^{69} +(3.28514 - 3.04529i) q^{70} +(-3.24673 - 1.87450i) q^{71} +(0.690407 + 4.62483i) q^{72} -1.03291i q^{73} +(-3.74510 + 0.852941i) q^{74} +(-1.00502 + 0.580249i) q^{75} +(-15.5667 + 7.47851i) q^{76} +7.80914i q^{77} +(-1.55323 - 5.70991i) q^{78} -9.18672 q^{79} +(1.45435 + 3.72624i) q^{80} +(0.653525 + 1.13194i) q^{81} +(0.0598390 + 0.262741i) q^{82} +1.79420 q^{83} +(-6.07038 - 4.14709i) q^{84} +(0.369228 - 0.639522i) q^{85} +(-8.90422 + 8.25411i) q^{86} +(-1.06704 + 1.84817i) q^{87} +(-6.48758 - 2.55676i) q^{88} +(12.1943 - 7.04039i) q^{89} +(-1.58946 - 1.71465i) q^{90} +(-10.1198 - 5.29332i) q^{91} +(0.873233 - 11.5072i) q^{92} +(5.25638 + 9.10431i) q^{93} +(-11.1330 - 3.43983i) q^{94} +(4.31749 - 7.47811i) q^{95} +(5.43275 - 3.68530i) q^{96} +(-14.8416 - 8.56882i) q^{97} +(-4.18219 + 0.952488i) q^{98} +4.07592 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q + 6 q^{4} + 56 q^{5} - 13 q^{6} + 28 q^{9} - 8 q^{11} + 6 q^{12} - 4 q^{14} + 14 q^{16} + 18 q^{18} - 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 22 q^{24} + 56 q^{25} - 37 q^{26} - 12 q^{28} - 13 q^{30} - 30 q^{32} - 16 q^{34} + 15 q^{36} + 4 q^{37} - 24 q^{39} - 61 q^{42} + 24 q^{44} + 28 q^{45} - 19 q^{46} - 51 q^{48} + 20 q^{49} - 64 q^{52} - 5 q^{54} - 8 q^{55} - 23 q^{56} - q^{58} - 16 q^{59} + 6 q^{60} + 10 q^{62} - 30 q^{64} + 14 q^{66} - 36 q^{67} - 51 q^{68} - 4 q^{70} - 81 q^{72} + 70 q^{74} - 60 q^{76} + 143 q^{78} + 14 q^{80} - 28 q^{81} + 21 q^{82} + 40 q^{83} + 31 q^{84} - 28 q^{86} - 36 q^{87} - 19 q^{88} + 18 q^{90} + 16 q^{91} - 18 q^{92} + 43 q^{94} - 16 q^{95} - 48 q^{96} + 24 q^{97} + 56 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.417482 + 1.35119i −0.295205 + 0.955434i
\(3\) −1.00502 + 0.580249i −0.580249 + 0.335007i −0.761232 0.648479i \(-0.775405\pi\)
0.180983 + 0.983486i \(0.442072\pi\)
\(4\) −1.65142 1.12819i −0.825708 0.564097i
\(5\) 1.00000 0.447214
\(6\) −0.364447 1.60022i −0.148785 0.653285i
\(7\) −2.74313 1.58374i −1.03680 0.598599i −0.117878 0.993028i \(-0.537609\pi\)
−0.918926 + 0.394429i \(0.870942\pi\)
\(8\) 2.21384 1.76037i 0.782711 0.622386i
\(9\) −0.826622 + 1.43175i −0.275541 + 0.477251i
\(10\) −0.417482 + 1.35119i −0.132020 + 0.427283i
\(11\) −1.23270 2.13510i −0.371674 0.643758i 0.618149 0.786061i \(-0.287883\pi\)
−0.989823 + 0.142303i \(0.954549\pi\)
\(12\) 2.31434 + 0.175626i 0.668093 + 0.0506988i
\(13\) 3.60242 0.150193i 0.999132 0.0416560i
\(14\) 3.28514 3.04529i 0.877991 0.813888i
\(15\) −1.00502 + 0.580249i −0.259495 + 0.149820i
\(16\) 1.45435 + 3.72624i 0.363589 + 0.931560i
\(17\) 0.369228 0.639522i 0.0895509 0.155107i −0.817770 0.575544i \(-0.804790\pi\)
0.907321 + 0.420438i \(0.138123\pi\)
\(18\) −1.58946 1.71465i −0.374640 0.404148i
\(19\) 4.31749 7.47811i 0.990499 1.71560i 0.376157 0.926556i \(-0.377245\pi\)
0.614342 0.789040i \(-0.289421\pi\)
\(20\) −1.65142 1.12819i −0.369268 0.252272i
\(21\) 3.67586 0.802139
\(22\) 3.39956 0.774244i 0.724788 0.165069i
\(23\) 2.88507 + 4.99708i 0.601578 + 1.04196i 0.992582 + 0.121575i \(0.0387945\pi\)
−0.391004 + 0.920389i \(0.627872\pi\)
\(24\) −1.20350 + 3.05379i −0.245664 + 0.623352i
\(25\) 1.00000 0.200000
\(26\) −1.30101 + 4.93025i −0.255149 + 0.966902i
\(27\) 5.40008i 1.03925i
\(28\) 2.74327 + 5.71020i 0.518430 + 1.07913i
\(29\) 1.59257 0.919468i 0.295732 0.170741i −0.344792 0.938679i \(-0.612051\pi\)
0.640524 + 0.767938i \(0.278717\pi\)
\(30\) −0.364447 1.60022i −0.0665386 0.292158i
\(31\) 9.05883i 1.62701i −0.581556 0.813507i \(-0.697556\pi\)
0.581556 0.813507i \(-0.302444\pi\)
\(32\) −5.64202 + 0.409467i −0.997377 + 0.0723842i
\(33\) 2.47778 + 1.43055i 0.431327 + 0.249027i
\(34\) 0.709967 + 0.765885i 0.121758 + 0.131348i
\(35\) −2.74313 1.58374i −0.463673 0.267702i
\(36\) 2.98039 1.43183i 0.496732 0.238638i
\(37\) 1.35800 + 2.35212i 0.223253 + 0.386686i 0.955794 0.294037i \(-0.0949989\pi\)
−0.732541 + 0.680723i \(0.761666\pi\)
\(38\) 8.30185 + 8.95571i 1.34674 + 1.45281i
\(39\) −3.53336 + 2.24125i −0.565790 + 0.358887i
\(40\) 2.21384 1.76037i 0.350039 0.278339i
\(41\) 0.165016 0.0952718i 0.0257711 0.0148790i −0.487059 0.873369i \(-0.661930\pi\)
0.512830 + 0.858490i \(0.328597\pi\)
\(42\) −1.53461 + 4.96678i −0.236795 + 0.766391i
\(43\) 7.43510 + 4.29266i 1.13384 + 0.654624i 0.944899 0.327363i \(-0.106160\pi\)
0.188944 + 0.981988i \(0.439493\pi\)
\(44\) −0.373106 + 4.91667i −0.0562479 + 0.741216i
\(45\) −0.826622 + 1.43175i −0.123226 + 0.213433i
\(46\) −7.95646 + 1.81207i −1.17312 + 0.267176i
\(47\) 8.23945i 1.20185i 0.799307 + 0.600923i \(0.205200\pi\)
−0.799307 + 0.600923i \(0.794800\pi\)
\(48\) −3.62380 2.90106i −0.523051 0.418732i
\(49\) 1.51649 + 2.62664i 0.216642 + 0.375234i
\(50\) −0.417482 + 1.35119i −0.0590409 + 0.191087i
\(51\) 0.856977i 0.120001i
\(52\) −6.11855 3.81620i −0.848490 0.529212i
\(53\) 4.18560i 0.574936i −0.957790 0.287468i \(-0.907186\pi\)
0.957790 0.287468i \(-0.0928135\pi\)
\(54\) 7.29652 + 2.25444i 0.992931 + 0.306790i
\(55\) −1.23270 2.13510i −0.166218 0.287897i
\(56\) −8.86082 + 1.32277i −1.18408 + 0.176762i
\(57\) 10.0209i 1.32730i
\(58\) 0.577506 + 2.53572i 0.0758302 + 0.332956i
\(59\) 5.72512 9.91620i 0.745347 1.29098i −0.204685 0.978828i \(-0.565617\pi\)
0.950032 0.312151i \(-0.101050\pi\)
\(60\) 2.31434 + 0.175626i 0.298780 + 0.0226732i
\(61\) −4.03040 2.32695i −0.516040 0.297936i 0.219273 0.975664i \(-0.429632\pi\)
−0.735313 + 0.677728i \(0.762965\pi\)
\(62\) 12.2402 + 3.78190i 1.55450 + 0.480302i
\(63\) 4.53506 2.61832i 0.571363 0.329877i
\(64\) 1.80218 7.79437i 0.225272 0.974296i
\(65\) 3.60242 0.150193i 0.446825 0.0186291i
\(66\) −2.96737 + 2.75072i −0.365258 + 0.338590i
\(67\) −1.66496 2.88379i −0.203407 0.352311i 0.746217 0.665703i \(-0.231868\pi\)
