Properties

Label 520.2.ca.a.101.8
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.8
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.a.381.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.936579 - 1.05963i) q^{2} +(0.700368 - 0.404358i) q^{3} +(-0.245639 + 1.98486i) q^{4} -1.00000 q^{5} +(-1.08442 - 0.363419i) q^{6} +(3.38125 + 1.95217i) q^{7} +(2.33328 - 1.59869i) q^{8} +(-1.17299 + 2.03168i) q^{9} +O(q^{10})\) \(q+(-0.936579 - 1.05963i) q^{2} +(0.700368 - 0.404358i) q^{3} +(-0.245639 + 1.98486i) q^{4} -1.00000 q^{5} +(-1.08442 - 0.363419i) q^{6} +(3.38125 + 1.95217i) q^{7} +(2.33328 - 1.59869i) q^{8} +(-1.17299 + 2.03168i) q^{9} +(0.936579 + 1.05963i) q^{10} +(-0.223776 - 0.387591i) q^{11} +(0.630555 + 1.48946i) q^{12} +(-3.01089 + 1.98356i) q^{13} +(-1.09823 - 5.41124i) q^{14} +(-0.700368 + 0.404358i) q^{15} +(-3.87932 - 0.975117i) q^{16} +(-4.00797 + 6.94201i) q^{17} +(3.25143 - 0.659890i) q^{18} +(-0.861493 + 1.49215i) q^{19} +(0.245639 - 1.98486i) q^{20} +3.15749 q^{21} +(-0.201120 + 0.600130i) q^{22} +(-0.570237 - 0.987679i) q^{23} +(0.987712 - 2.06315i) q^{24} +1.00000 q^{25} +(4.92179 + 1.33268i) q^{26} +4.32338i q^{27} +(-4.70534 + 6.23177i) q^{28} +(8.04039 - 4.64212i) q^{29} +(1.08442 + 0.363419i) q^{30} +5.19873i q^{31} +(2.60003 + 5.02393i) q^{32} +(-0.313451 - 0.180971i) q^{33} +(11.1098 - 2.25477i) q^{34} +(-3.38125 - 1.95217i) q^{35} +(-3.74446 - 2.82728i) q^{36} +(2.59519 + 4.49501i) q^{37} +(2.38799 - 0.484651i) q^{38} +(-1.30666 + 2.60670i) q^{39} +(-2.33328 + 1.59869i) q^{40} +(4.37099 - 2.52359i) q^{41} +(-2.95724 - 3.34578i) q^{42} +(0.587643 + 0.339276i) q^{43} +(0.824282 - 0.348956i) q^{44} +(1.17299 - 2.03168i) q^{45} +(-0.512504 + 1.52928i) q^{46} -8.71152i q^{47} +(-3.11125 + 0.885693i) q^{48} +(4.12190 + 7.13934i) q^{49} +(-0.936579 - 1.05963i) q^{50} +6.48262i q^{51} +(-3.19750 - 6.46344i) q^{52} -11.8993i q^{53} +(4.58119 - 4.04918i) q^{54} +(0.223776 + 0.387591i) q^{55} +(11.0103 - 0.850622i) q^{56} +1.39340i q^{57} +(-12.4494 - 4.17214i) q^{58} +(-4.67021 + 8.08904i) q^{59} +(-0.630555 - 1.48946i) q^{60} +(-6.84304 - 3.95083i) q^{61} +(5.50874 - 4.86902i) q^{62} +(-7.93234 + 4.57974i) q^{63} +(2.88838 - 7.46038i) q^{64} +(3.01089 - 1.98356i) q^{65} +(0.101809 + 0.501636i) q^{66} +(5.35905 + 9.28215i) q^{67} +(-12.7944 - 9.66049i) q^{68} +(-0.798751 - 0.461159i) q^{69} +(1.09823 + 5.41124i) q^{70} +(9.05690 + 5.22901i) q^{71} +(0.511110 + 6.61572i) q^{72} -0.118228i q^{73} +(2.33245 - 6.95988i) q^{74} +(0.700368 - 0.404358i) q^{75} +(-2.75009 - 2.07647i) q^{76} -1.74739i q^{77} +(3.98594 - 1.05680i) q^{78} +17.2905 q^{79} +(3.87932 + 0.975117i) q^{80} +(-1.77078 - 3.06708i) q^{81} +(-6.76786 - 2.26810i) q^{82} -10.1833 q^{83} +(-0.775603 + 6.26717i) q^{84} +(4.00797 - 6.94201i) q^{85} +(-0.190867 - 0.940443i) q^{86} +(3.75415 - 6.50238i) q^{87} +(-1.14177 - 0.546610i) q^{88} +(7.70585 - 4.44897i) q^{89} +(-3.25143 + 0.659890i) q^{90} +(-14.0528 + 0.829158i) q^{91} +(2.10048 - 0.889227i) q^{92} +(2.10215 + 3.64103i) q^{93} +(-9.23100 + 8.15902i) q^{94} +(0.861493 - 1.49215i) q^{95} +(3.85244 + 2.46726i) q^{96} +(7.84192 + 4.52754i) q^{97} +(3.70458 - 11.0542i) q^{98} +1.04995 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9} + 8 q^{11} + 6 q^{12} - 4 q^{14} - 10 q^{16} - 18 q^{18} + 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 2 q^{24} + 56 q^{25} + 11 q^{26} + 6 q^{28} + 5 q^{30} + 16 q^{34} - 21 q^{36} - 4 q^{37} - 24 q^{39} + 29 q^{42} - 24 q^{44} - 28 q^{45} - 11 q^{46} + 3 q^{48} + 20 q^{49} + 18 q^{52} - 49 q^{54} - 8 q^{55} + 61 q^{56} - 47 q^{58} + 16 q^{59} - 6 q^{60} - 2 q^{62} - 30 q^{64} + 14 q^{66} + 36 q^{67} + 33 q^{68} + 4 q^{70} - 51 q^{72} - 2 q^{74} - 48 q^{76} - 35 q^{78} + 10 q^{80} - 28 q^{81} - 21 q^{82} - 40 q^{83} - 61 q^{84} + 28 q^{86} - 36 q^{87} + 41 q^{88} + 18 q^{90} - 16 q^{91} - 18 q^{92} - 41 q^{94} - 16 q^{95} + 48 q^{96} + 24 q^{97} + 28 q^{98} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.936579 1.05963i −0.662261 0.749273i
\(3\) 0.700368 0.404358i 0.404358 0.233456i −0.284005 0.958823i \(-0.591663\pi\)
0.688362 + 0.725367i \(0.258330\pi\)
\(4\) −0.245639 + 1.98486i −0.122820 + 0.992429i
\(5\) −1.00000 −0.447214
\(6\) −1.08442 0.363419i −0.442713 0.148365i
\(7\) 3.38125 + 1.95217i 1.27799 + 0.737849i 0.976479 0.215613i \(-0.0691749\pi\)
0.301513 + 0.953462i \(0.402508\pi\)
\(8\) 2.33328 1.59869i 0.824939 0.565222i
\(9\) −1.17299 + 2.03168i −0.390997 + 0.677226i
\(10\) 0.936579 + 1.05963i 0.296172 + 0.335085i
\(11\) −0.223776 0.387591i −0.0674710 0.116863i 0.830316 0.557292i \(-0.188160\pi\)
−0.897787 + 0.440429i \(0.854826\pi\)
\(12\) 0.630555 + 1.48946i 0.182025 + 0.429969i
\(13\) −3.01089 + 1.98356i −0.835072 + 0.550141i
\(14\) −1.09823 5.41124i −0.293515 1.44621i
\(15\) −0.700368 + 0.404358i −0.180834 + 0.104405i
\(16\) −3.87932 0.975117i −0.969831 0.243779i
\(17\) −4.00797 + 6.94201i −0.972076 + 1.68369i −0.282812 + 0.959175i \(0.591267\pi\)
−0.689264 + 0.724510i \(0.742066\pi\)
\(18\) 3.25143 0.659890i 0.766369 0.155538i
\(19\) −0.861493 + 1.49215i −0.197640 + 0.342323i −0.947763 0.318976i \(-0.896661\pi\)
0.750123 + 0.661299i \(0.229994\pi\)
\(20\) 0.245639 1.98486i 0.0549266 0.443828i
\(21\) 3.15749 0.689021
\(22\) −0.201120 + 0.600130i −0.0428790 + 0.127948i
\(23\) −0.570237 0.987679i −0.118903 0.205945i 0.800430 0.599426i \(-0.204604\pi\)
−0.919333 + 0.393480i \(0.871271\pi\)
\(24\) 0.987712 2.06315i 0.201616 0.421139i
\(25\) 1.00000 0.200000
\(26\) 4.92179 + 1.33268i 0.965242 + 0.261359i
\(27\) 4.32338i 0.832034i
\(28\) −4.70534 + 6.23177i −0.889225 + 1.17769i
\(29\) 8.04039 4.64212i 1.49306 0.862020i 0.493094 0.869976i \(-0.335866\pi\)
0.999968 + 0.00795571i \(0.00253241\pi\)
\(30\) 1.08442 + 0.363419i 0.197987 + 0.0663510i
\(31\) 5.19873i 0.933720i 0.884331 + 0.466860i \(0.154615\pi\)
−0.884331 + 0.466860i \(0.845385\pi\)
\(32\) 2.60003 + 5.02393i 0.459624 + 0.888113i
\(33\) −0.313451 0.180971i −0.0545648 0.0315030i
\(34\) 11.1098 2.25477i 1.90531 0.386690i
