Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [520,2,Mod(101,520)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(520, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("520.101");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 520 = 2^{3} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 520.ca (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.15222090511\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 | −1.41395 | − | 0.0273420i | 2.80828 | − | 1.62136i | 1.99850 | + | 0.0773203i | 1.00000 | −4.01510 | + | 2.21574i | 3.76770 | + | 2.17528i | −2.82367 | − | 0.163970i | 3.75763 | − | 6.50841i | −1.41395 | − | 0.0273420i | ||
101.2 | −1.40794 | + | 0.133107i | −2.50839 | + | 1.44822i | 1.96456 | − | 0.374813i | 1.00000 | 3.33889 | − | 2.37289i | −2.08112 | − | 1.20154i | −2.71609 | + | 0.789211i | 2.69469 | − | 4.66734i | −1.40794 | + | 0.133107i | ||
101.3 | −1.35182 | − | 0.415447i | −0.855456 | + | 0.493898i | 1.65481 | + | 1.12321i | 1.00000 | 1.36161 | − | 0.312262i | −1.13840 | − | 0.657256i | −1.77036 | − | 2.20586i | −1.01213 | + | 1.75306i | −1.35182 | − | 0.415447i | ||
101.4 | −1.32269 | + | 0.500493i | 0.815452 | − | 0.470802i | 1.49901 | − | 1.32399i | 1.00000 | −0.842957 | + | 1.03085i | −2.82007 | − | 1.62817i | −1.32008 | + | 2.50148i | −1.05669 | + | 1.83024i | −1.32269 | + | 0.500493i | ||
101.5 | −1.30078 | + | 0.554941i | 0.176551 | − | 0.101932i | 1.38408 | − | 1.44372i | 1.00000 | −0.173088 | + | 0.230566i | 0.820502 | + | 0.473717i | −0.999213 | + | 2.64605i | −1.47922 | + | 2.56208i | −1.30078 | + | 0.554941i | ||
101.6 | −1.28768 | − | 0.584700i | 1.00895 | − | 0.582519i | 1.31625 | + | 1.50582i | 1.00000 | −1.63981 | + | 0.160165i | 0.786953 | + | 0.454347i | −0.814463 | − | 2.70863i | −0.821344 | + | 1.42261i | −1.28768 | − | 0.584700i | ||
101.7 | −1.13415 | − | 0.844810i | −1.79930 | + | 1.03883i | 0.572591 | + | 1.91628i | 1.00000 | 2.91828 | + | 0.341882i | 3.65440 | + | 2.10987i | 0.969491 | − | 2.65708i | 0.658316 | − | 1.14024i | −1.13415 | − | 0.844810i | ||
101.8 | −0.902585 | − | 1.08873i | 2.26293 | − | 1.30650i | −0.370681 | + | 1.96535i | 1.00000 | −3.46492 | − | 1.28450i | −3.24721 | − | 1.87478i | 2.47431 | − | 1.37032i | 1.91389 | − | 3.31496i | −0.902585 | − | 1.08873i | ||
101.9 | −0.884969 | + | 1.10310i | 1.78301 | − | 1.02942i | −0.433658 | − | 1.95242i | 1.00000 | −0.442356 | + | 2.87785i | 1.47046 | + | 0.848970i | 2.53749 | + | 1.24946i | 0.619423 | − | 1.07287i | −0.884969 | + | 1.10310i | ||
101.10 | −0.615362 | − | 1.27331i | −0.127180 | + | 0.0734274i | −1.24266 | + | 1.56710i | 1.00000 | 0.171758 | + | 0.116756i | −2.93738 | − | 1.69590i | 2.76009 | + | 0.617962i | −1.48922 | + | 2.57940i | −0.615362 | − | 1.27331i | ||
101.11 | −0.439747 | + | 1.34411i | −1.44998 | + | 0.837149i | −1.61324 | − | 1.18213i | 1.00000 | −0.487590 | − | 2.31707i | 1.28278 | + | 0.740615i | 2.29833 | − | 1.64853i | −0.0983634 | + | 0.170370i | −0.439747 | + | 1.34411i | ||
