Properties

Label 520.2.ca.a.381.3
Level $520$
Weight $2$
Character 520.381
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 381.3
Character \(\chi\) \(=\) 520.381
Dual form 520.2.ca.a.101.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37890 + 0.314043i) q^{2} +(1.00502 + 0.580249i) q^{3} +(1.80275 - 0.866072i) q^{4} -1.00000 q^{5} +(-1.56805 - 0.484488i) q^{6} +(-2.74313 + 1.58374i) q^{7} +(-2.21384 + 1.76037i) q^{8} +(-0.826622 - 1.43175i) q^{9} +O(q^{10})\) \(q+(-1.37890 + 0.314043i) q^{2} +(1.00502 + 0.580249i) q^{3} +(1.80275 - 0.866072i) q^{4} -1.00000 q^{5} +(-1.56805 - 0.484488i) q^{6} +(-2.74313 + 1.58374i) q^{7} +(-2.21384 + 1.76037i) q^{8} +(-0.826622 - 1.43175i) q^{9} +(1.37890 - 0.314043i) q^{10} +(1.23270 - 2.13510i) q^{11} +(2.31434 + 0.175626i) q^{12} +(-3.60242 - 0.150193i) q^{13} +(3.28514 - 3.04529i) q^{14} +(-1.00502 - 0.580249i) q^{15} +(2.49984 - 3.12263i) q^{16} +(0.369228 + 0.639522i) q^{17} +(1.58946 + 1.71465i) q^{18} +(-4.31749 - 7.47811i) q^{19} +(-1.80275 + 0.866072i) q^{20} -3.67586 q^{21} +(-1.02926 + 3.33122i) q^{22} +(2.88507 - 4.99708i) q^{23} +(-3.24641 + 0.484633i) q^{24} +1.00000 q^{25} +(5.01456 - 0.924215i) q^{26} -5.40008i q^{27} +(-3.57354 + 5.23084i) q^{28} +(-1.59257 - 0.919468i) q^{29} +(1.56805 + 0.484488i) q^{30} +9.05883i q^{31} +(-2.46640 + 5.09086i) q^{32} +(2.47778 - 1.43055i) q^{33} +(-0.709967 - 0.765885i) q^{34} +(2.74313 - 1.58374i) q^{35} +(-2.73020 - 1.86518i) q^{36} +(-1.35800 + 2.35212i) q^{37} +(8.30185 + 8.95571i) q^{38} +(-3.53336 - 2.24125i) q^{39} +(2.21384 - 1.76037i) q^{40} +(0.165016 + 0.0952718i) q^{41} +(5.06866 - 1.15438i) q^{42} +(-7.43510 + 4.29266i) q^{43} +(0.373106 - 4.91667i) q^{44} +(0.826622 + 1.43175i) q^{45} +(-2.40893 + 7.79654i) q^{46} -8.23945i q^{47} +(4.32429 - 1.68778i) q^{48} +(1.51649 - 2.62664i) q^{49} +(-1.37890 + 0.314043i) q^{50} +0.856977i q^{51} +(-6.62436 + 2.84919i) q^{52} -4.18560i q^{53} +(1.69586 + 7.44619i) q^{54} +(-1.23270 + 2.13510i) q^{55} +(3.28486 - 8.33508i) q^{56} -10.0209i q^{57} +(2.48475 + 0.767724i) q^{58} +(-5.72512 - 9.91620i) q^{59} +(-2.31434 - 0.175626i) q^{60} +(4.03040 - 2.32695i) q^{61} +(-2.84487 - 12.4913i) q^{62} +(4.53506 + 2.61832i) q^{63} +(1.80218 - 7.79437i) q^{64} +(3.60242 + 0.150193i) q^{65} +(-2.96737 + 2.75072i) q^{66} +(1.66496 - 2.88379i) q^{67} +(1.21950 + 0.833122i) q^{68} +(5.79911 - 3.34812i) q^{69} +(-3.28514 + 3.04529i) q^{70} +(-3.24673 + 1.87450i) q^{71} +(4.35043 + 1.71451i) q^{72} +1.03291i q^{73} +(1.13388 - 3.66982i) q^{74} +(1.00502 + 0.580249i) q^{75} +(-14.2599 - 9.74193i) q^{76} +7.80914i q^{77} +(5.57601 + 1.98084i) q^{78} -9.18672 q^{79} +(-2.49984 + 3.12263i) q^{80} +(0.653525 - 1.13194i) q^{81} +(-0.257460 - 0.0795486i) q^{82} -1.79420 q^{83} +(-6.62668 + 3.18356i) q^{84} +(-0.369228 - 0.639522i) q^{85} +(8.90422 - 8.25411i) q^{86} +(-1.06704 - 1.84817i) q^{87} +(1.02957 + 6.89679i) q^{88} +(12.1943 + 7.04039i) q^{89} +(-1.58946 - 1.71465i) q^{90} +(10.1198 - 5.29332i) q^{91} +(0.873233 - 11.5072i) q^{92} +(-5.25638 + 9.10431i) q^{93} +(2.58754 + 11.3614i) q^{94} +(4.31749 + 7.47811i) q^{95} +(-5.43275 + 3.68530i) q^{96} +(-14.8416 + 8.56882i) q^{97} +(-1.26622 + 4.09813i) q^{98} -4.07592 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9} + 8 q^{11} + 6 q^{12} - 4 q^{14} - 10 q^{16} - 18 q^{18} + 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 2 q^{24} + 56 q^{25} + 11 q^{26} + 6 q^{28} + 5 q^{30} + 16 q^{34} - 21 q^{36} - 4 q^{37} - 24 q^{39} + 29 q^{42} - 24 q^{44} - 28 q^{45} - 11 q^{46} + 3 q^{48} + 20 q^{49} + 18 q^{52} - 49 q^{54} - 8 q^{55} + 61 q^{56} - 47 q^{58} + 16 q^{59} - 6 q^{60} - 2 q^{62} - 30 q^{64} + 14 q^{66} + 36 q^{67} + 33 q^{68} + 4 q^{70} - 51 q^{72} - 2 q^{74} - 48 q^{76} - 35 q^{78} + 10 q^{80} - 28 q^{81} - 21 q^{82} - 40 q^{83} - 61 q^{84} + 28 q^{86} - 36 q^{87} + 41 q^{88} + 18 q^{90} - 16 q^{91} - 18 q^{92} - 41 q^{94} - 16 q^{95} + 48 q^{96} + 24 q^{97} + 28 q^{98} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37890 + 0.314043i −0.975032 + 0.222062i
\(3\) 1.00502 + 0.580249i 0.580249 + 0.335007i 0.761232 0.648479i \(-0.224595\pi\)
−0.180983 + 0.983486i \(0.557928\pi\)
\(4\) 1.80275 0.866072i 0.901377 0.433036i
\(5\) −1.00000 −0.447214
\(6\) −1.56805 0.484488i −0.640154 0.197791i
\(7\) −2.74313 + 1.58374i −1.03680 + 0.598599i −0.918926 0.394429i \(-0.870942\pi\)
−0.117878 + 0.993028i \(0.537609\pi\)
\(8\) −2.21384 + 1.76037i −0.782711 + 0.622386i
\(9\) −0.826622 1.43175i −0.275541 0.477251i
\(10\) 1.37890 0.314043i 0.436048 0.0993093i
\(11\) 1.23270 2.13510i 0.371674 0.643758i −0.618149 0.786061i \(-0.712117\pi\)
0.989823 + 0.142303i \(0.0454507\pi\)
\(12\) 2.31434 + 0.175626i 0.668093 + 0.0506988i
\(13\) −3.60242 0.150193i −0.999132 0.0416560i
\(14\) 3.28514 3.04529i 0.877991 0.813888i
\(15\) −1.00502 0.580249i −0.259495 0.149820i
\(16\) 2.49984 3.12263i 0.624960 0.780657i
\(17\) 0.369228 + 0.639522i 0.0895509 + 0.155107i 0.907321 0.420438i \(-0.138123\pi\)
−0.817770 + 0.575544i \(0.804790\pi\)
\(18\) 1.58946 + 1.71465i 0.374640 + 0.404148i
\(19\) −4.31749 7.47811i −0.990499 1.71560i −0.614342 0.789040i \(-0.710579\pi\)
−0.376157 0.926556i \(-0.622755\pi\)
\(20\) −1.80275 + 0.866072i −0.403108 + 0.193660i
\(21\) −3.67586 −0.802139
\(22\) −1.02926 + 3.33122i −0.219440 + 0.710220i
\(23\) 2.88507 4.99708i 0.601578 1.04196i −0.391004 0.920389i \(-0.627872\pi\)
0.992582 0.121575i \(-0.0387945\pi\)
\(24\) −3.24641 + 0.484633i −0.662671 + 0.0989252i
\(25\) 1.00000 0.200000
\(26\) 5.01456 0.924215i 0.983436 0.181254i
\(27\) 5.40008i 1.03925i
\(28\) −3.57354 + 5.23084i −0.675336 + 0.988536i
\(29\) −1.59257 0.919468i −0.295732 0.170741i 0.344792 0.938679i \(-0.387949\pi\)
−0.640524 + 0.767938i \(0.721283\pi\)
\(30\) 1.56805 + 0.484488i 0.286286 + 0.0884549i
\(31\) 9.05883i 1.62701i 0.581556 + 0.813507i \(0.302444\pi\)
−0.581556 + 0.813507i \(0.697556\pi\)
\(32\) −2.46640 + 5.09086i −0.436002 + 0.899946i
\(33\) 2.47778 1.43055i 0.431327 0.249027i