\(35\) −3.38125 1.95217i −0.571535 0.329976i
\(36\) −3.74446 2.82728i −0.624077 0.471213i
\(37\) 2.59519 + 4.49501i 0.426647 + 0.738974i 0.996573 0.0827219i \(-0.0263613\pi\)
−0.569926 + 0.821696i \(0.693028\pi\)
\(38\) 2.38799 0.484651i 0.387382 0.0786207i
\(39\) −1.30666 + 2.60670i −0.209234 + 0.417406i
\(40\) −2.33328 + 1.59869i −0.368924 + 0.252775i
\(41\) 4.37099 2.52359i 0.682635 0.394119i −0.118212 0.992988i \(-0.537716\pi\)
0.800847 + 0.598869i \(0.204383\pi\)
\(42\) −2.95724 3.34578i −0.456312 0.516265i
\(43\) 0.587643 + 0.339276i 0.0896147 + 0.0517391i 0.544138 0.838996i \(-0.316857\pi\)
−0.454523 + 0.890735i \(0.650190\pi\)
\(44\) 0.824282 0.348956i 0.124265 0.0526071i
\(45\) 1.17299 2.03168i 0.174859 0.302865i
\(46\) −0.512504 + 1.52928i −0.0755646 + 0.225480i
\(47\) 8.71152i 1.27071i −0.772222 0.635353i \(-0.780855\pi\)
0.772222 0.635353i \(-0.219145\pi\)
\(48\) −3.11125 + 0.885693i −0.449070 + 0.127839i
\(49\) 4.12190 + 7.13934i 0.588843 + 1.01991i
\(50\) −0.936579 1.05963i −0.132452 0.149855i
\(51\) 6.48262i 0.907748i
\(52\) −3.19750 6.46344i −0.443413 0.896317i
\(53\) 11.8993i 1.63450i −0.576286 0.817248i \(-0.695499\pi\)
0.576286 0.817248i \(-0.304501\pi\)
\(54\) 4.58119 4.04918i 0.623420 0.551024i
\(55\) 0.223776 + 0.387591i 0.0301739 + 0.0522628i
\(56\) 11.0103 0.850622i 1.47131 0.113669i
\(57\) 1.39340i 0.184561i
\(58\) −12.4494 4.17214i −1.63469 0.547829i
\(59\) −4.67021 + 8.08904i −0.608009 + 1.05310i 0.383559 + 0.923516i \(0.374698\pi\)
−0.991568 + 0.129586i \(0.958635\pi\)
\(60\) −0.630555 1.48946i −0.0814043 0.192288i
\(61\) −6.84304 3.95083i −0.876162 0.505852i −0.00677098 0.999977i \(-0.502155\pi\)
−0.869391 + 0.494125i \(0.835489\pi\)
\(62\) 5.50874 4.86902i 0.699611 0.618367i
\(63\) −7.93234 + 4.57974i −0.999381 + 0.576993i
\(64\) 2.88838 7.46038i 0.361048 0.932547i
\(65\) 3.01089 1.98356i 0.373455 0.246031i
\(66\) 0.101809 + 0.501636i 0.0125318 + 0.0617472i
\(67\) 5.35905 + 9.28215i 0.654713 + 1.13400i 0.981966 + 0.189059i \(0.0605437\pi\)
−0.327253 + 0.944937i \(0.606123\pi\)
\(68\) −12.7944 9.66049i −1.55155 1.17151i
\(69\) −0.798751 0.461159i −0.0961583 0.0555170i
\(70\) 1.09823 + 5.41124i 0.131264 + 0.646766i
\(71\) 9.05690 + 5.22901i 1.07486 + 0.620569i 0.929504 0.368811i \(-0.120235\pi\)
0.145352 + 0.989380i \(0.453568\pi\)
\(72\) 0.511110 + 6.61572i 0.0602349 + 0.779670i
\(73\) 0.118228i 0.0138376i −0.999976 0.00691879i \(-0.997798\pi\)
0.999976 0.00691879i \(-0.00220234\pi\)
\(74\) 2.33245 6.95988i 0.271142 0.809069i
\(75\) 0.700368 0.404358i 0.0808715 0.0466912i
\(76\) −2.75009 2.07647i −0.315457 0.238188i
\(77\) 1.74739i 0.199134i
\(78\) 3.98594 1.05680i 0.451319 0.119659i
\(79\) 17.2905 1.94533 0.972666 0.232210i \(-0.0745957\pi\)
0.972666 + 0.232210i \(0.0745957\pi\)
\(80\) 3.87932 + 0.975117i 0.433721 + 0.109021i
\(81\) −1.77078 3.06708i −0.196753 0.340787i
\(82\) −6.76786 2.26810i −0.747385 0.250470i
\(83\) −10.1833 −1.11776 −0.558879 0.829250i \(-0.688768\pi\)
−0.558879 + 0.829250i \(0.688768\pi\)
\(84\) −0.775603 + 6.26717i −0.0846252 + 0.683805i
\(85\) 4.00797 6.94201i 0.434726 0.752967i
\(86\) −0.190867 0.940443i −0.0205817 0.101411i
\(87\) 3.75415 6.50238i 0.402488 0.697129i
\(88\) −1.14177 0.546610i −0.121713 0.0582689i
\(89\) 7.70585 4.44897i 0.816818 0.471590i −0.0324998 0.999472i \(-0.510347\pi\)
0.849318 + 0.527882i \(0.177013\pi\)
\(90\) −3.25143 + 0.659890i −0.342731 + 0.0695585i
\(91\) −14.0528 + 0.829158i −1.47314 + 0.0869194i
\(92\) 2.10048 0.889227i 0.218990 0.0927083i
\(93\) 2.10215 + 3.64103i 0.217982 + 0.377557i
\(94\) −9.23100 + 8.15902i −0.952105 + 0.841539i
\(95\) 0.861493 1.49215i 0.0883873 0.153091i
\(96\) 3.85244 + 2.46726i 0.393188 + 0.251813i
\(97\) 7.84192 + 4.52754i 0.796227 + 0.459702i 0.842150 0.539243i \(-0.181290\pi\)
−0.0459234 + 0.998945i \(0.514623\pi\)
\(98\) 3.70458 11.0542i 0.374220 1.11665i
\(99\) 1.04995 0.105524
\(100\) −0.245639 + 1.98486i −0.0245639 + 0.198486i
\(101\) 0.0227944 0.0131604i 0.00226813 0.00130951i −0.498866 0.866679i \(-0.666250\pi\)
0.501134 + 0.865370i \(0.332917\pi\)
\(102\) 6.86919 6.07148i 0.680151 0.601167i
\(103\) −13.0895 −1.28974 −0.644872 0.764291i \(-0.723089\pi\)
−0.644872 + 0.764291i \(0.723089\pi\)
\(104\) −3.85415 + 9.44169i −0.377931 + 0.925834i
\(105\) −3.15749 −0.308140
\(106\) −12.6089 + 11.1446i −1.22468 + 1.08246i
\(107\) −4.81312 + 2.77886i −0.465302 + 0.268642i −0.714271 0.699869i \(-0.753242\pi\)
0.248969 + 0.968511i \(0.419908\pi\)
\(108\) −8.58129 1.06199i −0.825735 0.102190i
\(109\) −0.584348 −0.0559704 −0.0279852 0.999608i \(-0.508909\pi\)
−0.0279852 + 0.999608i \(0.508909\pi\)
\(110\) 0.201120 0.600130i 0.0191761 0.0572201i
\(111\) 3.63518 + 2.09877i 0.345036 + 0.199207i
\(112\) −11.2134 10.8702i −1.05956 1.02714i
\(113\) −5.65275 + 9.79084i −0.531766 + 0.921045i 0.467547 + 0.883968i \(0.345138\pi\)
−0.999312 + 0.0370767i \(0.988195\pi\)
\(114\) 1.47650 1.30503i 0.138287 0.122228i
\(115\) 0.570237 + 0.987679i 0.0531749 + 0.0921016i
\(116\) 7.23892 + 17.0993i 0.672117 + 1.58763i
\(117\) −0.498213 8.44386i −0.0460598 0.780636i
\(118\) 12.9454 2.62732i 1.19172 0.241865i
\(119\) −27.1039 + 15.6485i −2.48461 + 1.43449i
\(120\) −0.987712 + 2.06315i −0.0901653 + 0.188339i
\(121\) 5.39985 9.35281i 0.490895 0.850256i
\(122\) 2.22262 + 10.9514i 0.201227 + 0.991491i
\(123\) 2.04087 3.53489i 0.184019 0.318730i
\(124\) −10.3187 1.27701i −0.926651 0.114679i
\(125\) −1.00000 −0.0894427
\(126\) 12.2821 + 4.11607i 1.09418 + 0.366689i
\(127\) −5.85718 10.1449i −0.519740 0.900217i −0.999737 0.0229463i \(-0.992695\pi\)
0.479996 0.877271i \(-0.340638\pi\)
\(128\) −10.6105 + 3.92661i −0.937840 + 0.347067i
\(129\) 0.548755 0.0483152
\(130\) −4.92179 1.33268i −0.431669 0.116883i
\(131\) 11.7108i 1.02318i −0.859229 0.511591i \(-0.829056\pi\)
0.859229 0.511591i \(-0.170944\pi\)
\(132\) 0.436198 0.577702i 0.0379661 0.0502825i
\(133\) −5.82584 + 3.36355i −0.505165 + 0.291657i
\(134\) 4.81649 14.3721i 0.416081 1.24156i
\(135\) 4.32338i 0.372097i