−0.949624 + 0.313391i \(0.898535\pi\)
\(68\) −1.33125 + 0.639556i −0.161438 + 0.0775575i
\(69\) −5.79911 3.34812i −0.698130 0.403066i
\(70\) 3.28514 3.04529i 0.392650 0.363982i
\(71\) −3.24673 1.87450i −0.385316 0.222462i 0.294813 0.955555i \(-0.404743\pi\)
−0.680129 + 0.733093i \(0.738076\pi\)
\(72\) 0.690407 + 4.62483i 0.0813652 + 0.545042i
\(73\) 1.03291i 0.120893i −0.998171 0.0604467i \(-0.980747\pi\)
0.998171 0.0604467i \(-0.0192525\pi\)
\(74\) −3.74510 + 0.852941i −0.435359 + 0.0991523i
\(75\) −1.00502 + 0.580249i −0.116050 + 0.0670014i
\(76\) −15.5667 + 7.47851i −1.78563 + 0.857843i
\(77\) 7.80914i 0.889934i
\(78\) −1.55323 5.70991i −0.175869 0.646520i
\(79\) −9.18672 −1.03359 −0.516793 0.856110i \(-0.672874\pi\)
−0.516793 + 0.856110i \(0.672874\pi\)
\(80\) 1.45435 + 3.72624i 0.162602 + 0.416606i
\(81\) 0.653525 + 1.13194i 0.0726139 + 0.125771i
\(82\) 0.0598390 + 0.262741i 0.00660811 + 0.0290149i
\(83\) 1.79420 0.196939 0.0984693 0.995140i \(-0.468605\pi\)
0.0984693 + 0.995140i \(0.468605\pi\)
\(84\) −6.07038 4.14709i −0.662333 0.452485i
\(85\) 0.369228 0.639522i 0.0400484 0.0693658i
\(86\) −8.90422 + 8.25411i −0.960166 + 0.890064i
\(87\) −1.06704 + 1.84817i −0.114399 + 0.198145i
\(88\) −6.48758 2.55676i −0.691579 0.272552i
\(89\) 12.1943 7.04039i 1.29260 0.746280i 0.313482 0.949594i \(-0.398505\pi\)
0.979114 + 0.203314i \(0.0651712\pi\)
\(90\) −1.58946 1.71465i −0.167544 0.180740i
\(91\) −10.1198 5.29332i −1.06084 0.554890i
\(92\) 0.873233 11.5072i 0.0910409 1.19971i
\(93\) 5.25638 + 9.10431i 0.545061 + 0.944073i
\(94\) −11.1330 3.43983i −1.14829 0.354791i
\(95\) 4.31749 7.47811i 0.442965 0.767238i
\(96\) 5.43275 3.68530i 0.554478 0.376129i
\(97\) −14.8416 8.56882i −1.50694 0.870032i −0.999967 0.00806860i \(-0.997432\pi\)
−0.506971 0.861963i \(-0.669235\pi\)
\(98\) −4.18219 + 0.952488i −0.422465 + 0.0962158i
\(99\) 4.07592 0.409645
\(100\) −1.65142 1.12819i −0.165142 0.112819i
\(101\) 4.58812 2.64895i 0.456535 0.263580i −0.254051 0.967191i \(-0.581763\pi\)
0.710586 + 0.703610i \(0.248430\pi\)
\(102\) −1.15794 0.357773i −0.114653 0.0354248i
\(103\) −7.06565 −0.696199 −0.348100 0.937458i \(-0.613173\pi\)
−0.348100 + 0.937458i \(0.613173\pi\)
\(104\) 7.71079 6.67411i 0.756105 0.654450i
\(105\) 3.67586 0.358728
\(106\) 5.65553 + 1.74741i 0.549314 + 0.169724i
\(107\) −10.2327 + 5.90788i −0.989237 + 0.571136i −0.905046 0.425313i \(-0.860164\pi\)
−0.0841908 + 0.996450i \(0.526831\pi\)
\(108\) −6.09234 + 8.91778i −0.586236 + 0.858114i
\(109\) 3.12953 0.299754 0.149877 0.988705i \(-0.452112\pi\)
0.149877 + 0.988705i \(0.452112\pi\)
\(110\) 3.39956 0.774244i 0.324135 0.0738213i
\(111\) −2.72963 1.57595i −0.259085 0.149583i
\(112\) 1.91193 12.5249i 0.180661 1.18349i
\(113\) 9.72386 16.8422i 0.914744 1.58438i 0.107468 0.994209i \(-0.465726\pi\)
0.807276 0.590174i \(-0.200941\pi\)
\(114\) −13.5401 4.18354i −1.26814 0.391824i
\(115\) 2.88507 + 4.99708i 0.269034 + 0.465980i
\(116\) −3.66733 0.278299i −0.340503 0.0258394i
\(117\) −2.76280 + 5.28193i −0.255421 + 0.488314i
\(118\) 11.0085 + 11.8756i 1.01342 + 1.09323i
\(119\) −2.02568 + 1.16953i −0.185693 + 0.107210i
\(120\) −1.20350 + 3.05379i −0.109864 + 0.278772i
\(121\) 2.46089 4.26239i 0.223717 0.387490i
\(122\) 4.82677 4.47437i 0.436996 0.405090i
\(123\) −0.110563 + 0.191500i −0.00996910 + 0.0172670i
\(124\) −10.2201 + 14.9599i −0.917794 + 1.34344i
\(125\) 1.00000 0.0894427
\(126\) 1.64453 + 7.22081i 0.146506 + 0.643281i
\(127\) −1.96907 3.41052i −0.174726 0.302635i 0.765340 0.643626i \(-0.222571\pi\)
−0.940067 + 0.340991i \(0.889237\pi\)
\(128\) 9.77928 + 5.68909i 0.864374 + 0.502849i
\(129\) −9.96325 −0.877215
\(130\) −1.30101 + 4.93025i −0.114106 + 0.432412i
\(131\) 9.67553i 0.845355i −0.906280 0.422678i \(-0.861090\pi\)
0.906280 0.422678i \(-0.138910\pi\)
\(132\) −2.47792 5.15785i −0.215675 0.448933i
\(133\) −23.6868 + 13.6756i −2.05391 + 1.18582i
\(134\) 4.59164 1.04574i 0.396657 0.0903381i
\(135\) 5.40008i 0.464765i
\(136\) −0.308385 2.06578i −0.0264438 0.177139i
\(137\) 13.2517 + 7.65088i 1.13217 + 0.653659i 0.944480 0.328569i \(-0.106566\pi\)
0.187691 + 0.982228i \(0.439900\pi\)
\(138\) 6.94496 6.43790i 0.591194 0.548031i
\(139\) 7.64524 + 4.41398i 0.648461 + 0.374389i 0.787866 0.615846i \(-0.211186\pi\)
−0.139406 + 0.990235i \(0.544519\pi\)
\(140\) 2.74327 + 5.71020i 0.231849 + 0.482600i
\(141\) −4.78093 8.28082i −0.402627 0.697371i
\(142\) 3.88825 3.60437i 0.326295 0.302472i
\(143\) −4.76139 7.50640i −0.398168 0.627717i
\(144\) −6.53725 0.997917i −0.544771 0.0831597i
\(145\) 1.59257 0.919468i 0.132255 0.0763577i
\(146\) 1.39566 + 0.431223i 0.115506 + 0.0356883i
\(147\) −3.04821 1.75988i −0.251412 0.145153i
\(148\) 0.411030 5.41642i 0.0337864 0.445227i
\(149\) −6.58106 + 11.3987i −0.539141 + 0.933820i 0.459809 + 0.888018i \(0.347918\pi\)
−0.998951 + 0.0458023i \(0.985416\pi\)
\(150\) −0.364447 1.60022i −0.0297570 0.130657i
\(151\) 17.2918i 1.40719i 0.710602 + 0.703594i \(0.248422\pi\)
−0.710602 + 0.703594i \(0.751578\pi\)
\(152\) −3.60603 24.1557i −0.292488 1.95929i
\(153\) 0.610424 + 1.05729i 0.0493499 + 0.0854765i
\(154\) −10.5516 3.26018i −0.850273 0.262713i
\(155\) 9.05883i 0.727623i
\(156\) 8.36361 + 0.285081i 0.669625 + 0.0228247i
\(157\) 23.8530i 1.90367i −0.306603 0.951837i \(-0.599192\pi\)
0.306603 0.951837i \(-0.400808\pi\)
\(158\) 3.83529 12.4130i 0.305120 0.987524i
\(159\) 2.42869 + 4.20661i 0.192608 + 0.333606i
\(160\) −5.64202 + 0.409467i −0.446040 + 0.0323712i
\(161\) 18.2768i 1.44042i
\(162\) −1.80230 + 0.410471i −0.141602 + 0.0322496i
\(163\) 1.04268 1.80598i 0.0816692 0.141455i −0.822298 0.569057i \(-0.807308\pi\)
0.903967 + 0.427602i \(0.140642\pi\)
\(164\) −0.379995 0.0288362i −0.0296726 0.00225173i