\(34\) −0.709967 0.765885i −0.121758 0.131348i
\(35\) 2.74313 1.58374i 0.463673 0.267702i
\(36\) −2.73020 1.86518i −0.455033 0.310864i
\(37\) −1.35800 + 2.35212i −0.223253 + 0.386686i −0.955794 0.294037i \(-0.905001\pi\)
0.732541 + 0.680723i \(0.238334\pi\)
\(38\) 8.30185 + 8.95571i 1.34674 + 1.45281i
\(39\) −3.53336 2.24125i −0.565790 0.358887i
\(40\) 2.21384 1.76037i 0.350039 0.278339i
\(41\) 0.165016 + 0.0952718i 0.0257711 + 0.0148790i 0.512830 0.858490i \(-0.328597\pi\)
−0.487059 + 0.873369i \(0.661930\pi\)
\(42\) 5.06866 1.15438i 0.782112 0.178125i
\(43\) −7.43510 + 4.29266i −1.13384 + 0.654624i −0.944899 0.327363i \(-0.893840\pi\)
−0.188944 + 0.981988i \(0.560507\pi\)
\(44\) 0.373106 4.91667i 0.0562479 0.741216i
\(45\) 0.826622 + 1.43175i 0.123226 + 0.213433i
\(46\) −2.40893 + 7.79654i −0.355177 + 1.14954i
\(47\) 8.23945i 1.20185i −0.799307 0.600923i \(-0.794800\pi\)
0.799307 0.600923i \(-0.205200\pi\)
\(48\) 4.32429 1.68778i 0.624158 0.243609i
\(49\) 1.51649 2.62664i 0.216642 0.375234i
\(50\) −1.37890 + 0.314043i −0.195006 + 0.0444124i
\(51\) 0.856977i 0.120001i
\(52\) −6.62436 + 2.84919i −0.918633 + 0.395112i
\(53\) 4.18560i 0.574936i −0.957790 0.287468i \(-0.907186\pi\)
0.957790 0.287468i \(-0.0928135\pi\)
\(54\) 1.69586 + 7.44619i 0.230777 + 1.01330i
\(55\) −1.23270 + 2.13510i −0.166218 + 0.287897i
\(56\) 3.28486 8.33508i 0.438958 1.11382i
\(57\) 10.0209i 1.32730i
\(58\) 2.48475 + 0.767724i 0.326263 + 0.100807i
\(59\) −5.72512 9.91620i −0.745347 1.29098i −0.950032 0.312151i \(-0.898950\pi\)
0.204685 0.978828i \(-0.434383\pi\)
\(60\) −2.31434 0.175626i −0.298780 0.0226732i
\(61\) 4.03040 2.32695i 0.516040 0.297936i −0.219273 0.975664i \(-0.570368\pi\)
0.735313 + 0.677728i \(0.237035\pi\)
\(62\) −2.84487 12.4913i −0.361298 1.58639i
\(63\) 4.53506 + 2.61832i 0.571363 + 0.329877i
\(64\) 1.80218 7.79437i 0.225272 0.974296i
\(65\) 3.60242 + 0.150193i 0.446825 + 0.0186291i
\(66\) −2.96737 + 2.75072i −0.365258 + 0.338590i
\(67\) 1.66496 2.88379i 0.203407 0.352311i −0.746217 0.665703i \(-0.768132\pi\)
0.949624 + 0.313391i \(0.101465\pi\)
\(68\) 1.21950 + 0.833122i 0.147886 + 0.101031i
\(69\) 5.79911 3.34812i 0.698130 0.403066i
\(70\) −3.28514 + 3.04529i −0.392650 + 0.363982i
\(71\) −3.24673 + 1.87450i −0.385316 + 0.222462i −0.680129 0.733093i \(-0.738076\pi\)
0.294813 + 0.955555i \(0.404743\pi\)
\(72\) 4.35043 + 1.71451i 0.512703 + 0.202056i
\(73\) 1.03291i 0.120893i 0.998171 + 0.0604467i \(0.0192525\pi\)
−0.998171 + 0.0604467i \(0.980747\pi\)
\(74\) 1.13388 3.66982i 0.131811 0.426608i
\(75\) 1.00502 + 0.580249i 0.116050 + 0.0670014i
\(76\) −14.2599 9.74193i −1.63573 1.11748i
\(77\) 7.80914i 0.889934i
\(78\) 5.57601 + 1.98084i 0.631359 + 0.224286i
\(79\) −9.18672 −1.03359 −0.516793 0.856110i \(-0.672874\pi\)
−0.516793 + 0.856110i \(0.672874\pi\)
\(80\) −2.49984 + 3.12263i −0.279491 + 0.349120i
\(81\) 0.653525 1.13194i 0.0726139 0.125771i
\(82\) −0.257460 0.0795486i −0.0284317 0.00878467i
\(83\) −1.79420 −0.196939 −0.0984693 0.995140i \(-0.531395\pi\)
−0.0984693 + 0.995140i \(0.531395\pi\)
\(84\) −6.62668 + 3.18356i −0.723030 + 0.347355i
\(85\) −0.369228 0.639522i −0.0400484 0.0693658i
\(86\) 8.90422 8.25411i 0.960166 0.890064i
\(87\) −1.06704 1.84817i −0.114399 0.198145i
\(88\) 1.02957 + 6.89679i 0.109753 + 0.735201i
\(89\) 12.1943 + 7.04039i 1.29260 + 0.746280i 0.979114 0.203314i \(-0.0651712\pi\)
0.313482 + 0.949594i \(0.398505\pi\)
\(90\) −1.58946 1.71465i −0.167544 0.180740i
\(91\) 10.1198 5.29332i 1.06084 0.554890i
\(92\) 0.873233 11.5072i 0.0910409 1.19971i
\(93\) −5.25638 + 9.10431i −0.545061 + 0.944073i
\(94\) 2.58754 + 11.3614i 0.266885 + 1.17184i
\(95\) 4.31749 + 7.47811i 0.442965 + 0.767238i
\(96\) −5.43275 + 3.68530i −0.554478 + 0.376129i
\(97\) −14.8416 + 8.56882i −1.50694 + 0.870032i −0.506971 + 0.861963i \(0.669235\pi\)
−0.999967 + 0.00806860i \(0.997432\pi\)
\(98\) −1.26622 + 4.09813i −0.127907 + 0.413973i
\(99\) −4.07592 −0.409645
\(100\) 1.80275 0.866072i 0.180275 0.0866072i
\(101\) −4.58812 2.64895i −0.456535 0.263580i 0.254051 0.967191i \(-0.418237\pi\)
−0.710586 + 0.703610i \(0.751570\pi\)
\(102\) −0.269128 1.18169i −0.0266476 0.117005i
\(103\) −7.06565 −0.696199 −0.348100 0.937458i \(-0.613173\pi\)
−0.348100 + 0.937458i \(0.613173\pi\)
\(104\) 8.23958 6.00910i 0.807957 0.589241i
\(105\) 3.67586 0.358728
\(106\) 1.31446 + 5.77154i 0.127672 + 0.560581i
\(107\) 10.2327 + 5.90788i 0.989237 + 0.571136i 0.905046 0.425313i \(-0.139836\pi\)
0.0841908 + 0.996450i \(0.473169\pi\)
\(108\) −4.67686 9.73501i −0.450031 0.936752i
\(109\) −3.12953 −0.299754 −0.149877 0.988705i \(-0.547888\pi\)
−0.149877 + 0.988705i \(0.547888\pi\)
\(110\) 1.02926 3.33122i 0.0981364 0.317620i
\(111\) −2.72963 + 1.57595i −0.259085 + 0.149583i
\(112\) −1.91193 + 12.5249i −0.180661 + 1.18349i
\(113\) 9.72386 + 16.8422i 0.914744 + 1.58438i 0.807276 + 0.590174i \(0.200941\pi\)
0.107468 + 0.994209i \(0.465726\pi\)
\(114\) 3.14699 + 13.8178i 0.294743 + 1.29416i
\(115\) −2.88507 + 4.99708i −0.269034 + 0.465980i
\(116\) −3.66733 0.278299i −0.340503 0.0258394i
\(117\) 2.76280 + 5.28193i 0.255421 + 0.488314i
\(118\) 11.0085 + 11.8756i 1.01342 + 1.09323i
\(119\) −2.02568 1.16953i −0.185693 0.107210i
\(120\) 3.24641 0.484633i 0.296355 0.0442407i
\(121\) 2.46089 + 4.26239i 0.223717 + 0.387490i
\(122\) −4.82677 + 4.47437i −0.436996 + 0.405090i
\(123\) 0.110563 + 0.191500i 0.00996910 + 0.0172670i
\(124\) 7.84559 + 16.3308i 0.704555 + 1.46655i
\(125\) −1.00000 −0.0894427
\(126\) −7.07567 2.18620i −0.630351 0.194762i
\(127\) −1.96907 + 3.41052i −0.174726 + 0.302635i −0.940067 0.340991i \(-0.889237\pi\)
0.765340 + 0.643626i \(0.222571\pi\)
\(128\) −0.0372585 + 11.3136i −0.00329322 + 0.999995i
\(129\) −9.96325 −0.877215
\(130\) −5.01456 + 0.924215i −0.439806 + 0.0810590i
\(131\) 9.67553i 0.845355i −0.906280 0.422678i \(-0.861090\pi\)
0.906280 0.422678i \(-0.138910\pi\)
\(132\) 3.22787 4.72486i 0.280950 0.411247i
\(133\) 23.6868 + 13.6756i 2.05391 + 1.18582i