\(136\) 1.74640 + 22.6052i 0.149753 + 1.93838i
\(137\) −6.49995 3.75275i −0.555329 0.320619i 0.195940 0.980616i \(-0.437224\pi\)
−0.751268 + 0.659997i \(0.770558\pi\)
\(138\) 0.259435 + 1.27829i 0.0220846 + 0.108816i
\(139\) −7.07331 4.08378i −0.599950 0.346381i 0.169072 0.985604i \(-0.445923\pi\)
−0.769022 + 0.639222i \(0.779256\pi\)
\(140\) 4.70534 6.23177i 0.397674 0.526681i
\(141\) −3.52257 6.10127i −0.296654 0.513819i
\(142\) −2.94169 14.4944i −0.246861 1.21634i
\(143\) 1.44258 + 0.723122i 0.120634 + 0.0604705i
\(144\) 6.53153 6.73773i 0.544294 0.561478i
\(145\) −8.04039 + 4.64212i −0.667718 + 0.385507i
\(146\) −0.125279 + 0.110730i −0.0103681 + 0.00916410i
\(147\) 5.77369 + 3.33344i 0.476206 + 0.274938i
\(148\) −9.55943 + 4.04694i −0.785780 + 0.332656i
\(149\) 2.65141 4.59238i 0.217212 0.376223i −0.736742 0.676173i \(-0.763637\pi\)
0.953955 + 0.299951i \(0.0969703\pi\)
\(150\) −1.08442 0.363419i −0.0885425 0.0296731i
\(151\) 4.32338i 0.351831i −0.984405 0.175916i \(-0.943711\pi\)
0.984405 0.175916i \(-0.0562886\pi\)
\(152\) 0.375381 + 4.85886i 0.0304474 + 0.394106i
\(153\) −9.40262 16.2858i −0.760157 1.31663i
\(154\) −1.85159 + 1.63657i −0.149205 + 0.131879i
\(155\) 5.19873i 0.417572i
\(156\) −4.85296 3.23385i −0.388548 0.258915i
\(157\) 9.05130i 0.722372i 0.932494 + 0.361186i \(0.117628\pi\)
−0.932494 + 0.361186i \(0.882372\pi\)
\(158\) −16.1939 18.3215i −1.28832 1.45758i
\(159\) −4.81158 8.33390i −0.381583 0.660921i
\(160\) −2.60003 5.02393i −0.205550 0.397176i
\(161\) 4.45279i 0.350929i
\(162\) −1.59150 + 4.74894i −0.125040 + 0.373112i
\(163\) −7.29415 + 12.6338i −0.571322 + 0.989558i 0.425109 + 0.905142i \(0.360236\pi\)
−0.996431 + 0.0844159i \(0.973098\pi\)
\(164\) 3.93529 + 9.29570i 0.307295 + 0.725872i
\(165\) 0.313451 + 0.180971i 0.0244021 + 0.0140886i
\(166\) 9.53742 + 10.7905i 0.740247 + 0.837505i
\(167\) −3.06989 + 1.77240i −0.237556 + 0.137153i −0.614053 0.789265i \(-0.710462\pi\)
0.376497 + 0.926418i \(0.377128\pi\)
\(168\) 7.36731 5.04785i 0.568400 0.389450i
\(169\) 5.13096 11.9446i 0.394689 0.918815i
\(170\) −11.1098 + 2.25477i −0.852080 + 0.172933i
\(171\) −2.02104 3.50055i −0.154553 0.267694i
\(172\) −0.817762 + 1.08305i −0.0623538 + 0.0825816i
\(173\) 9.91643 + 5.72526i 0.753932 + 0.435283i 0.827113 0.562036i \(-0.189982\pi\)
−0.0731806 + 0.997319i \(0.523315\pi\)
\(174\) −10.4062 + 2.11198i −0.788892 + 0.160109i
\(175\) 3.38125 + 1.95217i 0.255598 + 0.147570i
\(176\) 0.490152 + 1.72180i 0.0369466 + 0.129786i
\(177\) 7.55374i 0.567774i
\(178\) −11.9314 3.99855i −0.894297 0.299704i
\(179\) 0.746881 0.431212i 0.0558245 0.0322303i −0.471828 0.881691i \(-0.656406\pi\)
0.527652 + 0.849460i \(0.323072\pi\)
\(180\) 3.74446 + 2.82728i 0.279096 + 0.210733i
\(181\) 4.43168i 0.329404i −0.986343 0.164702i \(-0.947334\pi\)
0.986343 0.164702i \(-0.0526663\pi\)
\(182\) 14.0402 + 14.1142i 1.04073 + 1.04622i
\(183\) −6.39020 −0.472377
\(184\) −2.90951 1.39290i −0.214492 0.102686i
\(185\) −2.59519 4.49501i −0.190802 0.330479i
\(186\) 1.88932 5.63761i 0.138532 0.413370i
\(187\) 3.58755 0.262348
\(188\) 17.2911 + 2.13989i 1.26108 + 0.156067i
\(189\) −8.43994 + 14.6184i −0.613915 + 1.06333i
\(190\) −2.38799 + 0.484651i −0.173243 + 0.0351603i
\(191\) 10.8557 18.8026i 0.785490 1.36051i −0.143216 0.989691i \(-0.545744\pi\)
0.928706 0.370817i \(-0.120922\pi\)
\(192\) −0.993730 6.39295i −0.0717163 0.461371i
\(193\) 14.6746 8.47239i 1.05630 0.609856i 0.131894 0.991264i \(-0.457894\pi\)
0.924407 + 0.381408i \(0.124561\pi\)
\(194\) −2.54706 12.5499i −0.182868 0.901034i
\(195\) 1.30666 2.60670i 0.0935722 0.186670i
\(196\) −15.1831 + 6.42768i −1.08450 + 0.459120i
\(197\) 7.87779 + 13.6447i 0.561269 + 0.972147i 0.997386 + 0.0722567i \(0.0230201\pi\)
−0.436117 + 0.899890i \(0.643647\pi\)
\(198\) −0.983359 1.11256i −0.0698843 0.0790660i
\(199\) −3.09592 + 5.36228i −0.219464 + 0.380122i −0.954644 0.297749i \(-0.903764\pi\)
0.735180 + 0.677871i \(0.237097\pi\)
\(200\) 2.33328 1.59869i 0.164988 0.113044i
\(201\) 7.50662 + 4.33395i 0.529476 + 0.305693i
\(202\) −0.0352939 0.0118280i −0.00248327 0.000832213i
\(203\) 36.2487 2.54416
\(204\) −12.8671 1.59238i −0.900876 0.111489i
\(205\) −4.37099 + 2.52359i −0.305283 + 0.176255i
\(206\) 12.2593 + 13.8700i 0.854147 + 0.966370i
\(207\) 2.67553 0.185962
\(208\) 13.6144 4.75891i 0.943991 0.329971i
\(209\) 0.771125 0.0533399
\(210\) 2.95724 + 3.34578i 0.204069 + 0.230881i
\(211\) −1.17103 + 0.676093i −0.0806169 + 0.0465442i −0.539767 0.841815i \(-0.681487\pi\)
0.459150 + 0.888359i \(0.348154\pi\)
\(212\) 23.6184 + 2.92294i 1.62212 + 0.200748i
\(213\) 8.45755 0.579502
\(214\) 7.45243 + 2.49752i 0.509438 + 0.170727i
\(215\) −0.587643 0.339276i −0.0400769 0.0231384i
\(216\) 6.91174 + 10.0876i 0.470284 + 0.686377i
\(217\) −10.1488 + 17.5782i −0.688944 + 1.19329i
\(218\) 0.547288 + 0.619194i 0.0370670 + 0.0419371i
\(219\) −0.0478065 0.0828034i −0.00323047 0.00559533i
\(220\) −0.824282 + 0.348956i −0.0555731 + 0.0235266i
\(221\) −1.70234 28.8517i −0.114512 1.94078i
\(222\) −1.18071 5.81762i −0.0792439 0.390453i
\(223\) 9.67467 5.58567i 0.647864 0.374044i −0.139774 0.990183i \(-0.544637\pi\)
0.787637 + 0.616139i \(0.211304\pi\)
\(224\) −1.01620 + 22.0628i −0.0678975 + 1.47414i
\(225\) −1.17299 + 2.03168i −0.0781993 + 0.135445i
\(226\) 15.6689 3.18007i 1.04228 0.211535i
\(227\) −5.19436 + 8.99690i −0.344762 + 0.597145i −0.985311 0.170772i \(-0.945374\pi\)
0.640548 + 0.767918i \(0.278707\pi\)
\(228\) −2.76571 0.342275i −0.183164 0.0226677i
\(229\) 23.1100 1.52715 0.763574 0.645720i \(-0.223443\pi\)
0.763574 + 0.645720i \(0.223443\pi\)
\(230\) 0.512504 1.52928i 0.0337935 0.100838i
\(231\) −0.706571 1.22382i −0.0464889 0.0805212i
\(232\) 11.3392 23.6854i 0.744452 1.55503i
\(233\) −8.57015 −0.561449 −0.280725 0.959788i \(-0.590575\pi\)
−0.280725 + 0.959788i \(0.590575\pi\)
\(234\) −8.48077 + 8.43627i −0.554405 + 0.551496i
\(235\) 8.71152i 0.568277i
\(236\) −14.9084 11.2567i −0.970454 0.732748i
\(237\) 12.1097 6.99154i 0.786609 0.454149i