\(165\) 2.47778 + 1.43055i 0.192895 + 0.111368i
\(166\) −0.749045 + 2.42429i −0.0581372 + 0.188162i
\(167\) −13.6936 + 7.90603i −1.05965 + 0.611787i −0.925334 0.379152i \(-0.876216\pi\)
−0.134312 + 0.990939i \(0.542882\pi\)
\(168\) 8.13777 6.47089i 0.627843 0.499240i
\(169\) 12.9549 1.08212i 0.996530 0.0832398i
\(170\) 0.709967 + 0.765885i 0.0544520 + 0.0587407i
\(171\) 7.13786 + 12.3631i 0.545846 + 0.945433i
\(172\) −7.43550 15.4772i −0.566952 1.18013i
\(173\) 7.84473 + 4.52916i 0.596424 + 0.344345i 0.767633 0.640889i \(-0.221434\pi\)
−0.171210 + 0.985235i \(0.554768\pi\)
\(174\) −2.05175 2.21335i −0.155543 0.167794i
\(175\) −2.74313 1.58374i −0.207361 0.119720i
\(176\) 6.16312 7.69854i 0.464562 0.580299i
\(177\) 13.2880i 0.998786i
\(178\) 4.42198 + 19.4161i 0.331441 + 1.45530i
\(179\) −9.85005 + 5.68693i −0.736227 + 0.425061i −0.820696 0.571365i \(-0.806414\pi\)
0.0844689 + 0.996426i \(0.473081\pi\)
\(180\) 2.98039 1.43183i 0.222145 0.106722i
\(181\) 17.5350i 1.30337i 0.758490 + 0.651685i \(0.225937\pi\)
−0.758490 + 0.651685i \(0.774063\pi\)
\(182\) 11.3771 11.4638i 0.843326 0.849756i
\(183\) 5.40085 0.399242
\(184\) 15.1838 + 5.98395i 1.11937 + 0.441143i
\(185\) 1.35800 + 2.35212i 0.0998420 + 0.172931i
\(186\) −14.4961 + 3.30146i −1.06290 + 0.242075i
\(187\) −1.82059 −0.133135
\(188\) 9.29570 13.6068i 0.677959 0.992375i
\(189\) −8.55235 + 14.8131i −0.622092 + 1.07749i
\(190\) 8.30185 + 8.95571i 0.602280 + 0.649716i
\(191\) 0.345693 0.598758i 0.0250135 0.0433246i −0.853248 0.521506i \(-0.825370\pi\)
0.878261 + 0.478181i \(0.158704\pi\)
\(192\) 2.71145 + 8.87921i 0.195682 + 0.640802i
\(193\) 4.73055 2.73118i 0.340512 0.196595i −0.319986 0.947422i \(-0.603678\pi\)
0.660499 + 0.750827i \(0.270345\pi\)
\(194\) 17.7742 16.4765i 1.27611 1.18294i
\(195\) −3.53336 + 2.24125i −0.253029 + 0.160499i
\(196\) 0.459001 6.04857i 0.0327858 0.432041i
\(197\) 6.97854 + 12.0872i 0.497200 + 0.861176i 0.999995 0.00322997i \(-0.00102813\pi\)
−0.502795 + 0.864406i \(0.667695\pi\)
\(198\) −1.70162 + 5.50733i −0.120929 + 0.391389i
\(199\) −12.4653 + 21.5906i −0.883644 + 1.53052i −0.0363850 + 0.999338i \(0.511584\pi\)
−0.847259 + 0.531179i \(0.821749\pi\)
\(200\) 2.21384 1.76037i 0.156542 0.124477i
\(201\) 3.34664 + 1.93218i 0.236054 + 0.136286i
\(202\) 1.66377 + 7.30530i 0.117063 + 0.513999i
\(203\) −5.82481 −0.408821
\(204\) 0.966836 1.41523i 0.0676921 0.0990856i
\(205\) 0.165016 0.0952718i 0.0115252 0.00665407i
\(206\) 2.94979 9.54702i 0.205521 0.665172i
\(207\) −9.53944 −0.663037
\(208\) 5.79885 + 13.2050i 0.402078 + 0.915605i
\(209\) −21.2887 −1.47257
\(210\) −1.53461 + 4.96678i −0.105898 + 0.342741i
\(211\) −7.96783 + 4.60023i −0.548528 + 0.316693i −0.748528 0.663103i \(-0.769239\pi\)
0.200000 + 0.979796i \(0.435906\pi\)
\(212\) −4.72217 + 6.91217i −0.324320 + 0.474730i
\(213\) 4.35071 0.298106
\(214\) −3.71066 16.2928i −0.253656 1.11375i
\(215\) 7.43510 + 4.29266i 0.507070 + 0.292757i
\(216\) −9.50615 11.9549i −0.646812 0.813429i
\(217\) −14.3469 + 24.8495i −0.973929 + 1.68689i
\(218\) −1.30652 + 4.22858i −0.0884888 + 0.286395i
\(219\) 0.599347 + 1.03810i 0.0405001 + 0.0701483i
\(220\) −0.373106 + 4.91667i −0.0251548 + 0.331482i
\(221\) 1.23406 2.35928i 0.0830121 0.158702i
\(222\) 3.26898 3.03031i 0.219400 0.203381i
\(223\) 3.64597 2.10500i 0.244152 0.140961i −0.372932 0.927859i \(-0.621647\pi\)
0.617084 + 0.786898i \(0.288314\pi\)
\(224\) 16.1252 + 7.81229i 1.07741 + 0.521981i
\(225\) −0.826622 + 1.43175i −0.0551081 + 0.0954501i
\(226\) 18.6975 + 20.1701i 1.24374 + 1.34169i
\(227\) 4.37813 7.58314i 0.290587 0.503311i −0.683362 0.730080i \(-0.739483\pi\)
0.973949 + 0.226769i \(0.0728162\pi\)
\(228\) 11.3055 16.5486i 0.748724 1.09596i
\(229\) −22.6655 −1.49778 −0.748889 0.662696i \(-0.769412\pi\)
−0.748889 + 0.662696i \(0.769412\pi\)
\(230\) −7.95646 + 1.81207i −0.524634 + 0.119485i
\(231\) −4.53125 7.84835i −0.298134 0.516383i
\(232\) 1.90708 4.83906i 0.125206 0.317700i
\(233\) −16.3316 −1.06992 −0.534960 0.844877i \(-0.679673\pi\)
−0.534960 + 0.844877i \(0.679673\pi\)
\(234\) −5.98345 5.93818i −0.391150 0.388191i
\(235\) 8.23945i 0.537482i
\(236\) −20.6420 + 9.91673i −1.34368 + 0.645524i
\(237\) 9.23284 5.33059i 0.599738 0.346259i
\(238\) −0.734563 3.22533i −0.0476147 0.209067i
\(239\) 6.36009i 0.411400i −0.978615 0.205700i \(-0.934053\pi\)
0.978615 0.205700i \(-0.0659471\pi\)
\(240\) −3.62380 2.90106i −0.233915 0.187263i
\(241\) 10.6580 + 6.15341i 0.686543 + 0.396376i 0.802316 0.596900i \(-0.203601\pi\)
−0.115772 + 0.993276i \(0.536934\pi\)
\(242\) 4.73191 + 5.10460i 0.304178 + 0.328136i
\(243\) 12.7162 + 7.34171i 0.815745 + 0.470971i
\(244\) 4.03062 + 8.38985i 0.258034 + 0.537105i
\(245\) 1.51649 + 2.62664i 0.0968850 + 0.167810i
\(246\) −0.212595 0.229339i −0.0135545 0.0146221i
\(247\) 14.4303 27.5878i 0.918175 1.75537i
\(248\) −15.9469 20.0548i −1.01263 1.27348i
\(249\) −1.80320 + 1.04108i −0.114273 + 0.0659758i
\(250\) −0.417482 + 1.35119i −0.0264039 + 0.0854566i
\(251\) 6.06987 + 3.50444i 0.383127 + 0.221198i 0.679178 0.733974i \(-0.262337\pi\)
−0.296051 + 0.955172i \(0.595670\pi\)
\(252\) −10.4432 0.792495i −0.657862 0.0499225i
\(253\) 7.11286 12.3198i 0.447182 0.774541i
\(254\) 5.43031 1.23674i 0.340728 0.0776003i
\(255\) 0.856977i 0.0536660i
\(256\) −11.7697 + 10.8385i −0.735607 + 0.677409i
\(257\) 9.24502 + 16.0128i 0.576688 + 0.998854i 0.995856 + 0.0909446i \(0.0289886\pi\)
−0.419168 + 0.907909i \(0.637678\pi\)
\(258\) 4.15948 13.4622i 0.258958 0.838121i
\(259\) 8.60288i 0.534557i
\(260\) −6.11855 3.81620i −0.379456 0.236671i
\(261\) 3.04021i 0.188184i
\(262\) 13.0735 + 4.03937i 0.807681 + 0.249553i
\(263\) 13.1616 + 22.7966i 0.811581 + 1.40570i 0.911757 + 0.410730i \(0.134726\pi\)