\(134\) −1.39018 + 4.49934i −0.120093 + 0.388684i
\(135\) 5.40008i 0.464765i
\(136\) −1.94321 0.765820i −0.166629 0.0656685i
\(137\) 13.2517 7.65088i 1.13217 0.653659i 0.187691 0.982228i \(-0.439900\pi\)
0.944480 + 0.328569i \(0.106566\pi\)
\(138\) −6.94496 + 6.43790i −0.591194 + 0.548031i
\(139\) −7.64524 + 4.41398i −0.648461 + 0.374389i −0.787866 0.615846i \(-0.788814\pi\)
0.139406 + 0.990235i \(0.455481\pi\)
\(140\) 3.57354 5.23084i 0.302019 0.442087i
\(141\) 4.78093 8.28082i 0.402627 0.697371i
\(142\) 3.88825 3.60437i 0.326295 0.302472i
\(143\) −4.76139 + 7.50640i −0.398168 + 0.627717i
\(144\) −6.53725 0.997917i −0.544771 0.0831597i
\(145\) 1.59257 + 0.919468i 0.132255 + 0.0763577i
\(146\) −0.324380 1.42429i −0.0268459 0.117875i
\(147\) 3.04821 1.75988i 0.251412 0.145153i
\(148\) −0.411030 + 5.41642i −0.0337864 + 0.445227i
\(149\) 6.58106 + 11.3987i 0.539141 + 0.933820i 0.998951 + 0.0458023i \(0.0145844\pi\)
−0.459809 + 0.888018i \(0.652082\pi\)
\(150\) −1.56805 0.484488i −0.128031 0.0395582i
\(151\) 17.2918i 1.40719i −0.710602 0.703594i \(-0.751578\pi\)
0.710602 0.703594i \(-0.248422\pi\)
\(152\) 22.7225 + 8.95495i 1.84304 + 0.726342i
\(153\) 0.610424 1.05729i 0.0493499 0.0854765i
\(154\) −2.45241 10.7681i −0.197621 0.867715i
\(155\) 9.05883i 0.727623i
\(156\) −8.31086 0.980277i −0.665401 0.0784849i
\(157\) 23.8530i 1.90367i −0.306603 0.951837i \(-0.599192\pi\)
0.306603 0.951837i \(-0.400808\pi\)
\(158\) 12.6676 2.88503i 1.00778 0.229521i
\(159\) 2.42869 4.20661i 0.192608 0.333606i
\(160\) 2.46640 5.09086i 0.194986 0.402468i
\(161\) 18.2768i 1.44042i
\(162\) −0.545671 + 1.76607i −0.0428719 + 0.138756i
\(163\) −1.04268 1.80598i −0.0816692 0.141455i 0.822298 0.569057i \(-0.192692\pi\)
−0.903967 + 0.427602i \(0.859358\pi\)
\(164\) 0.379995 + 0.0288362i 0.0296726 + 0.00225173i
\(165\) −2.47778 + 1.43055i −0.192895 + 0.111368i
\(166\) 2.47402 0.563455i 0.192021 0.0437326i
\(167\) −13.6936 7.90603i −1.05965 0.611787i −0.134312 0.990939i \(-0.542882\pi\)
−0.925334 + 0.379152i \(0.876216\pi\)
\(168\) 8.13777 6.47089i 0.627843 0.499240i
\(169\) 12.9549 + 1.08212i 0.996530 + 0.0832398i
\(170\) 0.709967 + 0.765885i 0.0544520 + 0.0587407i
\(171\) −7.13786 + 12.3631i −0.545846 + 0.945433i
\(172\) −9.68591 + 14.1779i −0.738544 + 1.08106i
\(173\) −7.84473 + 4.52916i −0.596424 + 0.344345i −0.767633 0.640889i \(-0.778566\pi\)
0.171210 + 0.985235i \(0.445232\pi\)
\(174\) 2.05175 + 2.21335i 0.155543 + 0.167794i
\(175\) −2.74313 + 1.58374i −0.207361 + 0.119720i
\(176\) −3.58557 9.18669i −0.270273 0.692473i
\(177\) 13.2880i 0.998786i
\(178\) −19.0258 5.87848i −1.42604 0.440611i
\(179\) 9.85005 + 5.68693i 0.736227 + 0.425061i 0.820696 0.571365i \(-0.193586\pi\)
−0.0844689 + 0.996426i \(0.526919\pi\)
\(180\) 2.73020 + 1.86518i 0.203497 + 0.139022i
\(181\) 17.5350i 1.30337i 0.758490 + 0.651685i \(0.225937\pi\)
−0.758490 + 0.651685i \(0.774063\pi\)
\(182\) −12.2918 + 10.4770i −0.911132 + 0.776608i
\(183\) 5.40085 0.399242
\(184\) 2.40965 + 16.1415i 0.177642 + 1.18997i
\(185\) 1.35800 2.35212i 0.0998420 0.172931i
\(186\) 4.38889 14.2047i 0.321809 1.04154i
\(187\) 1.82059 0.133135
\(188\) −7.13595 14.8537i −0.520443 1.08332i
\(189\) 8.55235 + 14.8131i 0.622092 + 1.07749i
\(190\) −8.30185 8.95571i −0.602280 0.649716i
\(191\) 0.345693 + 0.598758i 0.0250135 + 0.0433246i 0.878261 0.478181i \(-0.158704\pi\)
−0.853248 + 0.521506i \(0.825370\pi\)
\(192\) 6.33390 6.78779i 0.457110 0.489867i
\(193\) 4.73055 + 2.73118i 0.340512 + 0.196595i 0.660499 0.750827i \(-0.270345\pi\)
−0.319986 + 0.947422i \(0.603678\pi\)
\(194\) 17.7742 16.4765i 1.27611 1.18294i
\(195\) 3.53336 + 2.24125i 0.253029 + 0.160499i
\(196\) 0.459001 6.04857i 0.0327858 0.432041i
\(197\) −6.97854 + 12.0872i −0.497200 + 0.861176i −0.999995 0.00322997i \(-0.998972\pi\)
0.502795 + 0.864406i \(0.332305\pi\)
\(198\) 5.62030 1.28001i 0.399417 0.0909667i
\(199\) −12.4653 21.5906i −0.883644 1.53052i −0.847259 0.531179i \(-0.821749\pi\)
−0.0363850 0.999338i \(-0.511584\pi\)
\(200\) −2.21384 + 1.76037i −0.156542 + 0.124477i
\(201\) 3.34664 1.93218i 0.236054 0.136286i
\(202\) 7.15846 + 2.21178i 0.503668 + 0.155620i
\(203\) 5.82481 0.408821
\(204\) 0.742203 + 1.54492i 0.0519646 + 0.108166i
\(205\) −0.165016 0.0952718i −0.0115252 0.00665407i
\(206\) 9.74286 2.21892i 0.678817 0.154600i
\(207\) −9.53944 −0.663037
\(208\) −9.47447 + 10.8736i −0.656937 + 0.753946i
\(209\) −21.2887 −1.47257
\(210\) −5.06866 + 1.15438i −0.349771 + 0.0796599i
\(211\) 7.96783 + 4.60023i 0.548528 + 0.316693i 0.748528 0.663103i \(-0.230761\pi\)
−0.200000 + 0.979796i \(0.564094\pi\)
\(212\) −3.62503 7.54560i −0.248968 0.518234i
\(213\) −4.35071 −0.298106
\(214\) −15.9653 4.93287i −1.09137 0.337204i
\(215\) 7.43510 4.29266i 0.507070 0.292757i
\(216\) 9.50615 + 11.9549i 0.646812 + 0.813429i
\(217\) −14.3469 24.8495i −0.973929 1.68689i
\(218\) 4.31532 0.982807i 0.292270 0.0665641i
\(219\) −0.599347 + 1.03810i −0.0405001 + 0.0701483i
\(220\) −0.373106 + 4.91667i −0.0251548 + 0.331482i
\(221\) −1.23406 2.35928i −0.0830121 0.158702i
\(222\) 3.26898 3.03031i 0.219400 0.203381i
\(223\) 3.64597 + 2.10500i 0.244152 + 0.140961i 0.617084 0.786898i \(-0.288314\pi\)
−0.372932 + 0.927859i \(0.621647\pi\)
\(224\) −1.29698 17.8710i −0.0866582 1.19406i
\(225\) −0.826622 1.43175i −0.0551081 0.0954501i
\(226\) −18.6975 20.1701i −1.24374 1.34169i
\(227\) −4.37813 7.58314i −0.290587 0.503311i 0.683362 0.730080i \(-0.260517\pi\)
−0.973949 + 0.226769i \(0.927184\pi\)
\(228\) −8.67879 18.0652i −0.574767 1.19639i
\(229\) 22.6655 1.49778 0.748889 0.662696i \(-0.230588\pi\)
0.748889 + 0.662696i \(0.230588\pi\)
\(230\) 2.40893 7.79654i 0.158840 0.514088i
\(231\) −4.53125 + 7.84835i −0.298134 + 0.516383i
\(232\) 5.14429 0.767953i 0.337739 0.0504186i
\(233\) −16.3316 −1.06992 −0.534960 0.844877i \(-0.679673\pi\)
−0.534960 + 0.844877i \(0.679673\pi\)
\(234\) −5.46839 6.41563i −0.357480 0.419403i
\(235\) 8.23945i 0.537482i
\(236\) −18.9091 12.9181i −1.23088 0.840897i