\(238\) 41.9666 + 14.0642i 2.72029 + 0.911644i
\(239\) 1.02636i 0.0663899i −0.999449 0.0331950i \(-0.989432\pi\)
0.999449 0.0331950i \(-0.0105682\pi\)
\(240\) 3.11125 0.885693i 0.200830 0.0571712i
\(241\) 14.2112 + 8.20484i 0.915424 + 0.528520i 0.882172 0.470927i \(-0.156080\pi\)
0.0332518 + 0.999447i \(0.489414\pi\)
\(242\) −14.9679 + 3.03780i −0.962175 + 0.195277i
\(243\) −13.7129 7.91712i −0.879680 0.507883i
\(244\) 9.52276 12.6120i 0.609632 0.807400i
\(245\) −4.12190 7.13934i −0.263338 0.456115i
\(246\) −5.65712 + 1.14813i −0.360685 + 0.0732023i
\(247\) −0.365908 6.20153i −0.0232822 0.394594i
\(248\) 8.31116 + 12.1301i 0.527759 + 0.770262i
\(249\) −7.13202 + 4.11768i −0.451974 + 0.260947i
\(250\) 0.936579 + 1.05963i 0.0592345 + 0.0670170i
\(251\) −1.63097 0.941643i −0.102946 0.0594360i 0.447643 0.894212i \(-0.352264\pi\)
−0.550589 + 0.834776i \(0.685597\pi\)
\(252\) −7.14164 16.8695i −0.449881 1.06268i
\(253\) −0.255211 + 0.442038i −0.0160449 + 0.0277907i
\(254\) −5.26418 + 15.7080i −0.330304 + 0.985606i
\(255\) 6.48262i 0.405957i
\(256\) 14.0983 + 7.56559i 0.881143 + 0.472849i
\(257\) −8.29410 14.3658i −0.517372 0.896114i −0.999796 0.0201769i \(-0.993577\pi\)
0.482424 0.875938i \(-0.339756\pi\)
\(258\) −0.513952 0.581478i −0.0319973 0.0362012i
\(259\) 20.2650i 1.25920i
\(260\) 3.19750 + 6.46344i 0.198300 + 0.400845i
\(261\) 21.7806i 1.34819i
\(262\) −12.4092 + 10.9681i −0.766642 + 0.677613i
\(263\) 10.2539 + 17.7602i 0.632281 + 1.09514i 0.987084 + 0.160202i \(0.0512147\pi\)
−0.354803 + 0.934941i \(0.615452\pi\)
\(264\) −1.02068 + 0.0788550i −0.0628188 + 0.00485319i
\(265\) 11.8993i 0.730969i
\(266\) 9.02049 + 3.02302i 0.553082 + 0.185353i
\(267\) 3.59795 6.23184i 0.220191 0.381382i
\(268\) −19.7401 + 8.35690i −1.20582 + 0.510479i
\(269\) 4.99021 + 2.88110i 0.304258 + 0.175664i 0.644354 0.764727i \(-0.277126\pi\)
−0.340096 + 0.940391i \(0.610460\pi\)
\(270\) −4.58119 + 4.04918i −0.278802 + 0.246425i
\(271\) −8.20521 + 4.73728i −0.498431 + 0.287769i −0.728065 0.685508i \(-0.759580\pi\)
0.229634 + 0.973277i \(0.426247\pi\)
\(272\) 22.3175 23.0221i 1.35320 1.39592i
\(273\) −9.50687 + 6.26308i −0.575382 + 0.379059i
\(274\) 2.11119 + 10.4023i 0.127542 + 0.628426i
\(275\) −0.223776 0.387591i −0.0134942 0.0233726i
\(276\) 1.11154 1.47213i 0.0669068 0.0886118i
\(277\) −2.14086 1.23602i −0.128632 0.0742655i 0.434303 0.900767i \(-0.356995\pi\)
−0.562935 + 0.826501i \(0.690328\pi\)
\(278\) 2.29741 + 11.3199i 0.137790 + 0.678921i
\(279\) −10.5621 6.09806i −0.632339 0.365081i
\(280\) −11.0103 + 0.850622i −0.657992 + 0.0508344i
\(281\) 5.80779i 0.346464i 0.984881 + 0.173232i \(0.0554210\pi\)
−0.984881 + 0.173232i \(0.944579\pi\)
\(282\) −3.16593 + 9.44694i −0.188529 + 0.562557i
\(283\) 13.4435 7.76159i 0.799131 0.461379i −0.0440362 0.999030i \(-0.514022\pi\)
0.843167 + 0.537651i \(0.180688\pi\)
\(284\) −12.6036 + 16.6922i −0.747884 + 0.990501i
\(285\) 1.39340i 0.0825382i
\(286\) −0.584844 2.20586i −0.0345825 0.130435i
\(287\) 19.7059 1.16320
\(288\) −13.2568 0.610598i −0.781165 0.0359798i
\(289\) −23.6277 40.9244i −1.38986 2.40732i
\(290\) 12.4494 + 4.17214i 0.731054 + 0.244996i
\(291\) 7.32297 0.429280
\(292\) 0.234667 + 0.0290415i 0.0137328 + 0.00169953i
\(293\) 15.6517 27.1095i 0.914381 1.58375i 0.106575 0.994305i \(-0.466012\pi\)
0.807806 0.589449i \(-0.200655\pi\)
\(294\) −1.87530 9.24002i −0.109370 0.538889i
\(295\) 4.67021 8.08904i 0.271910 0.470962i
\(296\) 13.2414 + 6.33919i 0.769642 + 0.368458i
\(297\) 1.67570 0.967467i 0.0972341 0.0561381i
\(298\) −7.34949 + 1.49161i −0.425745 + 0.0864065i
\(299\) 3.67605 + 1.84270i 0.212591 + 0.106566i
\(300\) 0.630555 + 1.48946i 0.0364051 + 0.0859938i
\(301\) 1.32464 + 2.29435i 0.0763512 + 0.132244i
\(302\) −4.58119 + 4.04918i −0.263618 + 0.233004i
\(303\) 0.0106430 0.0184342i 0.000611424 0.00105902i
\(304\) 4.79703 4.94847i 0.275129 0.283814i
\(305\) 6.84304 + 3.95083i 0.391832 + 0.226224i
\(306\) −8.45067 + 25.2163i −0.483093 + 1.44152i
\(307\) 3.84349 0.219359 0.109680 0.993967i \(-0.465018\pi\)
0.109680 + 0.993967i \(0.465018\pi\)
\(308\) 3.46832 + 0.429227i 0.197626 + 0.0244575i
\(309\) −9.16744 + 5.29283i −0.521518 + 0.301098i
\(310\) −5.50874 + 4.86902i −0.312876 + 0.276542i
\(311\) −21.8342 −1.23810 −0.619052 0.785350i \(-0.712483\pi\)
−0.619052 + 0.785350i \(0.712483\pi\)
\(312\) 1.11849 + 8.17111i 0.0633222 + 0.462598i
\(313\) 10.5613 0.596961 0.298481 0.954416i \(-0.403520\pi\)
0.298481 + 0.954416i \(0.403520\pi\)
\(314\) 9.59104 8.47726i 0.541254 0.478399i
\(315\) 7.93234 4.57974i 0.446937 0.258039i
\(316\) −4.24722 + 34.3192i −0.238925 + 1.93060i
\(317\) −19.3125 −1.08470 −0.542350 0.840153i \(-0.682465\pi\)
−0.542350 + 0.840153i \(0.682465\pi\)
\(318\) −4.32444 + 12.9039i −0.242502 + 0.723612i
\(319\) −3.59849 2.07759i −0.201477 0.116323i
\(320\) −2.88838 + 7.46038i −0.161466 + 0.417048i
\(321\) −2.24730 + 3.89244i −0.125432 + 0.217255i
\(322\) −4.71831 + 4.17039i −0.262941 + 0.232407i
\(323\) −6.90568 11.9610i −0.384242 0.665527i
\(324\) 6.52269 2.76135i 0.362372 0.153408i
\(325\) −3.01089 + 1.98356i −0.167014 + 0.110028i
\(326\) 20.2188 4.10347i 1.11981 0.227270i
\(327\) −0.409259 + 0.236286i −0.0226321 + 0.0130666i
\(328\) 6.16430 12.8761i 0.340367 0.710964i
\(329\) 17.0063 29.4558i 0.937589 1.62395i
\(330\) −0.101809 0.501636i −0.00560440 0.0276142i
\(331\) 10.6242 18.4017i 0.583960 1.01145i −0.411044 0.911615i \(-0.634836\pi\)
0.995004 0.0998329i \(-0.0318308\pi\)
\(332\) 2.50140 20.2123i 0.137282 1.10929i
\(333\) −12.1765 −0.667270
\(334\) 4.75329 + 1.59296i 0.260089 + 0.0871629i
\(335\) −5.35905 9.28215i −0.292796 0.507138i
\(336\) −12.2489 3.07892i −0.668234 0.167969i
\(337\) −22.4148 −1.22101 −0.610506 0.792012i \(-0.709034\pi\)
−0.610506 + 0.792012i \(0.709034\pi\)
\(338\) −17.4624 + 5.75013i −0.949830 + 0.312766i
\(339\) 9.14292i 0.496575i
\(340\) 12.7944 + 9.66049i 0.693874 + 0.523914i
\(341\) 2.01498 1.16335i 0.109117 0.0629990i
\(342\) −1.81643 + 5.42011i −0.0982212 + 0.293086i