−0.100176 + 0.994970i \(0.531941\pi\)
\(264\) 8.00371 1.19482i 0.492595 0.0735358i
\(265\) 4.18560i 0.257119i
\(266\) −8.58946 37.7147i −0.526653 2.31243i
\(267\) −8.17036 + 14.1515i −0.500018 + 0.866057i
\(268\) −0.503939 + 6.64074i −0.0307830 + 0.405648i
\(269\) 4.45389 + 2.57145i 0.271558 + 0.156784i 0.629596 0.776923i \(-0.283221\pi\)
−0.358037 + 0.933707i \(0.616554\pi\)
\(270\) 7.29652 + 2.25444i 0.444052 + 0.137201i
\(271\) 19.4600 11.2352i 1.18211 0.682493i 0.225610 0.974218i \(-0.427563\pi\)
0.956502 + 0.291725i \(0.0942293\pi\)
\(272\) 2.92000 + 0.445740i 0.177051 + 0.0270270i
\(273\) 13.2420 0.552089i 0.801443 0.0334139i
\(274\) −15.8701 + 14.7114i −0.958750 + 0.888751i
\(275\) −1.23270 2.13510i −0.0743348 0.128752i
\(276\) 5.79942 + 12.0717i 0.349084 + 0.726628i
\(277\) 4.75235 + 2.74377i 0.285541 + 0.164857i 0.635929 0.771747i \(-0.280617\pi\)
−0.350388 + 0.936605i \(0.613950\pi\)
\(278\) −9.15587 + 8.48739i −0.549133 + 0.509040i
\(279\) 12.9700 + 7.48823i 0.776493 + 0.448308i
\(280\) −8.86082 + 1.32277i −0.529535 + 0.0790504i
\(281\) 6.19365i 0.369482i 0.982787 + 0.184741i \(0.0591447\pi\)
−0.982787 + 0.184741i \(0.940855\pi\)
\(282\) 13.1849 3.00284i 0.785149 0.178817i
\(283\) −16.8496 + 9.72811i −1.00160 + 0.578276i −0.908722 0.417401i \(-0.862941\pi\)
−0.0928810 + 0.995677i \(0.529608\pi\)
\(284\) 3.24690 + 6.75852i 0.192668 + 0.401045i
\(285\) 10.0209i 0.593585i
\(286\) 12.1304 3.29974i 0.717283 0.195118i
\(287\) −0.603545 −0.0356261
\(288\) 4.07756 8.41644i 0.240273 0.495943i
\(289\) 8.22734 + 14.2502i 0.483961 + 0.838245i
\(290\) 0.577506 + 2.53572i 0.0339123 + 0.148902i
\(291\) 19.8882 1.16587
\(292\) −1.16533 + 1.70577i −0.0681956 + 0.0998227i
\(293\) 16.3593 28.3351i 0.955721 1.65536i 0.223011 0.974816i \(-0.428412\pi\)
0.732710 0.680541i \(-0.238255\pi\)
\(294\) 3.65051 3.38398i 0.212902 0.197358i
\(295\) 5.72512 9.91620i 0.333329 0.577343i
\(296\) 7.14700 + 2.81664i 0.415411 + 0.163714i
\(297\) −11.5297 + 6.65669i −0.669023 + 0.386260i
\(298\) −12.6543 13.6510i −0.733046 0.790782i
\(299\) 11.1438 + 17.5683i 0.644460 + 1.01600i
\(300\) 2.31434 + 0.175626i 0.133619 + 0.0101398i
\(301\) −13.5969 23.5506i −0.783715 1.35743i
\(302\) −23.3645 7.21903i −1.34447 0.415408i
\(303\) −3.07410 + 5.32450i −0.176603 + 0.305885i
\(304\) 34.1444 + 5.21217i 1.95831 + 0.298938i
\(305\) −4.03040 2.32695i −0.230780 0.133241i
\(306\) −1.68343 + 0.383399i −0.0962354 + 0.0219175i
\(307\) −21.1733 −1.20842 −0.604212 0.796824i \(-0.706512\pi\)
−0.604212 + 0.796824i \(0.706512\pi\)
\(308\) 8.81023 12.8961i 0.502009 0.734826i
\(309\) 7.10113 4.09984i 0.403969 0.233232i
\(310\) 12.2402 + 3.78190i 0.695195 + 0.214798i
\(311\) 17.0756 0.968271 0.484136 0.874993i \(-0.339134\pi\)
0.484136 + 0.874993i \(0.339134\pi\)
\(312\) −3.87686 + 11.1818i −0.219484 + 0.633045i
\(313\) −25.0633 −1.41666 −0.708330 0.705881i \(-0.750551\pi\)
−0.708330 + 0.705881i \(0.750551\pi\)
\(314\) 32.2299 + 9.95820i 1.81884 + 0.561974i
\(315\) 4.53506 2.61832i 0.255521 0.147525i
\(316\) 15.1711 + 10.3644i 0.853441 + 0.583043i
\(317\) 18.2387 1.02439 0.512195 0.858869i \(-0.328833\pi\)
0.512195 + 0.858869i \(0.328833\pi\)
\(318\) −6.69786 + 1.52543i −0.375597 + 0.0855418i
\(319\) −3.92632 2.26686i −0.219832 0.126920i
\(320\) 1.80218 7.79437i 0.100745 0.435718i
\(321\) 6.85608 11.8751i 0.382669 0.662802i
\(322\) 24.6954 + 7.63026i 1.37622 + 0.425218i
\(323\) −3.18827 5.52225i −0.177400 0.307266i
\(324\) 0.197805 2.60661i 0.0109892 0.144811i
\(325\) 3.60242 0.150193i 0.199826 0.00833121i
\(326\) 2.00492 + 2.16282i 0.111042 + 0.119788i
\(327\) −3.14524 + 1.81590i −0.173932 + 0.100420i
\(328\) 0.197604 0.501405i 0.0109109 0.0276855i
\(329\) 13.0492 22.6018i 0.719424 1.24608i
\(330\) −2.96737 + 2.75072i −0.163348 + 0.151422i
\(331\) 13.4517 23.2990i 0.739371 1.28063i −0.213409 0.976963i \(-0.568457\pi\)
0.952779 0.303664i \(-0.0982101\pi\)
\(332\) −2.96296 2.02420i −0.162614 0.111092i
\(333\) −4.49020 −0.246062
\(334\) −4.96567 21.8033i −0.271710 1.19302i
\(335\) −1.66496 2.88379i −0.0909664 0.157558i
\(336\) 5.34601 + 13.6971i 0.291649 + 0.747241i
\(337\) 3.00972 0.163950 0.0819750 0.996634i \(-0.473877\pi\)
0.0819750 + 0.996634i \(0.473877\pi\)
\(338\) −3.94629 + 17.9562i −0.214650 + 0.976691i
\(339\) 22.5690i 1.22578i
\(340\) −1.33125 + 0.639556i −0.0721974 + 0.0346848i
\(341\) −19.3415 + 11.1668i −1.04740 + 0.604718i
\(342\) −19.6849 + 4.48320i −1.06443 + 0.242424i
\(343\) 12.5655i 0.678472i
\(344\) 24.0168 3.58529i 1.29490 0.193306i
\(345\) −5.79911 3.34812i −0.312213 0.180256i
\(346\) −9.39478 + 8.70886i −0.505066 + 0.468191i
\(347\) −2.24508 1.29620i −0.120522 0.0695836i 0.438527 0.898718i \(-0.355500\pi\)
−0.559049 + 0.829134i \(0.688834\pi\)
\(348\) 3.84722 1.84827i 0.206233 0.0990776i
\(349\) −9.78948 16.9559i −0.524019 0.907627i −0.999609 0.0279603i \(-0.991099\pi\)
0.475590 0.879667i \(-0.342235\pi\)
\(350\) 3.28514 3.04529i 0.175598 0.162778i
\(351\) −0.811054 19.4534i −0.0432909 1.03834i
\(352\) 7.82918 + 11.5415i 0.417297 + 0.615166i
\(353\) −4.69869 + 2.71279i −0.250086 + 0.144387i −0.619804 0.784757i \(-0.712788\pi\)
0.369718 + 0.929144i \(0.379454\pi\)
\(354\) −17.9546 5.54750i −0.954274 0.294846i
\(355\) −3.24673 1.87450i −0.172319 0.0994881i
\(356\) −28.0808 2.13094i −1.48828 0.112940i
\(357\) 1.35723 2.35079i 0.0718323 0.124417i
\(358\) −3.57188 15.6835i −0.188780 0.828896i
\(359\) 24.1177i 1.27288i 0.771325 + 0.636442i \(0.219594\pi\)
−0.771325 + 0.636442i \(0.780406\pi\)
\(360\) 0.690407 + 4.62483i 0.0363876 + 0.243750i
\(361\) −27.7814 48.1188i −1.46218 2.53257i
\(362\) −23.6931 7.32057i −1.24528 0.384761i
\(363\) 5.71172i 0.299787i