\(237\) −9.23284 5.33059i −0.599738 0.346259i
\(238\) 3.16050 + 0.976512i 0.204865 + 0.0632979i
\(239\) 6.36009i 0.411400i 0.978615 + 0.205700i \(0.0659471\pi\)
−0.978615 + 0.205700i \(0.934053\pi\)
\(240\) −4.32429 + 1.68778i −0.279132 + 0.108945i
\(241\) 10.6580 6.15341i 0.686543 0.396376i −0.115772 0.993276i \(-0.536934\pi\)
0.802316 + 0.596900i \(0.203601\pi\)
\(242\) −4.73191 5.10460i −0.304178 0.328136i
\(243\) −12.7162 + 7.34171i −0.815745 + 0.470971i
\(244\) 5.25051 7.68554i 0.336130 0.492016i
\(245\) −1.51649 + 2.62664i −0.0968850 + 0.167810i
\(246\) −0.212595 0.229339i −0.0135545 0.0146221i
\(247\) 14.4303 + 27.5878i 0.918175 + 1.75537i
\(248\) −15.9469 20.0548i −1.01263 1.27348i
\(249\) −1.80320 1.04108i −0.114273 0.0659758i
\(250\) 1.37890 0.314043i 0.0872096 0.0198619i
\(251\) −6.06987 + 3.50444i −0.383127 + 0.221198i −0.679178 0.733974i \(-0.737663\pi\)
0.296051 + 0.955172i \(0.404330\pi\)
\(252\) 10.4432 + 0.792495i 0.657862 + 0.0499225i
\(253\) −7.11286 12.3198i −0.447182 0.774541i
\(254\) 1.64410 5.32116i 0.103160 0.333879i
\(255\) 0.856977i 0.0536660i
\(256\) −3.50160 15.6121i −0.218850 0.975759i
\(257\) 9.24502 16.0128i 0.576688 0.998854i −0.419168 0.907909i \(-0.637678\pi\)
0.995856 0.0909446i \(-0.0289886\pi\)
\(258\) 13.7384 3.12889i 0.855313 0.194796i
\(259\) 8.60288i 0.534557i
\(260\) 6.62436 2.84919i 0.410825 0.176700i
\(261\) 3.04021i 0.188184i
\(262\) 3.03854 + 13.3416i 0.187722 + 0.824249i
\(263\) 13.1616 22.7966i 0.811581 1.40570i −0.100176 0.994970i \(-0.531941\pi\)
0.911757 0.410730i \(-0.134726\pi\)
\(264\) −2.96712 + 7.52883i −0.182613 + 0.463367i
\(265\) 4.18560i 0.257119i
\(266\) −36.9566 11.4186i −2.26595 0.700122i
\(267\) 8.17036 + 14.1515i 0.500018 + 0.866057i
\(268\) 0.503939 6.64074i 0.0307830 0.405648i
\(269\) −4.45389 + 2.57145i −0.271558 + 0.156784i −0.629596 0.776923i \(-0.716779\pi\)
0.358037 + 0.933707i \(0.383446\pi\)
\(270\) −1.69586 7.44619i −0.103207 0.453161i
\(271\) 19.4600 + 11.2352i 1.18211 + 0.682493i 0.956502 0.291725i \(-0.0942293\pi\)
0.225610 + 0.974218i \(0.427563\pi\)
\(272\) 2.92000 + 0.445740i 0.177051 + 0.0270270i
\(273\) 13.2420 + 0.552089i 0.801443 + 0.0334139i
\(274\) −15.8701 + 14.7114i −0.958750 + 0.888751i
\(275\) 1.23270 2.13510i 0.0743348 0.128752i
\(276\) 7.55465 11.0583i 0.454737 0.665630i
\(277\) −4.75235 + 2.74377i −0.285541 + 0.164857i −0.635929 0.771747i \(-0.719383\pi\)
0.350388 + 0.936605i \(0.386050\pi\)
\(278\) 9.15587 8.48739i 0.549133 0.509040i
\(279\) 12.9700 7.48823i 0.776493 0.448308i
\(280\) −3.28486 + 8.33508i −0.196308 + 0.498116i
\(281\) 6.19365i 0.369482i −0.982787 0.184741i \(-0.940855\pi\)
0.982787 0.184741i \(-0.0591447\pi\)
\(282\) −3.99191 + 12.9199i −0.237715 + 0.769367i
\(283\) 16.8496 + 9.72811i 1.00160 + 0.578276i 0.908722 0.417401i \(-0.137059\pi\)
0.0928810 + 0.995677i \(0.470392\pi\)
\(284\) −4.22960 + 6.19116i −0.250981 + 0.367378i
\(285\) 10.0209i 0.593585i
\(286\) 4.20817 11.8459i 0.248834 0.700462i
\(287\) −0.603545 −0.0356261
\(288\) 9.32763 0.676948i 0.549636 0.0398896i
\(289\) 8.22734 14.2502i 0.483961 0.838245i
\(290\) −2.48475 0.767724i −0.145909 0.0450823i
\(291\) −19.8882 −1.16587
\(292\) 0.894577 + 1.86209i 0.0523512 + 0.108970i
\(293\) −16.3593 28.3351i −0.955721 1.65536i −0.732710 0.680541i \(-0.761745\pi\)
−0.223011 0.974816i \(-0.571588\pi\)
\(294\) −3.65051 + 3.38398i −0.212902 + 0.197358i
\(295\) 5.72512 + 9.91620i 0.333329 + 0.577343i
\(296\) −1.13422 7.59780i −0.0659252 0.441613i
\(297\) −11.5297 6.65669i −0.669023 0.386260i
\(298\) −12.6543 13.6510i −0.733046 0.790782i
\(299\) −11.1438 + 17.5683i −0.644460 + 1.01600i
\(300\) 2.31434 + 0.175626i 0.133619 + 0.0101398i
\(301\) 13.5969 23.5506i 0.783715 1.35743i
\(302\) 5.43038 + 23.8437i 0.312483 + 1.37205i
\(303\) −3.07410 5.32450i −0.176603 0.305885i
\(304\) −34.1444 5.21217i −1.95831 0.298938i
\(305\) −4.03040 + 2.32695i −0.230780 + 0.133241i
\(306\) −0.509683 + 1.64959i −0.0291366 + 0.0943011i
\(307\) 21.1733 1.20842 0.604212 0.796824i \(-0.293488\pi\)
0.604212 + 0.796824i \(0.293488\pi\)
\(308\) 6.76327 + 14.0780i 0.385373 + 0.802166i
\(309\) −7.10113 4.09984i −0.403969 0.233232i
\(310\) 2.84487 + 12.4913i 0.161577 + 0.709456i
\(311\) 17.0756 0.968271 0.484136 0.874993i \(-0.339134\pi\)
0.484136 + 0.874993i \(0.339134\pi\)
\(312\) 11.7677 1.25826i 0.666216 0.0712351i
\(313\) −25.0633 −1.41666 −0.708330 0.705881i \(-0.750551\pi\)
−0.708330 + 0.705881i \(0.750551\pi\)
\(314\) 7.49087 + 32.8910i 0.422734 + 1.85614i
\(315\) −4.53506 2.61832i −0.255521 0.147525i
\(316\) −16.5614 + 7.95636i −0.931651 + 0.447580i
\(317\) −18.2387 −1.02439 −0.512195 0.858869i \(-0.671167\pi\)
−0.512195 + 0.858869i \(0.671167\pi\)
\(318\) −2.02787 + 6.56323i −0.113717 + 0.368048i
\(319\) −3.92632 + 2.26686i −0.219832 + 0.126920i
\(320\) −1.80218 + 7.79437i −0.100745 + 0.435718i
\(321\) 6.85608 + 11.8751i 0.382669 + 0.662802i
\(322\) −5.73972 25.2020i −0.319862 1.40445i
\(323\) 3.18827 5.52225i 0.177400 0.307266i
\(324\) 0.197805 2.60661i 0.0109892 0.144811i
\(325\) −3.60242 0.150193i −0.199826 0.00833121i
\(326\) 2.00492 + 2.16282i 0.111042 + 0.119788i
\(327\) −3.14524 1.81590i −0.173932 0.100420i
\(328\) −0.533032 + 0.0795724i −0.0294318 + 0.00439365i
\(329\) 13.0492 + 22.6018i 0.719424 + 1.24608i
\(330\) 2.96737 2.75072i 0.163348 0.151422i
\(331\) −13.4517 23.2990i −0.739371 1.28063i −0.952779 0.303664i \(-0.901790\pi\)
0.213409 0.976963i \(-0.431543\pi\)
\(332\) −3.23449 + 1.55390i −0.177516 + 0.0852814i
\(333\) 4.49020 0.246062
\(334\) 21.3651 + 6.60126i 1.16904 + 0.361205i
\(335\) −1.66496 + 2.88379i −0.0909664 + 0.157558i
\(336\) −9.18907 + 11.4784i −0.501305 + 0.626195i
\(337\) 3.00972 0.163950 0.0819750 0.996634i \(-0.473877\pi\)
0.0819750 + 0.996634i \(0.473877\pi\)
\(338\) −18.2034 + 2.57626i −0.990133 + 0.140130i
\(339\) 22.5690i 1.22578i
\(340\) −1.21950 0.833122i −0.0661366 0.0451824i
\(341\) 19.3415 + 11.1668i 1.04740 + 0.604718i
\(342\) 5.95986 19.2892i 0.322273 1.04304i
\(343\) 12.5655i 0.678472i