\(343\) 4.85619i 0.262210i
\(344\) 1.91353 0.147833i 0.103171 0.00797065i
\(345\) 0.798751 + 0.461159i 0.0430033 + 0.0248280i
\(346\) −3.22086 15.8699i −0.173155 0.853172i
\(347\) 30.6557 + 17.6991i 1.64569 + 0.950137i 0.978759 + 0.205015i \(0.0657243\pi\)
0.666928 + 0.745123i \(0.267609\pi\)
\(348\) 11.9841 + 9.04870i 0.642418 + 0.485061i
\(349\) 4.80203 + 8.31737i 0.257047 + 0.445219i 0.965450 0.260590i \(-0.0839171\pi\)
−0.708402 + 0.705809i \(0.750584\pi\)
\(350\) −1.09823 5.41124i −0.0587029 0.289243i
\(351\) −8.57568 13.0172i −0.457736 0.694808i
\(352\) 1.36541 2.13198i 0.0727764 0.113635i
\(353\) 11.4605 6.61673i 0.609981 0.352173i −0.162977 0.986630i \(-0.552110\pi\)
0.772958 + 0.634457i \(0.218776\pi\)
\(354\) 8.00418 7.07467i 0.425417 0.376015i
\(355\) −9.05690 5.22901i −0.480691 0.277527i
\(356\) 6.93772 + 16.3879i 0.367699 + 0.868555i
\(357\) −12.6551 + 21.9193i −0.669781 + 1.16009i
\(358\) −1.15644 0.387555i −0.0611197 0.0204829i
\(359\) 34.1706i 1.80345i 0.432307 + 0.901726i \(0.357700\pi\)
−0.432307 + 0.901726i \(0.642300\pi\)
\(360\) −0.511110 6.61572i −0.0269379 0.348679i
\(361\) 8.01566 + 13.8835i 0.421877 + 0.730712i
\(362\) −4.69595 + 4.15062i −0.246814 + 0.218152i
\(363\) 8.73388i 0.458410i
\(364\) 1.80616 28.0965i 0.0946686 1.47266i
\(365\) 0.118228i 0.00618836i
\(366\) 5.98493 + 6.77126i 0.312837 + 0.353939i
\(367\) 7.52014 + 13.0253i 0.392548 + 0.679913i 0.992785 0.119909i \(-0.0382603\pi\)
−0.600237 + 0.799822i \(0.704927\pi\)
\(368\) 1.24903 + 4.38757i 0.0651102 + 0.228718i
\(369\) 11.8406i 0.616397i
\(370\) −2.33245 + 6.95988i −0.121258 + 0.361827i
\(371\) 23.2294 40.2345i 1.20601 2.08887i
\(372\) −7.74329 + 3.27809i −0.401471 + 0.169961i
\(373\) −5.64614 3.25980i −0.292346 0.168786i 0.346653 0.937993i \(-0.387318\pi\)
−0.638999 + 0.769207i \(0.720651\pi\)
\(374\) −3.36003 3.80148i −0.173743 0.196570i
\(375\) −0.700368 + 0.404358i −0.0361668 + 0.0208809i
\(376\) −13.9270 20.3264i −0.718231 1.04825i
\(377\) −15.0008 + 29.9255i −0.772581 + 1.54124i
\(378\) 23.3948 4.74807i 1.20330 0.244214i
\(379\) −6.04540 10.4709i −0.310531 0.537856i 0.667946 0.744210i \(-0.267174\pi\)
−0.978477 + 0.206354i \(0.933840\pi\)
\(380\) 2.75009 + 2.07647i 0.141077 + 0.106521i
\(381\) −8.20436 4.73679i −0.420322 0.242673i
\(382\) −30.0910 + 6.10709i −1.53959 + 0.312466i
\(383\) 1.57440 + 0.908980i 0.0804480 + 0.0464467i 0.539684 0.841867i \(-0.318544\pi\)
−0.459236 + 0.888314i \(0.651877\pi\)
\(384\) −5.84347 + 7.04049i −0.298198 + 0.359284i
\(385\) 1.74739i 0.0890552i
\(386\) −22.7215 7.61462i −1.15650 0.387574i
\(387\) −1.37860 + 0.795934i −0.0700781 + 0.0404596i
\(388\) −10.9128 + 14.4530i −0.554013 + 0.733738i
\(389\) 3.63531i 0.184318i −0.995744 0.0921589i \(-0.970623\pi\)
0.995744 0.0921589i \(-0.0293768\pi\)
\(390\) −3.98594 + 1.05680i −0.201836 + 0.0535131i
\(391\) 9.14198 0.462330
\(392\) 21.0311 + 10.0684i 1.06223 + 0.508532i
\(393\) −4.73537 8.20190i −0.238868 0.413731i
\(394\) 7.08022 21.1269i 0.356696 1.06436i
\(395\) −17.2905 −0.869979
\(396\) −0.257908 + 2.08400i −0.0129604 + 0.104725i
\(397\) −1.49457 + 2.58868i −0.0750105 + 0.129922i −0.901091 0.433630i \(-0.857232\pi\)
0.826080 + 0.563552i \(0.190566\pi\)
\(398\) 8.58162 1.74167i 0.430158 0.0873021i
\(399\) −2.72016 + 4.71145i −0.136178 + 0.235867i
\(400\) −3.87932 0.975117i −0.193966 0.0487559i
\(401\) 11.2958 6.52161i 0.564084 0.325674i −0.190699 0.981648i \(-0.561076\pi\)
0.754783 + 0.655975i \(0.227742\pi\)
\(402\) −2.43815 12.0133i −0.121604 0.599171i
\(403\) −10.3120 15.6528i −0.513678 0.779723i
\(404\) 0.0205223 + 0.0484764i 0.00102102 + 0.00241179i
\(405\) 1.77078 + 3.06708i 0.0879908 + 0.152404i
\(406\) −33.9498 38.4103i −1.68490 1.90627i
\(407\) 1.16148 2.01175i 0.0575726 0.0997186i
\(408\) 10.3637 + 15.1258i 0.513079 + 0.748837i
\(409\) 11.7308 + 6.77276i 0.580049 + 0.334892i 0.761153 0.648572i \(-0.224634\pi\)
−0.181104 + 0.983464i \(0.557967\pi\)
\(410\) 6.76786 + 2.26810i 0.334241 + 0.112013i
\(411\) −6.06981 −0.299402
\(412\) 3.21528 25.9807i 0.158406 1.27998i
\(413\) −31.5823 + 18.2340i −1.55406 + 0.897238i
\(414\) −2.50584 2.83507i −0.123156 0.139336i
\(415\) 10.1833 0.499876
\(416\) −17.7937 9.96920i −0.872407 0.488780i
\(417\) −6.60522 −0.323459
\(418\) −0.722220 0.817109i −0.0353249 0.0399661i
\(419\) 22.8340 13.1832i 1.11551 0.644041i 0.175260 0.984522i \(-0.443923\pi\)
0.940251 + 0.340481i \(0.110590\pi\)
\(420\) 0.775603 6.26717i 0.0378456 0.305807i
\(421\) −18.3329 −0.893489 −0.446744 0.894662i \(-0.647417\pi\)
−0.446744 + 0.894662i \(0.647417\pi\)
\(422\) 1.81317 + 0.607643i 0.0882637 + 0.0295796i
\(423\) 17.6990 + 10.2185i 0.860555 + 0.496841i
\(424\) −19.0233 27.7644i −0.923853 1.34836i
\(425\) −4.00797 + 6.94201i −0.194415 + 0.336737i
\(426\) −7.92117 8.96189i −0.383782 0.434205i
\(427\) −15.4254 26.7175i −0.746485 1.29295i
\(428\) −4.33334 10.2360i −0.209460 0.494774i
\(429\) 1.30273 0.0768652i 0.0628966 0.00371109i
\(430\) 0.190867 + 0.940443i 0.00920440 + 0.0453522i
\(431\) 16.5529 9.55682i 0.797325 0.460336i −0.0452099 0.998978i \(-0.514396\pi\)
0.842535 + 0.538642i \(0.181062\pi\)
\(432\) 4.21580 16.7718i 0.202833 0.806932i
\(433\) 9.52072 16.4904i 0.457537 0.792477i −0.541294 0.840834i \(-0.682065\pi\)
0.998830 + 0.0483571i \(0.0153986\pi\)
\(434\) 28.1316 5.70941i 1.35036 0.274060i
\(435\) −3.75415 + 6.50238i −0.179998 + 0.311765i
\(436\) 0.143539 1.15985i 0.00687426 0.0555466i
\(437\) 1.96502 0.0939996
\(438\) −0.0429665 + 0.128209i −0.00205302 + 0.00612607i
\(439\) 4.17977 + 7.23957i 0.199490 + 0.345526i 0.948363 0.317187i \(-0.102738\pi\)
−0.748873 + 0.662713i \(0.769405\pi\)
\(440\) 1.14177 + 0.546610i 0.0544317 + 0.0260586i
\(441\) −19.3398 −0.920942
\(442\) −28.9778 + 28.8258i −1.37834 + 1.37110i
\(443\) 27.0916i 1.28716i 0.765378 + 0.643580i \(0.222552\pi\)
−0.765378 + 0.643580i \(0.777448\pi\)
\(444\) −5.05871 + 6.69977i −0.240076 + 0.317957i
\(445\) −7.70585 + 4.44897i −0.365292 + 0.210902i
\(446\) −14.9798 5.02016i −0.709316 0.237712i
\(447\) 4.28848i 0.202838i