\(364\) 10.7401 + 20.1585i 0.562932 + 1.05659i
\(365\) 1.03291i 0.0540652i
\(366\) −2.25476 + 7.29757i −0.117858 + 0.381450i
\(367\) −1.11654 1.93390i −0.0582827 0.100949i 0.835412 0.549624i \(-0.185229\pi\)
−0.893695 + 0.448676i \(0.851896\pi\)
\(368\) −14.4244 + 18.0180i −0.751925 + 0.939252i
\(369\) 0.315015i 0.0163990i
\(370\) −3.74510 + 0.852941i −0.194698 + 0.0443423i
\(371\) −6.62892 + 11.4816i −0.344156 + 0.596096i
\(372\) 1.59097 20.9652i 0.0824877 1.08700i
\(373\) −11.6773 6.74188i −0.604627 0.349082i 0.166233 0.986087i \(-0.446840\pi\)
−0.770860 + 0.637005i \(0.780173\pi\)
\(374\) 0.760066 2.45996i 0.0393021 0.127202i
\(375\) −1.00502 + 0.580249i −0.0518991 + 0.0299639i
\(376\) 14.5045 + 18.2408i 0.748012 + 0.940698i
\(377\) 5.59900 3.55150i 0.288363 0.182912i
\(378\) −16.4448 17.7400i −0.845830 0.912449i
\(379\) 3.05975 + 5.29964i 0.157169 + 0.272224i 0.933847 0.357674i \(-0.116430\pi\)
−0.776678 + 0.629898i \(0.783097\pi\)
\(380\) −15.5667 + 7.47851i −0.798556 + 0.383639i
\(381\) 3.95791 + 2.28510i 0.202770 + 0.117069i
\(382\) 0.664714 + 0.717068i 0.0340097 + 0.0366884i
\(383\) 18.3627 + 10.6017i 0.938292 + 0.541723i 0.889424 0.457082i \(-0.151106\pi\)
0.0488673 + 0.998805i \(0.484439\pi\)
\(384\) −13.1295 0.0432384i −0.670010 0.00220650i
\(385\) 7.80914i 0.397991i
\(386\) 1.71542 + 7.53208i 0.0873126 + 0.383373i
\(387\) −12.2920 + 7.09681i −0.624840 + 0.360751i
\(388\) 14.8424 + 30.8949i 0.753510 + 1.56845i
\(389\) 8.17552i 0.414515i 0.978286 + 0.207258i \(0.0664539\pi\)
−0.978286 + 0.207258i \(0.933546\pi\)
\(390\) −1.55323 5.70991i −0.0786510 0.289133i
\(391\) 4.26099 0.215488
\(392\) 7.98113 + 3.14537i 0.403108 + 0.158865i
\(393\) 5.61422 + 9.72411i 0.283200 + 0.490517i
\(394\) −19.2455 + 4.38313i −0.969573 + 0.220819i
\(395\) −9.18672 −0.462234
\(396\) −6.73104 4.59843i −0.338247 0.231080i
\(397\) 1.33438 2.31122i 0.0669707 0.115997i −0.830596 0.556876i \(-0.812000\pi\)
0.897566 + 0.440879i \(0.145333\pi\)
\(398\) −23.9689 25.8567i −1.20145 1.29608i
\(399\) 15.8705 27.4885i 0.794519 1.37615i
\(400\) 1.45435 + 3.72624i 0.0727177 + 0.186312i
\(401\) 7.61683 4.39758i 0.380367 0.219605i −0.297611 0.954687i \(-0.596190\pi\)
0.677978 + 0.735082i \(0.262857\pi\)
\(402\) −4.00790 + 3.71528i −0.199896 + 0.185301i
\(403\) −1.36057 32.6337i −0.0677749 1.62560i
\(404\) −10.5654 0.801767i −0.525650 0.0398894i
\(405\) 0.653525 + 1.13194i 0.0324739 + 0.0562465i
\(406\) 2.43176 7.87041i 0.120686 0.390602i
\(407\) 3.34801 5.79893i 0.165955 0.287442i
\(408\) 1.50860 + 1.89721i 0.0746867 + 0.0939258i
\(409\) 8.07460 + 4.66187i 0.399263 + 0.230515i 0.686166 0.727445i \(-0.259292\pi\)
−0.286903 + 0.957960i \(0.592626\pi\)
\(410\) 0.0598390 + 0.262741i 0.00295524 + 0.0129759i
\(411\) −17.7577 −0.875921
\(412\) 11.6683 + 7.97143i 0.574858 + 0.392724i
\(413\) −31.4094 + 18.1343i −1.54556 + 0.892328i
\(414\) 3.98255 12.8896i 0.195732 0.633488i
\(415\) 1.79420 0.0880736
\(416\) −20.2634 + 2.32246i −0.993496 + 0.113868i
\(417\) −10.2448 −0.501692
\(418\) 8.88766 28.7650i 0.434710 1.40694i
\(419\) 30.8485 17.8104i 1.50705 0.870094i 0.507081 0.861898i \(-0.330724\pi\)
0.999966 0.00819632i \(-0.00260900\pi\)
\(420\) −6.07038 4.14709i −0.296204 0.202357i
\(421\) −0.743378 −0.0362300 −0.0181150 0.999836i \(-0.505767\pi\)
−0.0181150 + 0.999836i \(0.505767\pi\)
\(422\) −2.88934 12.6865i −0.140651 0.617571i
\(423\) −11.7968 6.81091i −0.573582 0.331158i
\(424\) −7.36821 9.26625i −0.357832 0.450009i
\(425\) 0.369228 0.639522i 0.0179102 0.0310214i
\(426\) −1.81634 + 5.87862i −0.0880022 + 0.284820i
\(427\) 7.37060 + 12.7663i 0.356688 + 0.617802i
\(428\) 23.5638 + 1.78816i 1.13900 + 0.0864339i
\(429\) 9.14088 + 4.78129i 0.441326 + 0.230843i
\(430\) −8.90422 + 8.25411i −0.429399 + 0.398049i
\(431\) 11.7483 6.78289i 0.565896 0.326720i −0.189612 0.981859i \(-0.560723\pi\)
0.755509 + 0.655139i \(0.227390\pi\)
\(432\) 20.1220 7.85363i 0.968120 0.377858i
\(433\) −12.9676 + 22.4605i −0.623182 + 1.07938i 0.365707 + 0.930730i \(0.380827\pi\)
−0.988889 + 0.148653i \(0.952506\pi\)
\(434\) −27.5868 29.7595i −1.32421 1.42850i
\(435\) −1.06704 + 1.84817i −0.0511607 + 0.0886129i
\(436\) −5.16815 3.53071i −0.247510 0.169090i
\(437\) 49.8250 2.38345
\(438\) −1.65288 + 0.376442i −0.0789779 + 0.0179871i
\(439\) 1.85839 + 3.21883i 0.0886962 + 0.153626i 0.906960 0.421216i \(-0.138397\pi\)
−0.818264 + 0.574843i \(0.805063\pi\)
\(440\) −6.48758 2.55676i −0.309283 0.121889i
\(441\) −5.01426 −0.238774
\(442\) 2.67263 + 2.65241i 0.127124 + 0.126162i
\(443\) 1.77030i 0.0841096i −0.999115 0.0420548i \(-0.986610\pi\)
0.999115 0.0420548i \(-0.0133904\pi\)
\(444\) 2.72978 + 5.68211i 0.129550 + 0.269661i
\(445\) 12.1943 7.04039i 0.578066 0.333747i
\(446\) 1.32212 + 5.80519i 0.0626043 + 0.274884i
\(447\) 15.2746i 0.722464i
\(448\) −17.2879 + 18.5267i −0.816775 + 0.875306i
\(449\) −24.6942 14.2572i −1.16539 0.672838i −0.212800 0.977096i \(-0.568258\pi\)
−0.952590 + 0.304258i \(0.901592\pi\)
\(450\) −1.58946 1.71465i −0.0749281 0.0808295i
\(451\) −0.406830 0.234884i −0.0191569 0.0110602i
\(452\) −35.0594 + 16.8431i −1.64906 + 0.792234i
\(453\) −10.0336 17.3786i −0.471418 0.816519i
\(454\) 8.41846 + 9.08151i 0.395098 + 0.426216i
\(455\) −10.1198 5.29332i −0.474422 0.248154i
\(456\) 17.6405 + 22.1846i 0.826091 + 1.03889i
\(457\) −27.5901 + 15.9291i −1.29061 + 0.745133i −0.978762 0.204999i \(-0.934281\pi\)
−0.311846 + 0.950133i \(0.600947\pi\)
\(458\) 9.46244 30.6253i 0.442151 1.43103i
\(459\) −3.45347 1.99386i −0.161194 0.0930654i
\(460\) 0.873233 11.5072i 0.0407147 0.536525i
\(461\) −4.12121 + 7.13815i −0.191944 + 0.332457i −0.945894 0.324474i \(-0.894813\pi\)
0.753950 + 0.656931i \(0.228146\pi\)
\(462\) 12.4963 2.84602i 0.581381 0.132409i