\(344\) 8.90345 22.5918i 0.480042 1.21807i
\(345\) −5.79911 + 3.34812i −0.312213 + 0.180256i
\(346\) 9.39478 8.70886i 0.505066 0.468191i
\(347\) 2.24508 1.29620i 0.120522 0.0695836i −0.438527 0.898718i \(-0.644500\pi\)
0.559049 + 0.829134i \(0.311166\pi\)
\(348\) −3.52426 2.40766i −0.188920 0.129064i
\(349\) 9.78948 16.9559i 0.524019 0.907627i −0.475590 0.879667i \(-0.657765\pi\)
0.999609 0.0279603i \(-0.00890119\pi\)
\(350\) 3.28514 3.04529i 0.175598 0.162778i
\(351\) −0.811054 + 19.4534i −0.0432909 + 1.03834i
\(352\) 7.82918 + 11.5415i 0.417297 + 0.615166i
\(353\) −4.69869 2.71279i −0.250086 0.144387i 0.369718 0.929144i \(-0.379454\pi\)
−0.619804 + 0.784757i \(0.712788\pi\)
\(354\) 4.17300 + 18.3229i 0.221793 + 0.973849i
\(355\) 3.24673 1.87450i 0.172319 0.0994881i
\(356\) 28.0808 + 2.13094i 1.48828 + 0.112940i
\(357\) −1.35723 2.35079i −0.0718323 0.124417i
\(358\) −15.3682 4.74838i −0.812235 0.250960i
\(359\) 24.1177i 1.27288i −0.771325 0.636442i \(-0.780406\pi\)
0.771325 0.636442i \(-0.219594\pi\)
\(360\) −4.35043 1.71451i −0.229288 0.0903624i
\(361\) −27.7814 + 48.1188i −1.46218 + 2.53257i
\(362\) −5.50676 24.1791i −0.289429 1.27083i
\(363\) 5.71172i 0.299787i
\(364\) 13.6590 18.3070i 0.715928 0.959547i
\(365\) 1.03291i 0.0540652i
\(366\) −7.44726 + 1.69610i −0.389274 + 0.0886567i
\(367\) −1.11654 + 1.93390i −0.0582827 + 0.100949i −0.893695 0.448676i \(-0.851896\pi\)
0.835412 + 0.549624i \(0.185229\pi\)
\(368\) −8.39182 21.5009i −0.437454 1.12081i
\(369\) 0.315015i 0.0163990i
\(370\) −1.13388 + 3.66982i −0.0589476 + 0.190785i
\(371\) 6.62892 + 11.4816i 0.344156 + 0.596096i
\(372\) −1.59097 + 20.9652i −0.0824877 + 1.08700i
\(373\) 11.6773 6.74188i 0.604627 0.349082i −0.166233 0.986087i \(-0.553160\pi\)
0.770860 + 0.637005i \(0.219827\pi\)
\(374\) −2.51042 + 0.571745i −0.129811 + 0.0295642i
\(375\) −1.00502 0.580249i −0.0518991 0.0299639i
\(376\) 14.5045 + 18.2408i 0.748012 + 0.940698i
\(377\) 5.59900 + 3.55150i 0.288363 + 0.182912i
\(378\) −16.4448 17.7400i −0.845830 0.912449i
\(379\) −3.05975 + 5.29964i −0.157169 + 0.272224i −0.933847 0.357674i \(-0.883570\pi\)
0.776678 + 0.629898i \(0.216903\pi\)
\(380\) 14.2599 + 9.74193i 0.731520 + 0.499750i
\(381\) −3.95791 + 2.28510i −0.202770 + 0.117069i
\(382\) −0.664714 0.717068i −0.0340097 0.0366884i
\(383\) 18.3627 10.6017i 0.938292 0.541723i 0.0488673 0.998805i \(-0.484439\pi\)
0.889424 + 0.457082i \(0.151106\pi\)
\(384\) −6.60218 + 11.3488i −0.336916 + 0.579143i
\(385\) 7.80914i 0.397991i
\(386\) −7.38068 2.28044i −0.375667 0.116071i
\(387\) 12.2920 + 7.09681i 0.624840 + 0.360751i
\(388\) −19.3346 + 28.3014i −0.981565 + 1.43678i
\(389\) 8.17552i 0.414515i 0.978286 + 0.207258i \(0.0664539\pi\)
−0.978286 + 0.207258i \(0.933546\pi\)
\(390\) −5.57601 1.98084i −0.282352 0.100304i
\(391\) 4.26099 0.215488
\(392\) 1.26660 + 8.48455i 0.0639727 + 0.428534i
\(393\) 5.61422 9.72411i 0.283200 0.490517i
\(394\) 5.82683 18.8586i 0.293552 0.950084i
\(395\) 9.18672 0.462234
\(396\) −7.34787 + 3.53004i −0.369244 + 0.177391i
\(397\) −1.33438 2.31122i −0.0669707 0.115997i 0.830596 0.556876i \(-0.188000\pi\)
−0.897566 + 0.440879i \(0.854667\pi\)
\(398\) 23.9689 + 25.8567i 1.20145 + 1.29608i
\(399\) 15.8705 + 27.4885i 0.794519 + 1.37615i
\(400\) 2.49984 3.12263i 0.124992 0.156131i
\(401\) 7.61683 + 4.39758i 0.380367 + 0.219605i 0.677978 0.735082i \(-0.262857\pi\)
−0.297611 + 0.954687i \(0.596190\pi\)
\(402\) −4.00790 + 3.71528i −0.199896 + 0.185301i
\(403\) 1.36057 32.6337i 0.0677749 1.62560i
\(404\) −10.5654 0.801767i −0.525650 0.0398894i
\(405\) −0.653525 + 1.13194i −0.0324739 + 0.0562465i
\(406\) −8.03185 + 1.82924i −0.398614 + 0.0907838i
\(407\) 3.34801 + 5.79893i 0.165955 + 0.287442i
\(408\) −1.50860 1.89721i −0.0746867 0.0939258i
\(409\) 8.07460 4.66187i 0.399263 0.230515i −0.286903 0.957960i \(-0.592626\pi\)
0.686166 + 0.727445i \(0.259292\pi\)
\(410\) 0.257460 + 0.0795486i 0.0127151 + 0.00392863i
\(411\) 17.7577 0.875921
\(412\) −12.7376 + 6.11936i −0.627538 + 0.301479i
\(413\) 31.4094 + 18.1343i 1.54556 + 0.892328i
\(414\) 13.1540 2.99580i 0.646483 0.147236i
\(415\) 1.79420 0.0880736
\(416\) 9.64962 17.9690i 0.473112 0.881002i
\(417\) −10.2448 −0.501692
\(418\) 29.3551 6.68558i 1.43580 0.327002i
\(419\) −30.8485 17.8104i −1.50705 0.870094i −0.999966 0.00819632i \(-0.997391\pi\)
−0.507081 0.861898i \(-0.669276\pi\)
\(420\) 6.62668 3.18356i 0.323349 0.155342i
\(421\) 0.743378 0.0362300 0.0181150 0.999836i \(-0.494233\pi\)
0.0181150 + 0.999836i \(0.494233\pi\)
\(422\) −12.4315 3.84103i −0.605158 0.186978i
\(423\) −11.7968 + 6.81091i −0.573582 + 0.331158i
\(424\) 7.36821 + 9.26625i 0.357832 + 0.450009i
\(425\) 0.369228 + 0.639522i 0.0179102 + 0.0310214i
\(426\) 5.99921 1.36631i 0.290663 0.0661980i
\(427\) −7.37060 + 12.7663i −0.356688 + 0.617802i
\(428\) 23.5638 + 1.78816i 1.13900 + 0.0864339i
\(429\) −9.14088 + 4.78129i −0.441326 + 0.230843i
\(430\) −8.90422 + 8.25411i −0.429399 + 0.398049i
\(431\) 11.7483 + 6.78289i 0.565896 + 0.326720i 0.755509 0.655139i \(-0.227390\pi\)
−0.189612 + 0.981859i \(0.560723\pi\)
\(432\) −16.8624 13.4993i −0.811294 0.649487i
\(433\) −12.9676 22.4605i −0.623182 1.07938i −0.988889 0.148653i \(-0.952506\pi\)
0.365707 0.930730i \(-0.380827\pi\)
\(434\) 27.5868 + 29.7595i 1.32421 + 1.42850i
\(435\) 1.06704 + 1.84817i 0.0511607 + 0.0886129i
\(436\) −5.64176 + 2.71039i −0.270191 + 0.129804i
\(437\) −49.8250 −2.38345
\(438\) 0.500434 1.61966i 0.0239117 0.0773904i
\(439\) 1.85839 3.21883i 0.0886962 0.153626i −0.818264 0.574843i \(-0.805063\pi\)
0.906960 + 0.421216i \(0.138397\pi\)
\(440\) −1.02957 6.89679i −0.0490829 0.328792i
\(441\) −5.01426 −0.238774
\(442\) 2.44257 + 2.86567i 0.116181 + 0.136306i
\(443\) 1.77030i 0.0841096i −0.999115 0.0420548i \(-0.986610\pi\)
0.999115 0.0420548i \(-0.0133904\pi\)
\(444\) −3.55596 + 5.20511i −0.168759 + 0.247024i
\(445\) −12.1943 7.04039i −0.578066 0.333747i
\(446\) −5.68850 1.75760i −0.269358 0.0832248i
\(447\) 15.2746i 0.722464i