\(448\) 24.3302 19.5868i 1.14950 0.925389i
\(449\) −0.192996 0.111426i −0.00910804 0.00525853i 0.495439 0.868643i \(-0.335007\pi\)
−0.504547 + 0.863384i \(0.668341\pi\)
\(450\) 3.25143 0.659890i 0.153274 0.0311075i
\(451\) −1.95625 1.12944i −0.0921160 0.0531832i
\(452\) −18.0449 13.6249i −0.848761 0.640862i
\(453\) −1.74819 3.02795i −0.0821371 0.142266i
\(454\) 14.3983 2.92220i 0.675747 0.137146i
\(455\) 14.0528 0.829158i 0.658807 0.0388715i
\(456\) 2.22762 + 3.25120i 0.104318 + 0.152251i
\(457\) −6.68503 + 3.85960i −0.312712 + 0.180545i −0.648140 0.761522i \(-0.724453\pi\)
0.335427 + 0.942066i \(0.391119\pi\)
\(458\) −21.6443 24.4880i −1.01137 1.14425i
\(459\) −30.0129 17.3280i −1.40088 0.808800i
\(460\) −2.10048 + 0.889227i −0.0979352 + 0.0414604i
\(461\) −5.52913 + 9.57673i −0.257517 + 0.446033i −0.965576 0.260120i \(-0.916238\pi\)
0.708059 + 0.706153i \(0.249571\pi\)
\(462\) −0.635035 + 1.89491i −0.0295445 + 0.0881590i
\(463\) 28.7883i 1.33791i −0.743304 0.668954i \(-0.766742\pi\)
0.743304 0.668954i \(-0.233258\pi\)
\(464\) −35.7179 + 10.1680i −1.65816 + 0.472036i
\(465\) −2.10215 3.64103i −0.0974847 0.168848i
\(466\) 8.02663 + 9.08121i 0.371826 + 0.420679i
\(467\) 33.8862i 1.56806i 0.620720 + 0.784032i \(0.286840\pi\)
−0.620720 + 0.784032i \(0.713160\pi\)
\(468\) 16.8823 + 1.08526i 0.780382 + 0.0501662i
\(469\) 41.8470i 1.93232i
\(470\) 9.23100 8.15902i 0.425794 0.376348i
\(471\) 3.65996 + 6.33924i 0.168642 + 0.292097i
\(472\) 2.03496 + 26.3402i 0.0936667 + 1.21241i
\(473\) 0.303687i 0.0139635i
\(474\) −18.7501 6.28369i −0.861223 0.288620i
\(475\) −0.861493 + 1.49215i −0.0395280 + 0.0684645i
\(476\) −24.4022 57.6413i −1.11847 2.64198i
\(477\) 24.1756 + 13.9578i 1.10692 + 0.639082i
\(478\) −1.08757 + 0.961270i −0.0497442 + 0.0439675i
\(479\) −14.6419 + 8.45349i −0.669004 + 0.386250i −0.795699 0.605692i \(-0.792896\pi\)
0.126695 + 0.991942i \(0.459563\pi\)
\(480\) −3.85244 2.46726i −0.175839 0.112614i
\(481\) −16.7300 8.38626i −0.762821 0.382380i
\(482\) −4.61581 22.7431i −0.210244 1.03592i
\(483\) −1.80052 3.11859i −0.0819264 0.141901i
\(484\) 17.2376 + 13.0153i 0.783527 + 0.591607i
\(485\) −7.84192 4.52754i −0.356083 0.205585i
\(486\) 4.45394 + 21.9456i 0.202035 + 0.995472i
\(487\) 28.6541 + 16.5434i 1.29844 + 0.749654i 0.980135 0.198334i \(-0.0635530\pi\)
0.318305 + 0.947988i \(0.396886\pi\)
\(488\) −22.2829 + 1.72151i −1.00870 + 0.0779290i
\(489\) 11.7978i 0.533514i
\(490\) −3.70458 + 11.0542i −0.167356 + 0.499380i
\(491\) −26.6188 + 15.3683i −1.20129 + 0.693564i −0.960841 0.277099i \(-0.910627\pi\)
−0.240446 + 0.970663i \(0.577294\pi\)
\(492\) 6.51494 + 4.91914i 0.293716 + 0.221772i
\(493\) 74.4220i 3.35180i
\(494\) −6.22863 + 6.19595i −0.280239 + 0.278769i
\(495\) −1.04995 −0.0471916
\(496\) 5.06937 20.1676i 0.227622 0.905550i
\(497\) 20.4158 + 35.3611i 0.915772 + 1.58616i
\(498\) 11.0429 + 3.70079i 0.494845 + 0.165836i
\(499\) 6.58714 0.294881 0.147440 0.989071i \(-0.452897\pi\)
0.147440 + 0.989071i \(0.452897\pi\)
\(500\) 0.245639 1.98486i 0.0109853 0.0887656i
\(501\) −1.43337 + 2.48267i −0.0640383 + 0.110918i
\(502\) 0.529741 + 2.61015i 0.0236435 + 0.116497i
\(503\) −20.7723 + 35.9786i −0.926190 + 1.60421i −0.136555 + 0.990633i \(0.543603\pi\)
−0.789636 + 0.613576i \(0.789730\pi\)
\(504\) −11.1868 + 23.3672i −0.498299 + 1.04086i
\(505\) −0.0227944 + 0.0131604i −0.00101434 + 0.000585629i
\(506\) 0.707422 0.143574i 0.0314487 0.00638264i
\(507\) −1.23633 10.4404i −0.0549072 0.463672i
\(508\) 21.5750 9.13367i 0.957236 0.405241i
\(509\) −8.56097 14.8280i −0.379458 0.657241i 0.611525 0.791225i \(-0.290556\pi\)
−0.990984 + 0.133984i \(0.957223\pi\)
\(510\) −6.86919 + 6.07148i −0.304173 + 0.268850i
\(511\) 0.230801 0.399760i 0.0102100 0.0176843i
\(512\) −5.18743 22.0248i −0.229254 0.973367i
\(513\) −6.45112 3.72456i −0.284824 0.164443i
\(514\) −7.45438 + 22.2434i −0.328799 + 0.981115i
\(515\) 13.0895 0.576791
\(516\) −0.134796 + 1.08920i −0.00593405 + 0.0479494i
\(517\) −3.37651 + 1.94943i −0.148499 + 0.0857357i
\(518\) 21.4734 18.9798i 0.943488 0.833923i
\(519\) 9.26020 0.406478
\(520\) 3.85415 9.44169i 0.169016 0.414045i
\(521\) −23.5385 −1.03124 −0.515621 0.856817i \(-0.672439\pi\)
−0.515621 + 0.856817i \(0.672439\pi\)
\(522\) 23.0795 20.3993i 1.01016 0.892853i
\(523\) −1.93140 + 1.11509i −0.0844542 + 0.0487597i −0.541632 0.840615i \(-0.682194\pi\)
0.457178 + 0.889375i \(0.348860\pi\)
\(524\) 23.2444 + 2.87664i 1.01543 + 0.125667i
\(525\) 3.15749 0.137804
\(526\) 9.21575 27.4992i 0.401826 1.19902i
\(527\) −36.0897 20.8364i −1.57209 0.907647i
\(528\) 1.03951 + 1.00770i 0.0452388 + 0.0438544i
\(529\) 10.8497 18.7922i 0.471724 0.817051i
\(530\) 12.6089 11.1446i 0.547695 0.484093i
\(531\) −10.9562 18.9767i −0.475459 0.823519i
\(532\) −5.24512 12.3897i −0.227405 0.537161i
\(533\) −8.15489 + 16.2684i −0.353227 + 0.704663i
\(534\) −9.97322 + 2.02410i −0.431583 + 0.0875915i
\(535\) 4.81312 2.77886i 0.208089 0.120140i
\(536\) 27.3434 + 13.0904i 1.18106 + 0.565419i
\(537\) 0.348728 0.604014i 0.0150487 0.0260651i
\(538\) −1.62082 7.98616i −0.0698786 0.344308i
\(539\) 1.84476 3.19522i 0.0794596 0.137628i
\(540\) 8.58129 + 1.06199i 0.369280 + 0.0457008i
\(541\) 27.5466 1.18432 0.592161 0.805820i \(-0.298275\pi\)
0.592161 + 0.805820i \(0.298275\pi\)
\(542\) 12.7046 + 4.25766i 0.545709 + 0.182882i
\(543\) −1.79198 3.10381i −0.0769014 0.133197i
\(544\) −45.2970 2.08634i −1.94209 0.0894513i
\(545\) 0.584348 0.0250307
\(546\) 15.5405 + 4.20791i 0.665072 + 0.180082i
\(547\) 40.5419i 1.73345i −0.498788 0.866724i \(-0.666221\pi\)
0.498788 0.866724i \(-0.333779\pi\)
\(548\) 9.04532 11.9797i 0.386397 0.511746i
\(549\) 16.0536 9.26857i 0.685153 0.395573i
\(550\) −0.201120 + 0.600130i −0.00857579 + 0.0255896i
\(551\) 15.9966i 0.681479i
\(552\) −2.60096 + 0.200942i −0.110704 + 0.00855266i
\(553\) 58.4634 + 33.7539i 2.48612 + 1.43536i
\(554\) 0.695351 + 3.42615i 0.0295426 + 0.145563i
\(555\) −3.63518 2.09877i −0.154305 0.0890879i
\(556\) 9.84320 13.0364i 0.417444 0.552865i