\(463\) 13.2846i 0.617390i −0.951161 0.308695i \(-0.900108\pi\)
0.951161 0.308695i \(-0.0998922\pi\)
\(464\) 5.74231 + 4.59705i 0.266580 + 0.213413i
\(465\) 5.25638 + 9.10431i 0.243759 + 0.422202i
\(466\) 6.81817 22.0671i 0.315846 1.02224i
\(467\) 3.38808i 0.156782i 0.996923 + 0.0783909i \(0.0249782\pi\)
−0.996923 + 0.0783909i \(0.975022\pi\)
\(468\) 10.5216 5.60568i 0.486360 0.259123i
\(469\) 10.5475i 0.487037i
\(470\) −11.1330 3.43983i −0.513529 0.158667i
\(471\) 13.8407 + 23.9727i 0.637744 + 1.10461i
\(472\) −4.78171 32.0312i −0.220096 1.47436i
\(473\) 21.1663i 0.973227i
\(474\) 3.34807 + 14.7007i 0.153782 + 0.675227i
\(475\) 4.31749 7.47811i 0.198100 0.343119i
\(476\) 4.66469 + 0.353984i 0.213806 + 0.0162248i
\(477\) 5.99274 + 3.45991i 0.274389 + 0.158418i
\(478\) 8.59368 + 2.65523i 0.393066 + 0.121447i
\(479\) −29.5093 + 17.0372i −1.34832 + 0.778450i −0.988011 0.154385i \(-0.950660\pi\)
−0.360304 + 0.932835i \(0.617327\pi\)
\(480\) 5.43275 3.68530i 0.247970 0.168210i
\(481\) 5.24535 + 8.26937i 0.239168 + 0.377051i
\(482\) −12.7639 + 11.8320i −0.581382 + 0.538935i
\(483\) 10.6051 + 18.3686i 0.482550 + 0.835800i
\(484\) −8.87275 + 4.26261i −0.403307 + 0.193755i
\(485\) −14.8416 8.56882i −0.673924 0.389090i
\(486\) −15.2288 + 14.1170i −0.690793 + 0.640358i
\(487\) 8.92075 + 5.15040i 0.404238 + 0.233387i 0.688311 0.725416i \(-0.258352\pi\)
−0.284073 + 0.958803i \(0.591686\pi\)
\(488\) −13.0190 + 1.94351i −0.589341 + 0.0879784i
\(489\) 2.42006i 0.109439i
\(490\) −4.18219 + 0.952488i −0.188932 + 0.0430290i
\(491\) −8.22556 + 4.74903i −0.371214 + 0.214321i −0.673989 0.738742i \(-0.735420\pi\)
0.302774 + 0.953062i \(0.402087\pi\)
\(492\) 0.398635 0.191510i 0.0179718 0.00863396i
\(493\) 1.35797i 0.0611600i
\(494\) 31.2519 + 31.0154i 1.40609 + 1.39545i
\(495\) 4.07592 0.183199
\(496\) 33.7554 13.1747i 1.51566 0.591564i
\(497\) 5.93746 + 10.2840i 0.266331 + 0.461299i
\(498\) −0.653889 2.87110i −0.0293015 0.128657i
\(499\) −23.3056 −1.04330 −0.521652 0.853158i \(-0.674684\pi\)
−0.521652 + 0.853158i \(0.674684\pi\)
\(500\) −1.65142 1.12819i −0.0738536 0.0504544i
\(501\) 9.17493 15.8914i 0.409906 0.709978i
\(502\) −7.26922 + 6.73849i −0.324441 + 0.300754i
\(503\) −7.62610 + 13.2088i −0.340031 + 0.588951i −0.984438 0.175732i \(-0.943771\pi\)
0.644407 + 0.764682i \(0.277104\pi\)
\(504\) 5.43068 13.7799i 0.241902 0.613806i
\(505\) 4.58812 2.64895i 0.204169 0.117877i
\(506\) 13.6769 + 14.7541i 0.608013 + 0.655901i
\(507\) −12.3920 + 8.60461i −0.550349 + 0.382144i
\(508\) −0.595984 + 7.85368i −0.0264425 + 0.348451i
\(509\) −9.44807 16.3645i −0.418778 0.725346i 0.577038 0.816717i \(-0.304208\pi\)
−0.995817 + 0.0913714i \(0.970875\pi\)
\(510\) −1.15794 0.357773i −0.0512743 0.0158424i
\(511\) −1.63587 + 2.83341i −0.0723667 + 0.125343i
\(512\) −9.73126 20.4280i −0.430065 0.902798i
\(513\) −40.3824 23.3148i −1.78293 1.02937i
\(514\) −25.4960 + 5.80667i −1.12458 + 0.256121i
\(515\) −7.06565 −0.311350
\(516\) 16.4535 + 11.2405i 0.724324 + 0.494835i
\(517\) 17.5921 10.1568i 0.773698 0.446695i
\(518\) 11.6241 + 3.59155i 0.510734 + 0.157804i
\(519\) −10.5122 −0.461432
\(520\) 7.71079 6.67411i 0.338141 0.292679i
\(521\) 4.53269 0.198581 0.0992904 0.995058i \(-0.468343\pi\)
0.0992904 + 0.995058i \(0.468343\pi\)
\(522\) −4.10790 1.26923i −0.179798 0.0555529i
\(523\) 23.1340 13.3564i 1.01158 0.584036i 0.0999260 0.994995i \(-0.468139\pi\)
0.911654 + 0.410959i \(0.134806\pi\)
\(524\) −10.9159 + 15.9783i −0.476863 + 0.698017i
\(525\) 3.67586 0.160428
\(526\) −36.2973 + 8.26665i −1.58264 + 0.360443i
\(527\) −5.79332 3.34477i −0.252361 0.145701i
\(528\) −1.72699 + 11.3133i −0.0751576 + 0.492350i
\(529\) −5.14723 + 8.91527i −0.223793 + 0.387620i
\(530\) 5.65553 + 1.74741i 0.245661 + 0.0759028i
\(531\) 9.46502 + 16.3939i 0.410747 + 0.711435i
\(532\) 54.5455 + 4.13924i 2.36485 + 0.179459i
\(533\) 0.580147 0.367993i 0.0251289 0.0159396i
\(534\) −15.7103 16.9477i −0.679852 0.733398i
\(535\) −10.2327 + 5.90788i −0.442400 + 0.255420i
\(536\) −8.76250 3.45331i −0.378483 0.149160i
\(537\) 6.59967 11.4310i 0.284797 0.493282i
\(538\) −5.33394 + 4.94450i −0.229962 + 0.213173i
\(539\) 3.73876 6.47573i 0.161040 0.278929i
\(540\) −6.09234 + 8.91778i −0.262173 + 0.383760i
\(541\) 10.6452 0.457674 0.228837 0.973465i \(-0.426508\pi\)
0.228837 + 0.973465i \(0.426508\pi\)
\(542\) 7.05671 + 30.9847i 0.303112 + 1.33090i
\(543\) −10.1747 17.6231i −0.436638 0.756279i
\(544\) −1.82133 + 3.75938i −0.0780887 + 0.161182i
\(545\) 3.12953 0.134054
\(546\) −4.78233 + 18.1229i −0.204665 + 0.775590i
\(547\) 18.7968i 0.803695i −0.915707 0.401847i \(-0.868368\pi\)
0.915707 0.401847i \(-0.131632\pi\)
\(548\) −13.2524 27.5853i −0.566115 1.17839i
\(549\) 6.66324 3.84702i 0.284380 0.164187i
\(550\) 3.39956 0.774244i 0.144958 0.0330139i
\(551\) 15.8792i 0.676475i
\(552\) −18.7322 + 2.79640i −0.797296 + 0.119022i
\(553\) 25.2003 + 14.5494i 1.07163 + 0.618704i
\(554\) −5.69137 + 5.27584i −0.241803 + 0.224149i
\(555\) −2.72963 1.57595i −0.115866 0.0668955i
\(556\) −7.64565 15.9146i −0.324248 0.674931i
\(557\) −10.6352 18.4206i −0.450626 0.780508i 0.547799 0.836610i \(-0.315466\pi\)
−0.998425 + 0.0561026i \(0.982133\pi\)
\(558\) −15.5327 + 14.3987i −0.657554 + 0.609545i
\(559\) 27.4291 + 14.3473i 1.16013 + 0.606825i
\(560\) 1.91193 12.5249i 0.0807939 0.529272i
\(561\) 1.82973 1.05640i 0.0772514 0.0446011i
\(562\) −8.36879 2.58574i −0.353016 0.109073i
\(563\) 20.4572 + 11.8110i 0.862168 + 0.497773i 0.864738 0.502224i \(-0.167485\pi\)
−0.00256999 + 0.999997i \(0.500818\pi\)
\(564\) −1.44706 + 19.0689i −0.0609322 + 0.802945i
\(565\) 9.72386 16.8422i 0.409086 0.708557i
\(566\) −6.11010 26.8283i −0.256826 1.12768i