\(448\) 7.40069 + 24.2351i 0.349650 + 1.14500i
\(449\) −24.6942 + 14.2572i −1.16539 + 0.672838i −0.952590 0.304258i \(-0.901592\pi\)
−0.212800 + 0.977096i \(0.568258\pi\)
\(450\) 1.58946 + 1.71465i 0.0749281 + 0.0808295i
\(451\) 0.406830 0.234884i 0.0191569 0.0110602i
\(452\) 32.1163 + 21.9408i 1.51062 + 1.03201i
\(453\) 10.0336 17.3786i 0.471418 0.816519i
\(454\) 8.41846 + 9.08151i 0.395098 + 0.426216i
\(455\) −10.1198 + 5.29332i −0.474422 + 0.248154i
\(456\) 17.6405 + 22.1846i 0.826091 + 1.03889i
\(457\) −27.5901 15.9291i −1.29061 0.745133i −0.311846 0.950133i \(-0.600947\pi\)
−0.978762 + 0.204999i \(0.934281\pi\)
\(458\) −31.2535 + 7.11795i −1.46038 + 0.332600i
\(459\) 3.45347 1.99386i 0.161194 0.0930654i
\(460\) −0.873233 + 11.5072i −0.0407147 + 0.536525i
\(461\) 4.12121 + 7.13815i 0.191944 + 0.332457i 0.945894 0.324474i \(-0.105187\pi\)
−0.753950 + 0.656931i \(0.771854\pi\)
\(462\) 3.78343 12.2451i 0.176021 0.569695i
\(463\) 13.2846i 0.617390i 0.951161 + 0.308695i \(0.0998922\pi\)
−0.951161 + 0.308695i \(0.900108\pi\)
\(464\) −6.85232 + 2.67447i −0.318111 + 0.124159i
\(465\) 5.25638 9.10431i 0.243759 0.422202i
\(466\) 22.5198 5.12884i 1.04321 0.237589i
\(467\) 3.38808i 0.156782i 0.996923 + 0.0783909i \(0.0249782\pi\)
−0.996923 + 0.0783909i \(0.975022\pi\)
\(468\) 9.55518 + 7.12922i 0.441688 + 0.329549i
\(469\) 10.5475i 0.487037i
\(470\) −2.58754 11.3614i −0.119355 0.524063i
\(471\) 13.8407 23.9727i 0.637744 1.10461i
\(472\) 30.1307 + 11.8745i 1.38688 + 0.546570i
\(473\) 21.1663i 0.973227i
\(474\) 14.4052 + 4.45085i 0.661655 + 0.204434i
\(475\) −4.31749 7.47811i −0.198100 0.343119i
\(476\) −4.66469 0.353984i −0.213806 0.0162248i
\(477\) −5.99274 + 3.45991i −0.274389 + 0.158418i
\(478\) −1.99735 8.76996i −0.0913565 0.401129i
\(479\) −29.5093 17.0372i −1.34832 0.778450i −0.360304 0.932835i \(-0.617327\pi\)
−0.988011 + 0.154385i \(0.950660\pi\)
\(480\) 5.43275 3.68530i 0.247970 0.168210i
\(481\) 5.24535 8.26937i 0.239168 0.377051i
\(482\) −12.7639 + 11.8320i −0.581382 + 0.538935i
\(483\) −10.6051 + 18.3686i −0.482550 + 0.835800i
\(484\) 8.12791 + 5.55272i 0.369450 + 0.252397i
\(485\) 14.8416 8.56882i 0.673924 0.389090i
\(486\) 15.2288 14.1170i 0.690793 0.640358i
\(487\) 8.92075 5.15040i 0.404238 0.233387i −0.284073 0.958803i \(-0.591686\pi\)
0.688311 + 0.725416i \(0.258352\pi\)
\(488\) −4.82636 + 12.2465i −0.218479 + 0.554374i
\(489\) 2.42006i 0.109439i
\(490\) 1.26622 4.09813i 0.0572018 0.185134i
\(491\) 8.22556 + 4.74903i 0.371214 + 0.214321i 0.673989 0.738742i \(-0.264580\pi\)
−0.302774 + 0.953062i \(0.597913\pi\)
\(492\) 0.365170 + 0.249473i 0.0164631 + 0.0112471i
\(493\) 1.35797i 0.0611600i
\(494\) −28.5617 33.5091i −1.28505 1.50765i
\(495\) 4.07592 0.183199
\(496\) 28.2873 + 22.6456i 1.27014 + 1.01682i
\(497\) 5.93746 10.2840i 0.266331 0.461299i
\(498\) 2.81339 + 0.869265i 0.126071 + 0.0389527i
\(499\) 23.3056 1.04330 0.521652 0.853158i \(-0.325316\pi\)
0.521652 + 0.853158i \(0.325316\pi\)
\(500\) −1.80275 + 0.866072i −0.0806216 + 0.0387319i
\(501\) −9.17493 15.8914i −0.409906 0.709978i
\(502\) 7.26922 6.73849i 0.324441 0.300754i
\(503\) −7.62610 13.2088i −0.340031 0.588951i 0.644407 0.764682i \(-0.277104\pi\)
−0.984438 + 0.175732i \(0.943771\pi\)
\(504\) −14.6491 + 2.18686i −0.652523 + 0.0974103i
\(505\) 4.58812 + 2.64895i 0.204169 + 0.117877i
\(506\) 13.6769 + 14.7541i 0.608013 + 0.655901i
\(507\) 12.3920 + 8.60461i 0.550349 + 0.382144i
\(508\) −0.595984 + 7.85368i −0.0264425 + 0.348451i
\(509\) 9.44807 16.3645i 0.418778 0.725346i −0.577038 0.816717i \(-0.695792\pi\)
0.995817 + 0.0913714i \(0.0291251\pi\)
\(510\) 0.269128 + 1.18169i 0.0119172 + 0.0523261i
\(511\) −1.63587 2.83341i −0.0723667 0.125343i
\(512\) 9.73126 + 20.4280i 0.430065 + 0.902798i
\(513\) −40.3824 + 23.3148i −1.78293 + 1.02937i
\(514\) −7.71927 + 24.9835i −0.340482 + 1.10198i
\(515\) 7.06565 0.311350
\(516\) −17.9613 + 8.62888i −0.790701 + 0.379865i
\(517\) −17.5921 10.1568i −0.773698 0.446695i
\(518\) 2.70168 + 11.8626i 0.118705 + 0.521211i
\(519\) −10.5122 −0.461432
\(520\) −8.23958 + 6.00910i −0.361330 + 0.263517i
\(521\) 4.53269 0.198581 0.0992904 0.995058i \(-0.468343\pi\)
0.0992904 + 0.995058i \(0.468343\pi\)
\(522\) −0.954758 4.19216i −0.0417886 0.183486i
\(523\) −23.1340 13.3564i −1.01158 0.584036i −0.0999260 0.994995i \(-0.531861\pi\)
−0.911654 + 0.410959i \(0.865194\pi\)
\(524\) −8.37971 17.4426i −0.366069 0.761984i
\(525\) −3.67586 −0.160428
\(526\) −10.9895 + 35.5677i −0.479165 + 1.55082i
\(527\) −5.79332 + 3.34477i −0.252361 + 0.145701i
\(528\) 1.72699 11.3133i 0.0751576 0.492350i
\(529\) −5.14723 8.91527i −0.223793 0.387620i
\(530\) −1.31446 5.77154i −0.0570965 0.250700i
\(531\) −9.46502 + 16.3939i −0.410747 + 0.711435i
\(532\) 54.5455 + 4.13924i 2.36485 + 0.179459i
\(533\) −0.580147 0.367993i −0.0251289 0.0159396i
\(534\) −15.7103 16.9477i −0.679852 0.733398i
\(535\) −10.2327 5.90788i −0.442400 0.255420i
\(536\) 1.39060 + 9.31521i 0.0600647 + 0.402356i
\(537\) 6.59967 + 11.4310i 0.284797 + 0.493282i
\(538\) 5.33394 4.94450i 0.229962 0.213173i
\(539\) −3.73876 6.47573i −0.161040 0.278929i
\(540\) 4.67686 + 9.73501i 0.201260 + 0.418928i
\(541\) −10.6452 −0.457674 −0.228837 0.973465i \(-0.573492\pi\)
−0.228837 + 0.973465i \(0.573492\pi\)
\(542\) −30.3619 9.38104i −1.30415 0.402950i
\(543\) −10.1747 + 17.6231i −0.436638 + 0.756279i
\(544\) −4.16638 + 0.302373i −0.178632 + 0.0129641i
\(545\) 3.12953 0.134054
\(546\) −18.4328 + 3.39729i −0.788853 + 0.145391i
\(547\) 18.7968i 0.803695i −0.915707 0.401847i \(-0.868368\pi\)
0.915707 0.401847i \(-0.131632\pi\)
\(548\) 17.2634 25.2696i 0.737454 1.07946i
\(549\) −6.66324 3.84702i −0.284380 0.164187i
\(550\) −1.02926 + 3.33122i −0.0438879 + 0.142044i
\(551\) 15.8792i 0.676475i
\(552\) −6.94436 + 17.6208i −0.295572 + 0.749990i
\(553\) 25.2003 14.5494i 1.07163 0.618704i
\(554\) 5.69137 5.27584i 0.241803 0.224149i
\(555\) 2.72963 1.57595i 0.115866 0.0668955i
\(556\) −9.95966 + 14.5786i −0.422383 + 0.618272i