\(557\) −14.4872 25.0925i −0.613841 1.06320i −0.990587 0.136887i \(-0.956290\pi\)
0.376746 0.926317i \(-0.377043\pi\)
\(558\) 3.43059 + 16.9033i 0.145228 + 0.715574i
\(559\) −2.44230 + 0.144103i −0.103298 + 0.00609491i
\(560\) 11.2134 + 10.8702i 0.473851 + 0.459350i
\(561\) 2.51261 1.45065i 0.106082 0.0612466i
\(562\) 6.15412 5.43945i 0.259596 0.229450i
\(563\) 23.2595 + 13.4289i 0.980272 + 0.565961i 0.902352 0.430999i \(-0.141839\pi\)
0.0779201 + 0.996960i \(0.475172\pi\)
\(564\) 12.9754 5.49309i 0.546364 0.231301i
\(565\) 5.65275 9.79084i 0.237813 0.411904i
\(566\) −20.8153 6.97578i −0.874932 0.293214i
\(567\) 13.8274i 0.580697i
\(568\) 29.4918 2.27845i 1.23745 0.0956016i
\(569\) −3.53392 6.12094i −0.148150 0.256603i 0.782394 0.622784i \(-0.213998\pi\)
−0.930544 + 0.366181i \(0.880665\pi\)
\(570\) −1.47650 + 1.30503i −0.0618436 + 0.0546618i
\(571\) 14.6144i 0.611594i 0.952097 + 0.305797i \(0.0989230\pi\)
−0.952097 + 0.305797i \(0.901077\pi\)
\(572\) −1.78965 + 2.68568i −0.0748290 + 0.112294i
\(573\) 17.5583i 0.733509i
\(574\) −18.4561 20.8810i −0.770344 0.871556i
\(575\) −0.570237 0.987679i −0.0237805 0.0411891i
\(576\) 11.7690 + 14.6192i 0.490377 + 0.609134i
\(577\) 5.48671i 0.228415i 0.993457 + 0.114207i \(0.0364328\pi\)
−0.993457 + 0.114207i \(0.963567\pi\)
\(578\) −21.2356 + 63.3656i −0.883283 + 2.63566i
\(579\) 6.85175 11.8676i 0.284749 0.493200i
\(580\) −7.23892 17.0993i −0.300580 0.710010i
\(581\) −34.4321 19.8794i −1.42848 0.824736i
\(582\) −6.85855 7.75966i −0.284296 0.321648i
\(583\) −4.61207 + 2.66278i −0.191012 + 0.110281i
\(584\) −0.189010 0.275860i −0.00782131 0.0114152i
\(585\) 0.498213 + 8.44386i 0.0205986 + 0.349111i
\(586\) −43.3851 + 8.80518i −1.79222 + 0.363738i
\(587\) 9.53461 + 16.5144i 0.393536 + 0.681623i 0.992913 0.118843i \(-0.0379185\pi\)
−0.599378 + 0.800466i \(0.704585\pi\)
\(588\) −8.03465 + 10.6411i −0.331343 + 0.438833i
\(589\) −7.75728 4.47867i −0.319633 0.184540i
\(590\) −12.9454 + 2.62732i −0.532954 + 0.108165i
\(591\) 11.0347 + 6.37089i 0.453907 + 0.262063i
\(592\) −5.68443 19.9682i −0.233629 0.820688i
\(593\) 28.8284i 1.18384i −0.805997 0.591920i \(-0.798370\pi\)
0.805997 0.591920i \(-0.201630\pi\)
\(594\) −2.59459 0.869518i −0.106457 0.0356768i
\(595\) 27.1039 15.6485i 1.11115 0.641524i
\(596\) 8.46394 + 6.39075i 0.346696 + 0.261775i
\(597\) 5.00743i 0.204940i
\(598\) −1.49033 5.62109i −0.0609440 0.229863i
\(599\) −4.08040 −0.166721 −0.0833603 0.996519i \(-0.526565\pi\)
−0.0833603 + 0.996519i \(0.526565\pi\)
\(600\) 0.987712 2.06315i 0.0403232 0.0842278i
\(601\) −8.92004 15.4500i −0.363856 0.630217i 0.624736 0.780836i \(-0.285207\pi\)
−0.988592 + 0.150619i \(0.951873\pi\)
\(602\) 1.19053 3.55248i 0.0485225 0.144788i
\(603\) −25.1445 −1.02396
\(604\) 8.58129 + 1.06199i 0.349168 + 0.0432118i
\(605\) −5.39985 + 9.35281i −0.219535 + 0.380246i
\(606\) −0.0295015 + 0.00598744i −0.00119842 + 0.000243223i
\(607\) 13.6841 23.7016i 0.555421 0.962018i −0.442449 0.896793i \(-0.645890\pi\)
0.997871 0.0652243i \(-0.0207763\pi\)
\(608\) −9.73636 0.448449i −0.394861 0.0181870i
\(609\) 25.3875 14.6575i 1.02875 0.593950i
\(610\) −2.22262 10.9514i −0.0899914 0.443408i
\(611\) 17.2798 + 26.2294i 0.699067 + 1.06113i
\(612\) 34.6347 14.6624i 1.40002 0.592694i
\(613\) 2.05530 + 3.55988i 0.0830127 + 0.143782i 0.904543 0.426383i \(-0.140212\pi\)
−0.821530 + 0.570165i \(0.806879\pi\)
\(614\) −3.59973 4.07268i −0.145273 0.164360i
\(615\) −2.04087 + 3.53489i −0.0822958 + 0.142540i
\(616\) −2.79353 4.07715i −0.112555 0.164273i
\(617\) −26.8289 15.4897i −1.08009 0.623591i −0.149170 0.988812i \(-0.547660\pi\)
−0.930921 + 0.365220i \(0.880994\pi\)
\(618\) 14.1945 + 4.75696i 0.570986 + 0.191353i
\(619\) 43.4702 1.74722 0.873608 0.486631i \(-0.161774\pi\)
0.873608 + 0.486631i \(0.161774\pi\)
\(620\) 10.3187 + 1.27701i 0.414411 + 0.0512860i
\(621\) 4.27011 2.46535i 0.171354 0.0989310i
\(622\) 20.4495 + 23.1362i 0.819948 + 0.927678i
\(623\) 34.7405 1.39185
\(624\) 7.61081 8.83808i 0.304676 0.353807i
\(625\) 1.00000 0.0400000
\(626\) −9.89151 11.1911i −0.395344 0.447287i
\(627\) 0.540071 0.311810i 0.0215684 0.0124525i
\(628\) −17.9655 2.22335i −0.716903 0.0887214i
\(629\) −41.6059 −1.65893
\(630\) −12.2821 4.11607i −0.489331 0.163988i
\(631\) 2.39053 + 1.38018i 0.0951657 + 0.0549439i 0.546828 0.837245i \(-0.315835\pi\)
−0.451662 + 0.892189i \(0.649169\pi\)
\(632\) 40.3435 27.6421i 1.60478 1.09954i
\(633\) −0.546767 + 0.947028i −0.0217320 + 0.0376410i
\(634\) 18.0877 + 20.4642i 0.718355 + 0.812736i
\(635\) 5.85718 + 10.1449i 0.232435 + 0.402589i
\(636\) 17.7235 7.50317i 0.702783 0.297520i
\(637\) −26.5719 13.3197i −1.05282 0.527747i
\(638\) 1.16879 + 5.75890i 0.0462729 + 0.227997i
\(639\) −21.2473 + 12.2671i −0.840531 + 0.485281i
\(640\) 10.6105 3.92661i 0.419415 0.155213i
\(641\) 5.00752 8.67328i 0.197785 0.342574i −0.750025 0.661410i \(-0.769958\pi\)
0.947810 + 0.318836i \(0.103292\pi\)
\(642\) 6.22933 1.26427i 0.245852 0.0498966i
\(643\) −14.2515 + 24.6843i −0.562024 + 0.973454i 0.435296 + 0.900287i \(0.356644\pi\)
−0.997320 + 0.0731662i \(0.976690\pi\)
\(644\) 8.83815 + 1.09378i 0.348272 + 0.0431009i
\(645\) −0.548755 −0.0216072
\(646\) −6.20653 + 18.5199i −0.244193 + 0.728655i
\(647\) −7.53191 13.0456i −0.296110 0.512877i 0.679133 0.734016i \(-0.262356\pi\)
−0.975242 + 0.221138i \(0.929023\pi\)
\(648\) −9.03503 4.32543i −0.354930 0.169919i
\(649\) 4.18032 0.164092
\(650\) 4.92179 + 1.33268i 0.193048 + 0.0522718i
\(651\) 16.4150i 0.643353i
\(652\) −23.2846 17.5812i −0.911897 0.688533i
\(653\) 14.7901 8.53909i 0.578783 0.334161i −0.181867 0.983323i \(-0.558214\pi\)
0.760650 + 0.649163i \(0.224881\pi\)
\(654\) 0.633679 + 0.212363i 0.0247788 + 0.00830406i
\(655\) 11.7108i 0.457581i
\(656\) −19.4173 + 5.52761i −0.758118 + 0.215817i
\(657\) 0.240202 + 0.138681i 0.00937117 + 0.00541045i
\(658\) −47.1401 + 9.56726i −1.83771 + 0.372971i
\(659\) −32.4049 18.7090i −1.26232 0.728799i −0.288794 0.957391i \(-0.593254\pi\)
−0.973522 + 0.228593i \(0.926588\pi\)