101.12 | −0.417482 | + | 1.35119i | −1.00502 | + | 0.580249i | −1.65142 | − | 1.12819i | 1.00000 | −0.364447 | − | 1.60022i | −2.74313 | − | 1.58374i | 2.21384 | − | 1.76037i | −0.826622 | + | 1.43175i | −0.417482 | + | 1.35119i | ||
101.13 | −0.378853 | − | 1.36252i | 1.76273 | − | 1.01771i | −1.71294 | + | 1.03239i | 1.00000 | −2.05447 | − | 2.01620i | 2.98263 | + | 1.72202i | 2.05561 | + | 1.94280i | 0.571474 | − | 0.989823i | −0.378853 | − | 1.36252i | ||
101.14 | −0.0643054 | − | 1.41275i | −0.756863 | + | 0.436975i | −1.99173 | + | 0.181695i | 1.00000 | 0.666007 | + | 1.04116i | −0.0742471 | − | 0.0428666i | 0.384769 | + | 2.80213i | −1.11811 | + | 1.93662i | −0.0643054 | − | 1.41275i | ||
101.15 | −0.0430002 | + | 1.41356i | 2.59349 | − | 1.49735i | −1.99630 | − | 0.121567i | 1.00000 | 2.00507 | + | 3.73044i | −0.668489 | − | 0.385952i | 0.257683 | − | 2.81666i | 2.98412 | − | 5.16865i | −0.0430002 | + | 1.41356i | ||
101.16 | 0.352646 | + | 1.36954i | −2.90546 | + | 1.67747i | −1.75128 | + | 0.965925i | 1.00000 | −3.32196 | − | 3.38760i | 0.132211 | + | 0.0763322i | −1.94045 | − | 2.05782i | 4.12781 | − | 7.14957i | 0.352646 | + | 1.36954i | ||
101.17 | 0.386680 | − | 1.36032i | −2.17544 | + | 1.25599i | −1.70096 | − | 1.05202i | 1.00000 | 0.867355 | + | 3.44497i | 0.0859851 | + | 0.0496435i | −2.08881 | + | 1.90705i | 1.65504 | − | 2.86661i | 0.386680 | − | 1.36032i | ||
101.18 | 0.449378 | + | 1.34092i | −0.700368 | + | 0.404358i | −1.59612 | + | 1.20516i | 1.00000 | −0.856940 | − | 0.757426i | 3.38125 | + | 1.95217i | −2.33328 | − | 1.59869i | −1.17299 | + | 2.03168i | 0.449378 | + | 1.34092i | ||
101.19 | 0.724783 | − | 1.21437i | 1.50547 | − | 0.869185i | −0.949379 | − | 1.76031i | 1.00000 | 0.0356307 | − | 2.45817i | 0.987404 | + | 0.570078i | −2.82575 | − | 0.122945i | 0.0109656 | − | 0.0189930i | 0.724783 | − | 1.21437i | ||
101.20 | 0.837733 | + | 1.13939i | 0.654624 | − | 0.377948i | −0.596406 | + | 1.90900i | 1.00000 | 0.979029 | + | 0.429251i | 0.518819 | + | 0.299540i | −2.67472 | + | 0.919699i | −1.21431 | + | 2.10325i | 0.837733 | + | 1.13939i | ||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
104.s | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 520.2.ca.b | yes | 56 |
8.b | even | 2 | 1 | 520.2.ca.a | ✓ | 56 | |
13.e | even | 6 | 1 | 520.2.ca.a | ✓ | 56 | |
104.s | even | 6 | 1 | inner | 520.2.ca.b | yes | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
520.2.ca.a | ✓ | 56 | 8.b | even | 2 | 1 | |
520.2.ca.a | ✓ | 56 | 13.e | even | 6 | 1 | |
520.2.ca.b | yes | 56 | 1.a | even | 1 | 1 | trivial |
520.2.ca.b | yes | 56 | 104.s | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{56} - 56 T_{3}^{54} + 1764 T_{3}^{52} - 36 T_{3}^{51} - 38040 T_{3}^{50} + 1500 T_{3}^{49} + \cdots + 61465600 \) acting on \(S_{2}^{\mathrm{new}}(520, [\chi])\).