\(557\) 10.6352 18.4206i 0.450626 0.780508i −0.547799 0.836610i \(-0.684534\pi\)
0.998425 + 0.0561026i \(0.0178674\pi\)
\(558\) −15.5327 + 14.3987i −0.657554 + 0.609545i
\(559\) 27.4291 14.3473i 1.16013 0.606825i
\(560\) 1.91193 12.5249i 0.0807939 0.529272i
\(561\) 1.82973 + 1.05640i 0.0772514 + 0.0446011i
\(562\) 1.94508 + 8.54045i 0.0820481 + 0.360257i
\(563\) −20.4572 + 11.8110i −0.862168 + 0.497773i −0.864738 0.502224i \(-0.832515\pi\)
0.00256999 + 0.999997i \(0.499182\pi\)
\(564\) 1.44706 19.0689i 0.0609322 0.802945i
\(565\) −9.72386 16.8422i −0.409086 0.708557i
\(566\) −26.2890 8.12263i −1.10501 0.341420i
\(567\) 4.14007i 0.173866i
\(568\) 3.88792 9.86530i 0.163134 0.413939i
\(569\) −15.0749 + 26.1106i −0.631974 + 1.09461i 0.355173 + 0.934800i \(0.384422\pi\)
−0.987148 + 0.159811i \(0.948911\pi\)
\(570\) −3.14699 13.8178i −0.131813 0.578765i
\(571\) 6.49912i 0.271980i 0.990710 + 0.135990i \(0.0434215\pi\)
−0.990710 + 0.135990i \(0.956579\pi\)
\(572\) −2.08254 + 17.6559i −0.0870752 + 0.738230i
\(573\) 0.802353i 0.0335188i
\(574\) 0.832230 0.189539i 0.0347366 0.00791121i
\(575\) 2.88507 4.99708i 0.120316 0.208393i
\(576\) −12.6493 + 3.86273i −0.527055 + 0.160947i
\(577\) 4.08088i 0.169889i 0.996386 + 0.0849446i \(0.0270713\pi\)
−0.996386 + 0.0849446i \(0.972929\pi\)
\(578\) −6.86954 + 22.2334i −0.285735 + 0.924786i
\(579\) 3.16953 + 5.48979i 0.131721 + 0.228148i
\(580\) 3.66733 + 0.278299i 0.152278 + 0.0115557i
\(581\) 4.92170 2.84155i 0.204187 0.117887i
\(582\) 27.4239 6.24576i 1.13676 0.258895i
\(583\) −8.93668 5.15960i −0.370120 0.213689i
\(584\) −1.81831 2.28671i −0.0752423 0.0946245i
\(585\) −2.76280 5.28193i −0.114228 0.218381i
\(586\) 31.4564 + 33.9339i 1.29945 + 1.40180i
\(587\) 7.83029 13.5625i 0.323191 0.559783i −0.657954 0.753058i \(-0.728578\pi\)
0.981145 + 0.193275i \(0.0619111\pi\)
\(588\) 3.97098 5.81260i 0.163761 0.239708i
\(589\) 67.7429 39.1114i 2.79130 1.61156i
\(590\) −11.0085 11.8756i −0.453213 0.488909i
\(591\) −14.0271 + 8.09858i −0.577000 + 0.333131i
\(592\) 3.95002 + 10.1204i 0.162345 + 0.415948i
\(593\) 35.5283i 1.45897i −0.683996 0.729486i \(-0.739759\pi\)
0.683996 0.729486i \(-0.260241\pi\)
\(594\) 17.9889 + 5.55811i 0.738093 + 0.228052i
\(595\) 2.02568 + 1.16953i 0.0830447 + 0.0479459i
\(596\) 21.7361 + 14.8494i 0.890347 + 0.608256i
\(597\) 28.9320i 1.18411i
\(598\) 9.84897 27.7246i 0.402754 1.13374i
\(599\) 15.0781 0.616075 0.308037 0.951374i \(-0.400328\pi\)
0.308037 + 0.951374i \(0.400328\pi\)
\(600\) −3.24641 + 0.484633i −0.132534 + 0.0197850i
\(601\) −9.78938 + 16.9557i −0.399317 + 0.691637i −0.993642 0.112588i \(-0.964086\pi\)
0.594325 + 0.804225i \(0.297419\pi\)
\(602\) −11.3530 + 36.7441i −0.462713 + 1.49758i
\(603\) −5.50517 −0.224188
\(604\) −14.9759 31.1729i −0.609363 1.26841i
\(605\) −2.46089 4.26239i −0.100049 0.173291i
\(606\) 5.91102 + 6.37658i 0.240119 + 0.259031i
\(607\) 12.4880 + 21.6299i 0.506874 + 0.877932i 0.999968 + 0.00795583i \(0.00253244\pi\)
−0.493094 + 0.869976i \(0.664134\pi\)
\(608\) 48.7187 3.53573i 1.97580 0.143393i
\(609\) 5.85405 + 3.37984i 0.237218 + 0.136958i
\(610\) 4.82677 4.47437i 0.195430 0.181162i
\(611\) −1.23751 + 29.6820i −0.0500642 + 1.20080i
\(612\) 0.184759 2.43470i 0.00746844 0.0984167i
\(613\) 5.34922 9.26513i 0.216053 0.374215i −0.737545 0.675298i \(-0.764015\pi\)
0.953598 + 0.301083i \(0.0973482\pi\)
\(614\) −29.1960 + 6.64934i −1.17825 + 0.268345i
\(615\) −0.110563 0.191500i −0.00445832 0.00772204i
\(616\) −13.7470 17.2882i −0.553882 0.696561i
\(617\) 17.2769 9.97481i 0.695541 0.401571i −0.110143 0.993916i \(-0.535131\pi\)
0.805685 + 0.592345i \(0.201798\pi\)
\(618\) 11.0793 + 3.42322i 0.445675 + 0.137702i
\(619\) −14.3270 −0.575850 −0.287925 0.957653i \(-0.592965\pi\)
−0.287925 + 0.957653i \(0.592965\pi\)
\(620\) −7.84559 16.3308i −0.315087 0.655862i
\(621\) −26.9847 15.5796i −1.08286 0.625188i
\(622\) −23.5457 + 5.36249i −0.944096 + 0.215016i
\(623\) −44.6007 −1.78689
\(624\) −15.8314 + 5.43060i −0.633764 + 0.217398i
\(625\) 1.00000 0.0400000
\(626\) 34.5599 7.87096i 1.38129 0.314587i
\(627\) −21.3956 12.3528i −0.854458 0.493321i
\(628\) −20.6584 43.0010i −0.824359 1.71593i
\(629\) −2.00564 −0.0799702
\(630\) 7.07567 + 2.18620i 0.281902 + 0.0871004i
\(631\) 21.3141 12.3057i 0.848500 0.489882i −0.0116443 0.999932i \(-0.503707\pi\)
0.860145 + 0.510050i \(0.170373\pi\)
\(632\) 20.3379 16.1721i 0.808999 0.643290i
\(633\) 5.33855 + 9.24665i 0.212188 + 0.367521i
\(634\) 25.1495 5.72776i 0.998813 0.227478i
\(635\) 1.96907 3.41052i 0.0781400 0.135342i
\(636\) 0.735100 9.68691i 0.0291486 0.384111i
\(637\) −5.85754 + 9.23449i −0.232084 + 0.365884i
\(638\) 4.70212 4.35882i 0.186159 0.172567i
\(639\) 5.36764 + 3.09901i 0.212340 + 0.122595i
\(640\) 0.0372585 11.3136i 0.00147277 0.447211i
\(641\) −10.8642 18.8174i −0.429112 0.743243i 0.567683 0.823247i \(-0.307840\pi\)
−0.996795 + 0.0800040i \(0.974507\pi\)
\(642\) −13.1832 14.2215i −0.520298 0.561278i
\(643\) 8.88679 + 15.3924i 0.350461 + 0.607016i 0.986330 0.164781i \(-0.0526916\pi\)
−0.635869 + 0.771797i \(0.719358\pi\)
\(644\) 15.8290 + 32.9486i 0.623752 + 1.29836i
\(645\) 9.96325 0.392302
\(646\) −2.66210 + 8.61591i −0.104739 + 0.338989i
\(647\) 19.8313 34.3488i 0.779649 1.35039i −0.152495 0.988304i \(-0.548731\pi\)
0.932144 0.362088i \(-0.117936\pi\)
\(648\) 0.545834 + 3.65638i 0.0214424 + 0.143636i
\(649\) −28.2295 −1.10810
\(650\) 5.01456 0.924215i 0.196687 0.0362507i
\(651\) 33.2990i 1.30509i
\(652\) −3.44381 2.35270i −0.134870 0.0921387i
\(653\) 11.7391 + 6.77755i 0.459385 + 0.265226i 0.711785 0.702397i \(-0.247887\pi\)
−0.252401 + 0.967623i \(0.581220\pi\)
\(654\) 4.90725 + 1.51622i 0.191889 + 0.0592887i
\(655\) 9.67553i 0.378054i
\(656\) 0.710011 0.277118i 0.0277213 0.0108196i
\(657\) 1.47888 0.853829i 0.0576964 0.0333111i
\(658\) −25.0915 27.0678i −0.978169 1.05521i
\(659\) −1.49368 + 0.862377i −0.0581856 + 0.0335934i −0.528811 0.848740i \(-0.677362\pi\)
0.470625 + 0.882333i \(0.344028\pi\)
\(660\) −3.22787 + 4.72486i −0.125645 + 0.183915i