\(660\) −0.436198 + 0.577702i −0.0169790 + 0.0224870i
\(661\) 8.83203 + 15.2975i 0.343526 + 0.595005i 0.985085 0.172069i \(-0.0550453\pi\)
−0.641559 + 0.767074i \(0.721712\pi\)
\(662\) −29.4494 + 5.97688i −1.14458 + 0.232298i
\(663\) −12.8587 19.5185i −0.499390 0.758035i
\(664\) −23.7604 + 16.2799i −0.922081 + 0.631781i
\(665\) 5.82584 3.36355i 0.225917 0.130433i
\(666\) 11.4043 + 12.9026i 0.441907 + 0.499967i
\(667\) −9.16985 5.29422i −0.355058 0.204993i
\(668\) −2.76388 6.52868i −0.106938 0.252602i
\(669\) 4.51722 7.82405i 0.174646 0.302495i
\(670\) −4.81649 + 14.3721i −0.186077 + 0.555242i
\(671\) 3.53641i 0.136521i
\(672\) 8.20956 + 15.8630i 0.316691 + 0.611929i
\(673\) 11.1111 + 19.2450i 0.428302 + 0.741841i 0.996722 0.0808970i \(-0.0257785\pi\)
−0.568420 + 0.822738i \(0.692445\pi\)
\(674\) 20.9932 + 23.7514i 0.808629 + 0.914870i
\(675\) 4.32338i 0.166407i
\(676\) 22.4480 + 13.1183i 0.863383 + 0.504549i
\(677\) 5.99382i 0.230361i 0.993345 + 0.115181i \(0.0367447\pi\)
−0.993345 + 0.115181i \(0.963255\pi\)
\(678\) 9.68813 8.56307i 0.372070 0.328863i
\(679\) 17.6770 + 30.6175i 0.678381 + 1.17499i
\(680\) −1.74640 22.6052i −0.0669716 0.866868i
\(681\) 8.40152i 0.321947i
\(682\) −3.11991 1.04557i −0.119468 0.0400369i
\(683\) −4.56662 + 7.90963i −0.174737 + 0.302653i −0.940070 0.340981i \(-0.889241\pi\)
0.765333 + 0.643634i \(0.222574\pi\)
\(684\) 7.44455 3.15161i 0.284649 0.120505i
\(685\) 6.49995 + 3.75275i 0.248350 + 0.143385i
\(686\) 5.14577 4.54821i 0.196467 0.173651i
\(687\) 16.1855 9.34469i 0.617514 0.356522i
\(688\) −1.94882 1.88918i −0.0742981 0.0720243i
\(689\) 23.6030 + 35.8276i 0.899204 + 1.36492i
\(690\) −0.259435 1.27829i −0.00987651 0.0486638i
\(691\) −9.65327 16.7200i −0.367228 0.636057i 0.621903 0.783094i \(-0.286360\pi\)
−0.989131 + 0.147037i \(0.953026\pi\)
\(692\) −13.7997 + 18.2764i −0.524585 + 0.694763i
\(693\) 3.55013 + 2.04967i 0.134858 + 0.0778606i
\(694\) −9.95700 49.0604i −0.377962 1.86231i
\(695\) 7.07331 + 4.08378i 0.268306 + 0.154906i
\(696\) −1.63581 21.1736i −0.0620051 0.802583i
\(697\) 40.4580i 1.53246i
\(698\) 4.31586 12.8783i 0.163358 0.487449i
\(699\) −6.00226 + 3.46541i −0.227026 + 0.131074i
\(700\) −4.70534 + 6.23177i −0.177845 + 0.235539i
\(701\) 11.3698i 0.429432i −0.976677 0.214716i \(-0.931117\pi\)
0.976677 0.214716i \(-0.0688825\pi\)
\(702\) −5.76165 + 21.2787i −0.217460 + 0.803114i
\(703\) −8.94296 −0.337290
\(704\) −3.53793 + 0.549941i −0.133341 + 0.0207267i
\(705\) 3.52257 + 6.10127i 0.132668 + 0.229787i
\(706\) −17.7450 5.94683i −0.667841 0.223812i
\(707\) 0.102765 0.00386487
\(708\) −14.9931 1.85549i −0.563475 0.0697337i
\(709\) 2.70275 4.68129i 0.101504 0.175810i −0.810801 0.585322i \(-0.800968\pi\)
0.912304 + 0.409513i \(0.134301\pi\)
\(710\) 2.94169 + 14.4944i 0.110400 + 0.543964i
\(711\) −20.2816 + 35.1287i −0.760618 + 1.31743i
\(712\) 10.8674 22.7000i 0.407272 0.850717i
\(713\) 5.13468 2.96451i 0.192295 0.111022i
\(714\) 35.0790 7.11941i 1.31280 0.266437i
\(715\) −1.44258 0.723122i −0.0539493 0.0270432i
\(716\) 0.672432 + 1.58838i 0.0251299 + 0.0593604i
\(717\) −0.415018 0.718832i −0.0154991 0.0268453i
\(718\) 36.2082 32.0034i 1.35128 1.19436i
\(719\) 3.58826 6.21504i 0.133819 0.231782i −0.791326 0.611394i \(-0.790609\pi\)
0.925146 + 0.379612i \(0.123942\pi\)
\(720\) −6.53153 + 6.73773i −0.243416 + 0.251100i
\(721\) −44.2587 25.5528i −1.64828 0.951636i
\(722\) 7.20413 21.4967i 0.268110 0.800023i
\(723\) 13.2708 0.493545
\(724\) 8.79626 + 1.08859i 0.326911 + 0.0404573i
\(725\) 8.04039 4.64212i 0.298613 0.172404i
\(726\) −9.25470 + 8.17997i −0.343474 + 0.303587i
\(727\) −13.9387 −0.516958 −0.258479 0.966017i \(-0.583221\pi\)
−0.258479 + 0.966017i \(0.583221\pi\)
\(728\) −31.4636 + 24.4008i −1.16612 + 0.904352i
\(729\) −2.18071 −0.0807670
\(730\) 0.125279 0.110730i 0.00463677 0.00409831i
\(731\) −4.71051 + 2.71962i −0.174225 + 0.100589i
\(732\) 1.56968 12.6836i 0.0580171 0.468801i
\(733\) 51.7217 1.91039 0.955193 0.295983i \(-0.0956472\pi\)
0.955193 + 0.295983i \(0.0956472\pi\)
\(734\) 6.75878 20.1678i 0.249471 0.744406i
\(735\) −5.77369 3.33344i −0.212966 0.122956i
\(736\) 3.47940 5.43282i 0.128252 0.200256i
\(737\) 2.39845 4.15424i 0.0883482 0.153024i
\(738\) 12.5467 11.0897i 0.461850 0.408216i
\(739\) 3.70149 + 6.41116i 0.136161 + 0.235838i 0.926041 0.377424i \(-0.123190\pi\)
−0.789879 + 0.613263i \(0.789857\pi\)
\(740\) 9.55943 4.04694i 0.351412 0.148768i
\(741\) −2.76391 4.19539i −0.101535 0.154122i
\(742\) −64.3900 + 13.0682i −2.36383 + 0.479749i
\(743\) −38.2295 + 22.0718i −1.40251 + 0.809737i −0.994649 0.103309i \(-0.967057\pi\)
−0.407856 + 0.913046i \(0.633724\pi\)
\(744\) 10.7258 + 5.13485i 0.393226 + 0.188253i
\(745\) −2.65141 + 4.59238i −0.0971403 + 0.168252i
\(746\) 1.83387 + 9.03589i 0.0671427 + 0.330827i
\(747\) 11.9449 20.6891i 0.437039 0.756974i
\(748\) −0.881243 + 7.12078i −0.0322214 + 0.260362i
\(749\) −21.6991 −0.792869
\(750\) 1.08442 + 0.363419i 0.0395974 + 0.0132702i
\(751\) −0.525634 0.910425i −0.0191807 0.0332219i 0.856276 0.516519i \(-0.172772\pi\)
−0.875456 + 0.483297i \(0.839439\pi\)
\(752\) −8.49475 + 33.7948i −0.309772 + 1.23237i
\(753\) −1.52304 −0.0555027
\(754\) 45.7595 12.1323i 1.66646 0.441832i
\(755\) 4.32338i 0.157344i
\(756\) −26.9423 20.3429i −0.979882 0.739866i
\(757\) 25.1218 14.5041i 0.913068 0.527160i 0.0316510 0.999499i \(-0.489924\pi\)
0.881417 + 0.472339i \(0.156590\pi\)
\(758\) −5.43334 + 16.2128i −0.197348 + 0.588874i
\(759\) 0.412785i 0.0149832i
\(760\) −0.375381 4.85886i −0.0136165 0.176249i
\(761\) 9.61433 + 5.55084i 0.348519 + 0.201218i 0.664033 0.747703i \(-0.268843\pi\)
−0.315514 + 0.948921i \(0.602177\pi\)
\(762\) 2.66478 + 13.1300i 0.0965348 + 0.475649i
\(763\) −1.97583 1.14074i −0.0715297 0.0412977i
\(764\) 34.6539 + 26.1656i 1.25373 + 0.946640i
\(765\) 9.40262 + 16.2858i 0.339953 + 0.588815i
\(766\) −0.511366 2.51962i −0.0184764 0.0910374i
\(767\) −1.98361 33.6189i −0.0716241 1.21391i
\(768\) 12.9332 0.402055i 0.466686 0.0145079i
\(769\) −13.7216