\(567\) 4.14007i 0.173866i
\(568\) −10.4876 + 1.56561i −0.440048 + 0.0656915i
\(569\) −15.0749 26.1106i −0.631974 1.09461i −0.987148 0.159811i \(-0.948911\pi\)
0.355173 0.934800i \(-0.384422\pi\)
\(570\) −13.5401 4.18354i −0.567131 0.175229i
\(571\) 6.49912i 0.271980i 0.990710 + 0.135990i \(0.0434215\pi\)
−0.990710 + 0.135990i \(0.956579\pi\)
\(572\) −0.605636 + 17.7680i −0.0253229 + 0.742916i
\(573\) 0.802353i 0.0335188i
\(574\) 0.251969 0.815502i 0.0105170 0.0340384i
\(575\) 2.88507 + 4.99708i 0.120316 + 0.208393i
\(576\) 9.66988 + 9.02327i 0.402912 + 0.375969i
\(577\) 4.08088i 0.169889i −0.996386 0.0849446i \(-0.972929\pi\)
0.996386 0.0849446i \(-0.0270713\pi\)
\(578\) −22.6894 + 5.16749i −0.943756 + 0.214939i
\(579\) −3.16953 + 5.48979i −0.131721 + 0.228148i
\(580\) −3.66733 0.278299i −0.152278 0.0115557i
\(581\) −4.92170 2.84155i −0.204187 0.117887i
\(582\) −8.30297 + 26.8727i −0.344169 + 1.11391i
\(583\) −8.93668 + 5.15960i −0.370120 + 0.213689i
\(584\) −1.81831 2.28671i −0.0752423 0.0946245i
\(585\) −2.76280 + 5.28193i −0.114228 + 0.218381i
\(586\) 31.4564 + 33.9339i 1.29945 + 1.40180i
\(587\) −7.83029 13.5625i −0.323191 0.559783i 0.657954 0.753058i \(-0.271422\pi\)
−0.981145 + 0.193275i \(0.938089\pi\)
\(588\) 3.04837 + 6.34527i 0.125713 + 0.261675i
\(589\) −67.7429 39.1114i −2.79130 1.61156i
\(590\) 11.0085 + 11.8756i 0.453213 + 0.488909i
\(591\) −14.0271 8.09858i −0.577000 0.333131i
\(592\) −6.78955 + 8.48104i −0.279049 + 0.348569i
\(593\) 35.5283i 1.45897i 0.683996 + 0.729486i \(0.260241\pi\)
−0.683996 + 0.729486i \(0.739759\pi\)
\(594\) −4.18098 18.3579i −0.171548 0.753233i
\(595\) −2.02568 + 1.16953i −0.0830447 + 0.0479459i
\(596\) 23.7280 11.3993i 0.971939 0.466935i
\(597\) 28.9320i 1.18411i
\(598\) −28.3904 + 7.72286i −1.16097 + 0.315811i
\(599\) 15.0781 0.616075 0.308037 0.951374i \(-0.400328\pi\)
0.308037 + 0.951374i \(0.400328\pi\)
\(600\) −1.20350 + 3.05379i −0.0491327 + 0.124670i
\(601\) −9.78938 16.9557i −0.399317 0.691637i 0.594325 0.804225i \(-0.297419\pi\)
−0.993642 + 0.112588i \(0.964086\pi\)
\(602\) 37.4978 8.54006i 1.52830 0.348067i
\(603\) 5.50517 0.224188
\(604\) 19.5085 28.5560i 0.793791 1.16193i
\(605\) 2.46089 4.26239i 0.100049 0.173291i
\(606\) −5.91102 6.37658i −0.240119 0.259031i
\(607\) 12.4880 21.6299i 0.506874 0.877932i −0.493094 0.869976i \(-0.664134\pi\)
0.999968 0.00795583i \(-0.00253244\pi\)
\(608\) −21.2973 + 43.9595i −0.863719 + 1.78279i
\(609\) 5.85405 3.37984i 0.237218 0.136958i
\(610\) 4.82677 4.47437i 0.195430 0.181162i
\(611\) 1.23751 + 29.6820i 0.0500642 + 1.20080i
\(612\) 0.184759 2.43470i 0.00746844 0.0984167i
\(613\) −5.34922 9.26513i −0.216053 0.374215i 0.737545 0.675298i \(-0.235985\pi\)
−0.953598 + 0.301083i \(0.902652\pi\)
\(614\) 8.83948 28.6091i 0.356733 1.15457i
\(615\) −0.110563 + 0.191500i −0.00445832 + 0.00772204i
\(616\) 13.7470 + 17.2882i 0.553882 + 0.696561i
\(617\) 17.2769 + 9.97481i 0.695541 + 0.401571i 0.805685 0.592345i \(-0.201798\pi\)
−0.110143 + 0.993916i \(0.535131\pi\)
\(618\) 2.57505 + 11.3066i 0.103584 + 0.454817i
\(619\) 14.3270 0.575850 0.287925 0.957653i \(-0.407035\pi\)
0.287925 + 0.957653i \(0.407035\pi\)
\(620\) −10.2201 + 14.9599i −0.410450 + 0.600804i
\(621\) 26.9847 15.5796i 1.08286 0.625188i
\(622\) −7.12878 + 23.0724i −0.285838 + 0.925119i
\(623\) −44.6007 −1.78689
\(624\) −13.4902 9.90657i −0.540040 0.396580i
\(625\) 1.00000 0.0400000
\(626\) 10.4635 33.8652i 0.418205 1.35353i
\(627\) 21.3956 12.3528i 0.854458 0.493321i
\(628\) −26.9108 + 39.3912i −1.07386 + 1.57188i
\(629\) 2.00564 0.0799702
\(630\) 1.64453 + 7.22081i 0.0655196 + 0.287684i
\(631\) 21.3141 + 12.3057i 0.848500 + 0.489882i 0.860145 0.510050i \(-0.170373\pi\)
−0.0116443 + 0.999932i \(0.503707\pi\)
\(632\) −20.3379 + 16.1721i −0.808999 + 0.643290i
\(633\) 5.33855 9.24665i 0.212188 0.367521i
\(634\) −7.61435 + 24.6440i −0.302405 + 0.978737i
\(635\) −1.96907 3.41052i −0.0781400 0.135342i
\(636\) 0.735100 9.68691i 0.0291486 0.384111i
\(637\) 5.85754 + 9.23449i 0.232084 + 0.365884i
\(638\) 4.70212 4.35882i 0.186159 0.172567i
\(639\) 5.36764 3.09901i 0.212340 0.122595i
\(640\) 9.77928 + 5.68909i 0.386560 + 0.224881i
\(641\) −10.8642 + 18.8174i −0.429112 + 0.743243i −0.996795 0.0800040i \(-0.974507\pi\)
0.567683 + 0.823247i \(0.307840\pi\)
\(642\) 13.1832 + 14.2215i 0.520298 + 0.561278i
\(643\) −8.88679 + 15.3924i −0.350461 + 0.607016i −0.986330 0.164781i \(-0.947308\pi\)
0.635869 + 0.771797i \(0.280642\pi\)
\(644\) −20.6198 + 30.1827i −0.812535 + 1.18936i
\(645\) −9.96325 −0.392302
\(646\) 8.79265 2.00251i 0.345942 0.0787878i
\(647\) 19.8313 + 34.3488i 0.779649 + 1.35039i 0.932144 + 0.362088i \(0.117936\pi\)
−0.152495 + 0.988304i \(0.548731\pi\)
\(648\) 3.43943 + 1.35548i 0.135114 + 0.0532484i
\(649\) −28.2295 −1.10810
\(650\) −1.30101 + 4.93025i −0.0510298 + 0.193380i
\(651\) 33.2990i 1.30509i
\(652\) −3.75940 + 1.80608i −0.147229 + 0.0707314i
\(653\) −11.7391 + 6.77755i −0.459385 + 0.265226i −0.711785 0.702397i \(-0.752113\pi\)
0.252401 + 0.967623i \(0.418780\pi\)
\(654\) −1.14055 5.00792i −0.0445989 0.195825i
\(655\) 9.67553i 0.378054i
\(656\) 0.594997 + 0.476328i 0.0232307 + 0.0185975i
\(657\) 1.47888 + 0.853829i 0.0576964 + 0.0333111i
\(658\) 25.0915 + 27.0678i 0.978169 + 1.05521i
\(659\) 1.49368 + 0.862377i 0.0581856 + 0.0335934i 0.528811 0.848740i \(-0.322638\pi\)
−0.470625 + 0.882333i \(0.655972\pi\)
\(660\) −2.47792 5.15785i −0.0964527 0.200769i
\(661\) 12.9412 + 22.4148i 0.503355 + 0.871836i 0.999992 + 0.00387783i \(0.00123436\pi\)
−0.496638 + 0.867958i \(0.665432\pi\)
\(662\) 25.8655 + 27.9026i 1.00529 + 1.08447i
\(663\) 0.128712 + 3.08719i 0.00499875 + 0.119897i
\(664\) 3.97206 3.15845i 0.154146 0.122572i