\(661\) −12.9412 + 22.4148i −0.503355 + 0.871836i 0.496638 + 0.867958i \(0.334568\pi\)
−0.999992 + 0.00387783i \(0.998766\pi\)
\(662\) 25.8655 + 27.9026i 1.00529 + 1.08447i
\(663\) 0.128712 3.08719i 0.00499875 0.119897i
\(664\) 3.97206 3.15845i 0.154146 0.122572i
\(665\) −23.6868 13.6756i −0.918535 0.530317i
\(666\) −6.19156 + 1.41012i −0.239918 + 0.0546410i
\(667\) −9.18932 + 5.30546i −0.355812 + 0.205428i
\(668\) −31.5335 2.39294i −1.22007 0.0925858i
\(669\) 2.44285 + 4.23114i 0.0944460 + 0.163585i
\(670\) 1.39018 4.49934i 0.0537074 0.173825i
\(671\) 11.4738i 0.442940i
\(672\) 9.06615 18.7133i 0.349734 0.721882i
\(673\) −6.92986 + 12.0029i −0.267127 + 0.462677i −0.968119 0.250492i \(-0.919408\pi\)
0.700992 + 0.713169i \(0.252741\pi\)
\(674\) −4.15012 + 0.945183i −0.159857 + 0.0364071i
\(675\) 5.40008i 0.207849i
\(676\) 24.2917 9.26907i 0.934294 0.356503i
\(677\) 32.0465i 1.23165i 0.787884 + 0.615823i \(0.211176\pi\)
−0.787884 + 0.615823i \(0.788824\pi\)
\(678\) −7.08766 31.1205i −0.272200 1.19518i
\(679\) 27.1416 47.0107i 1.04160 1.80410i
\(680\) 1.94321 + 0.765820i 0.0745186 + 0.0293678i
\(681\) 10.1616i 0.389394i
\(682\) −30.1770 9.32392i −1.15554 0.357031i
\(683\) −4.02679 6.97461i −0.154081 0.266876i 0.778643 0.627467i \(-0.215908\pi\)
−0.932724 + 0.360591i \(0.882575\pi\)
\(684\) −2.16044 + 28.4696i −0.0826065 + 1.08856i
\(685\) −13.2517 + 7.65088i −0.506322 + 0.292325i
\(686\) 3.94611 + 17.3266i 0.150663 + 0.661533i
\(687\) 22.7793 + 13.1516i 0.869084 + 0.501766i
\(688\) −5.18220 + 33.9480i −0.197569 + 1.29426i
\(689\) −0.628647 + 15.0783i −0.0239496 + 0.574437i
\(690\) 6.94496 6.43790i 0.264390 0.245087i
\(691\) −9.06234 + 15.6964i −0.344748 + 0.597121i −0.985308 0.170787i \(-0.945369\pi\)
0.640560 + 0.767908i \(0.278702\pi\)
\(692\) −10.2195 + 14.9590i −0.388489 + 0.568658i
\(693\) 11.1807 6.45521i 0.424722 0.245213i
\(694\) −2.68869 + 2.49239i −0.102061 + 0.0946097i
\(695\) 7.64524 4.41398i 0.290000 0.167432i
\(696\) 5.61572 + 2.21316i 0.212864 + 0.0838897i
\(697\) 0.140708i 0.00532970i
\(698\) −8.17387 + 26.4549i −0.309386 + 1.00133i
\(699\) −16.4136 9.47641i −0.620820 0.358431i
\(700\) −3.57354 + 5.23084i −0.135067 + 0.197707i
\(701\) 0.168502i 0.00636422i −0.999995 0.00318211i \(-0.998987\pi\)
0.999995 0.00318211i \(-0.00101290\pi\)
\(702\) −4.99084 27.0790i −0.188367 1.02203i
\(703\) 23.4526 0.884530
\(704\) −14.4202 13.4560i −0.543483 0.507141i
\(705\) −4.78093 + 8.28082i −0.180060 + 0.311874i
\(706\) 7.33097 + 2.26508i 0.275905 + 0.0852475i
\(707\) 16.7810 0.631116
\(708\) −11.5083 23.9550i −0.432510 0.900282i
\(709\) −13.2652 22.9759i −0.498184 0.862879i 0.501814 0.864975i \(-0.332666\pi\)
−0.999998 + 0.00209603i \(0.999333\pi\)
\(710\) −3.88825 + 3.60437i −0.145924 + 0.135270i
\(711\) 7.59395 + 13.1531i 0.284795 + 0.493280i
\(712\) −39.3900 + 5.88024i −1.47620 + 0.220371i
\(713\) 45.2677 + 26.1353i 1.69529 + 0.978776i
\(714\) 2.60974 + 2.81529i 0.0976672 + 0.105360i
\(715\) 4.76139 7.50640i 0.178066 0.280723i
\(716\) 22.6825 + 1.72128i 0.847684 + 0.0643273i
\(717\) −3.69044 + 6.39203i −0.137822 + 0.238715i
\(718\) 7.57400 + 33.2560i 0.282659 + 1.24110i
\(719\) 19.5787 + 33.9113i 0.730163 + 1.26468i 0.956813 + 0.290703i \(0.0938890\pi\)
−0.226651 + 0.973976i \(0.572778\pi\)
\(720\) 6.53725 + 0.997917i 0.243629 + 0.0371902i
\(721\) 19.3820 11.1902i 0.721822 0.416744i
\(722\) 23.1965 75.0758i 0.863284 2.79403i
\(723\) 14.2820 0.531155
\(724\) 15.1866 + 31.6114i 0.564406 + 1.17483i
\(725\) −1.59257 0.919468i −0.0591464 0.0341482i
\(726\) −1.79373 7.87591i −0.0665714 0.292302i
\(727\) −18.8156 −0.697832 −0.348916 0.937154i \(-0.613450\pi\)
−0.348916 + 0.937154i \(0.613450\pi\)
\(728\) −13.0853 + 29.5331i −0.484974 + 1.09457i
\(729\) −20.9612 −0.776342
\(730\) 0.324380 + 1.42429i 0.0120058 + 0.0527153i
\(731\) −5.49050 3.16994i −0.203073 0.117244i
\(732\) 9.73640 4.67752i 0.359868 0.172886i
\(733\) −19.8512 −0.733219 −0.366610 0.930375i \(-0.619482\pi\)
−0.366610 + 0.930375i \(0.619482\pi\)
\(734\) 0.932268 3.01730i 0.0344106 0.111370i
\(735\) −3.04821 + 1.75988i −0.112435 + 0.0649143i
\(736\) 18.3237 + 27.0123i 0.675422 + 0.995686i
\(737\) −4.10480 7.10972i −0.151202 0.261890i
\(738\) 0.0989284 + 0.434376i 0.00364161 + 0.0159896i
\(739\) −21.9843 + 38.0780i −0.808707 + 1.40072i 0.105052 + 0.994467i \(0.466499\pi\)
−0.913760 + 0.406255i \(0.866834\pi\)
\(740\) 0.411030 5.41642i 0.0151098 0.199111i
\(741\) −1.50506 + 36.0994i −0.0552899 + 1.32614i
\(742\) −12.7464 13.7503i −0.467934 0.504789i
\(743\) −17.2021 9.93161i −0.631082 0.364356i 0.150089 0.988673i \(-0.452044\pi\)
−0.781171 + 0.624317i \(0.785377\pi\)
\(744\) −4.39020 29.4087i −0.160953 1.07817i
\(745\) −6.58106 11.3987i −0.241111 0.417617i
\(746\) −13.9846 + 12.9636i −0.512013 + 0.474631i
\(747\) 1.48312 + 2.56884i 0.0542646 + 0.0939890i
\(748\) 3.28208 1.57676i 0.120005 0.0576522i
\(749\) −37.4263 −1.36753
\(750\) 1.56805 + 0.484488i 0.0572571 + 0.0176910i
\(751\) −9.68597 + 16.7766i −0.353446 + 0.612186i −0.986851 0.161634i \(-0.948324\pi\)
0.633405 + 0.773821i \(0.281657\pi\)
\(752\) −25.7287 20.5973i −0.938230 0.751106i
\(753\) −8.13379 −0.296412
\(754\) −8.83580 3.13886i −0.321781 0.114310i
\(755\) 17.2918i 0.629313i
\(756\) 28.2470 + 19.2974i 1.02733 + 0.701840i
\(757\) 14.7095 + 8.49256i 0.534627 + 0.308667i 0.742899 0.669404i \(-0.233450\pi\)
−0.208271 + 0.978071i \(0.566784\pi\)
\(758\) 2.55478 8.26858i 0.0927938 0.300329i
\(759\) 16.5089i 0.599236i
\(760\) −22.7225 8.95495i −0.824231 0.324830i
\(761\) 45.5367 26.2906i 1.65070 0.953035i 0.673922 0.738803i \(-0.264608\pi\)
0.976783 0.214232i \(-0.0687249\pi\)
\(762\) 4.73995 4.39389i 0.171710 0.159174i
\(763\) 8.58468 4.95637i 0.310786 0.179433i
\(764\) 1.14177 + 0.780019i 0.0413077 + 0.0282201i
\(765\) −0.610424 + 1.05729i −0.0220699 + 0.0382262i
\(766\) −21.9910 + 20.3855i −0.794569 + 0.736557i
\(767\) 19.1350 + 36.5822i 0.690923 + 1.32091i
\(768\) 5.53975 17.7223i 0.199898 0.639499i
\(769\) 42.8525 +