\(665\) −23.6868 + 13.6756i −0.918535 + 0.530317i
\(666\) 1.87458 6.06711i 0.0726386 0.235096i
\(667\) 9.18932 + 5.30546i 0.355812 + 0.205428i
\(668\) 31.5335 + 2.39294i 1.22007 + 0.0925858i
\(669\) −2.44285 + 4.23114i −0.0944460 + 0.163585i
\(670\) 4.59164 1.04574i 0.177390 0.0404004i
\(671\) 11.4738i 0.442940i
\(672\) −20.7393 + 1.50514i −0.800035 + 0.0580622i
\(673\) −6.92986 12.0029i −0.267127 0.462677i 0.700992 0.713169i \(-0.252741\pi\)
−0.968119 + 0.250492i \(0.919408\pi\)
\(674\) −1.25651 + 4.06670i −0.0483988 + 0.156643i
\(675\) 5.40008i 0.207849i
\(676\) −22.6148 12.8286i −0.869798 0.493408i
\(677\) 32.0465i 1.23165i 0.787884 + 0.615823i \(0.211176\pi\)
−0.787884 + 0.615823i \(0.788824\pi\)
\(678\) −30.4950 9.42218i −1.17115 0.361857i
\(679\) 27.1416 + 47.0107i 1.04160 + 1.80410i
\(680\) −0.308385 2.06578i −0.0118260 0.0792189i
\(681\) 10.1616i 0.389394i
\(682\) −7.01374 30.7960i −0.268570 1.17924i
\(683\) 4.02679 6.97461i 0.154081 0.266876i −0.778643 0.627467i \(-0.784092\pi\)
0.932724 + 0.360591i \(0.117425\pi\)
\(684\) 2.16044 28.4696i 0.0826065 1.08856i
\(685\) 13.2517 + 7.65088i 0.506322 + 0.292325i
\(686\) −16.9783 5.24587i −0.648236 0.200288i
\(687\) 22.7793 13.1516i 0.869084 0.501766i
\(688\) −5.18220 + 33.9480i −0.197569 + 1.29426i
\(689\) −0.628647 15.0783i −0.0239496 0.574437i
\(690\) 6.94496 6.43790i 0.264390 0.245087i
\(691\) 9.06234 + 15.6964i 0.344748 + 0.597121i 0.985308 0.170787i \(-0.0546311\pi\)
−0.640560 + 0.767908i \(0.721298\pi\)
\(692\) −7.84515 16.3299i −0.298228 0.620770i
\(693\) −11.1807 6.45521i −0.424722 0.245213i
\(694\) 2.68869 2.49239i 0.102061 0.0946097i
\(695\) 7.64524 + 4.41398i 0.290000 + 0.167432i
\(696\) 0.891208 + 5.96994i 0.0337812 + 0.226290i
\(697\) 0.140708i 0.00532970i
\(698\) 26.9975 6.14864i 1.02187 0.232730i
\(699\) 16.4136 9.47641i 0.620820 0.358431i
\(700\) 2.74327 + 5.71020i 0.103686 + 0.215825i
\(701\) 0.168502i 0.00636422i −0.999995 0.00318211i \(-0.998987\pi\)
0.999995 0.00318211i \(-0.00101290\pi\)
\(702\) 26.6238 + 7.02555i 1.00485 + 0.265162i
\(703\) 23.4526 0.884530
\(704\) −18.8633 + 5.76030i −0.710938 + 0.217100i
\(705\) −4.78093 8.28082i −0.180060 0.311874i
\(706\) −1.70387 7.48135i −0.0641258 0.281564i
\(707\) −16.7810 −0.631116
\(708\) 14.9914 21.9440i 0.563412 0.824706i
\(709\) 13.2652 22.9759i 0.498184 0.862879i −0.501814 0.864975i \(-0.667334\pi\)
0.999998 + 0.00209603i \(0.000667187\pi\)
\(710\) 3.88825 3.60437i 0.145924 0.135270i
\(711\) 7.59395 13.1531i 0.284795 0.493280i
\(712\) 14.6026 37.0529i 0.547254 1.38861i
\(713\) 45.2677 26.1353i 1.69529 0.978776i
\(714\) 2.60974 + 2.81529i 0.0976672 + 0.105360i
\(715\) −4.76139 7.50640i −0.178066 0.280723i
\(716\) 22.6825 + 1.72128i 0.847684 + 0.0643273i
\(717\) 3.69044 + 6.39203i 0.137822 + 0.238715i
\(718\) −32.5875 10.0687i −1.21616 0.375761i
\(719\) 19.5787 33.9113i 0.730163 1.26468i −0.226651 0.973976i \(-0.572778\pi\)
0.956813 0.290703i \(-0.0938890\pi\)
\(720\) −6.53725 0.997917i −0.243629 0.0371902i
\(721\) 19.3820 + 11.1902i 0.721822 + 0.416744i
\(722\) 76.6158 17.4491i 2.85134 0.649389i
\(723\) −14.2820 −0.531155
\(724\) 19.7829 28.9577i 0.735227 1.07620i
\(725\) 1.59257 0.919468i 0.0591464 0.0341482i
\(726\) −7.71760 2.38454i −0.286427 0.0884986i
\(727\) −18.8156 −0.697832 −0.348916 0.937154i \(-0.613450\pi\)
−0.348916 + 0.937154i \(0.613450\pi\)
\(728\) −31.7217 + 6.09600i −1.17569 + 0.225933i
\(729\) −20.9612 −0.776342
\(730\) 1.39566 + 0.431223i 0.0516557 + 0.0159603i
\(731\) 5.49050 3.16994i 0.203073 0.117244i
\(732\) −8.91906 6.09321i −0.329658 0.225212i
\(733\) 19.8512 0.733219 0.366610 0.930375i \(-0.380518\pi\)
0.366610 + 0.930375i \(0.380518\pi\)
\(734\) 3.07919 0.701281i 0.113655 0.0258848i
\(735\) −3.04821 1.75988i −0.112435 0.0649143i
\(736\) −18.3237 27.0123i −0.675422 0.995686i
\(737\) −4.10480 + 7.10972i −0.151202 + 0.261890i
\(738\) −0.425645 0.131513i −0.0156682 0.00484107i
\(739\) 21.9843 + 38.0780i 0.808707 + 1.40072i 0.913760 + 0.406255i \(0.133166\pi\)
−0.105052 + 0.994467i \(0.533501\pi\)
\(740\) 0.411030 5.41642i 0.0151098 0.199111i
\(741\) 1.50506 + 36.0994i 0.0552899 + 1.32614i
\(742\) −12.7464 13.7503i −0.467934 0.504789i
\(743\) −17.2021 + 9.93161i −0.631082 + 0.364356i −0.781171 0.624317i \(-0.785377\pi\)
0.150089 + 0.988673i \(0.452044\pi\)
\(744\) 27.6638 + 10.9023i 1.01420 + 0.399698i
\(745\) −6.58106 + 11.3987i −0.241111 + 0.417617i
\(746\) 13.9846 12.9636i 0.512013 0.474631i
\(747\) −1.48312 + 2.56884i −0.0542646 + 0.0939890i
\(748\) 3.00656 + 2.05398i 0.109931 + 0.0751010i
\(749\) 37.4263 1.36753
\(750\) −0.364447 1.60022i −0.0133077 0.0584316i
\(751\) −9.68597 16.7766i −0.353446 0.612186i 0.633405 0.773821i \(-0.281657\pi\)
−0.986851 + 0.161634i \(0.948324\pi\)
\(752\) −30.7021 + 11.9831i −1.11959 + 0.436978i
\(753\) −8.13379 −0.296412
\(754\) 2.46127 + 9.04798i 0.0896340 + 0.329508i
\(755\) 17.2918i 0.629313i
\(756\) 30.8355 14.8139i 1.12148 0.538776i
\(757\) −14.7095 + 8.49256i −0.534627 + 0.308667i −0.742899 0.669404i \(-0.766550\pi\)
0.208271 + 0.978071i \(0.433216\pi\)
\(758\) −8.43819 + 1.92179i −0.306489 + 0.0698024i
\(759\) 16.5089i 0.599236i
\(760\) −3.60603 24.1557i −0.130804 0.876220i
\(761\) 45.5367 + 26.2906i 1.65070 + 0.953035i 0.976783 + 0.214232i \(0.0687249\pi\)
0.673922 + 0.738803i \(0.264608\pi\)
\(762\) −4.73995 + 4.39389i −0.171710 + 0.159174i
\(763\) −8.58468 4.95637i −0.310786 0.179433i
\(764\) −1.24640 + 0.598790i −0.0450932 + 0.0216635i
\(765\) 0.610424 + 1.05729i 0.0220699 + 0.0382262i
\(766\) −21.9910 + 20.3855i −0.794569 + 0.736557i
\(767\) 19.1350 36.5822i 0.690923 1.32091i
\(768\) 5.53975 17.7223i 0.199898 0.639499i
\(769\) 42.8525 24.7409i 1.54530 0.892181i 0.546812 0.837255i