Properties

Label 520.2.ca.a.101.4
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.4
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.a.381.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24568 - 0.669541i) q^{2} +(-2.59349 + 1.49735i) q^{3} +(1.10343 + 1.66806i) q^{4} -1.00000 q^{5} +(4.23319 - 0.128773i) q^{6} +(-0.668489 - 0.385952i) q^{7} +(-0.257683 - 2.81666i) q^{8} +(2.98412 - 5.16865i) q^{9} +O(q^{10})\) \(q+(-1.24568 - 0.669541i) q^{2} +(-2.59349 + 1.49735i) q^{3} +(1.10343 + 1.66806i) q^{4} -1.00000 q^{5} +(4.23319 - 0.128773i) q^{6} +(-0.668489 - 0.385952i) q^{7} +(-0.257683 - 2.81666i) q^{8} +(2.98412 - 5.16865i) q^{9} +(1.24568 + 0.669541i) q^{10} +(0.183144 + 0.317214i) q^{11} +(-5.35941 - 2.67388i) q^{12} +(-2.71812 - 2.36893i) q^{13} +(0.574312 + 0.928353i) q^{14} +(2.59349 - 1.49735i) q^{15} +(-1.56488 + 3.68119i) q^{16} +(1.37075 - 2.37421i) q^{17} +(-7.17788 + 4.44049i) q^{18} +(-0.199573 + 0.345670i) q^{19} +(-1.10343 - 1.66806i) q^{20} +2.31162 q^{21} +(-0.0157504 - 0.517769i) q^{22} +(-0.390725 - 0.676756i) q^{23} +(4.88583 + 6.91914i) q^{24} +1.00000 q^{25} +(1.79981 + 4.77082i) q^{26} +8.88900i q^{27} +(-0.0938379 - 1.54095i) q^{28} +(1.82591 - 1.05419i) q^{29} +(-4.23319 + 0.128773i) q^{30} +9.83751i q^{31} +(4.41404 - 3.53783i) q^{32} +(-0.949962 - 0.548461i) q^{33} +(-3.29715 + 2.03973i) q^{34} +(0.668489 + 0.385952i) q^{35} +(11.9144 - 0.725539i) q^{36} +(4.55194 + 7.88418i) q^{37} +(0.480044 - 0.296972i) q^{38} +(10.5965 + 2.07382i) q^{39} +(0.257683 + 2.81666i) q^{40} +(6.57018 - 3.79330i) q^{41} +(-2.87954 - 1.54773i) q^{42} +(5.38510 + 3.10909i) q^{43} +(-0.327048 + 0.655520i) q^{44} +(-2.98412 + 5.16865i) q^{45} +(0.0336025 + 1.10463i) q^{46} +8.57446i q^{47} +(-1.45353 - 11.8903i) q^{48} +(-3.20208 - 5.54617i) q^{49} +(-1.24568 - 0.669541i) q^{50} +8.20999i q^{51} +(0.952275 - 7.14795i) q^{52} -4.85612i q^{53} +(5.95155 - 11.0728i) q^{54} +(-0.183144 - 0.317214i) q^{55} +(-0.914840 + 1.98236i) q^{56} -1.19532i q^{57} +(-2.98032 + 0.0906607i) q^{58} +(6.27654 - 10.8713i) q^{59} +(5.35941 + 2.67388i) q^{60} +(1.23481 + 0.712917i) q^{61} +(6.58661 - 12.2544i) q^{62} +(-3.98970 + 2.30346i) q^{63} +(-7.86720 + 1.45161i) q^{64} +(2.71812 + 2.36893i) q^{65} +(0.816131 + 1.31924i) q^{66} +(2.10071 + 3.63853i) q^{67} +(5.47287 - 0.333275i) q^{68} +(2.02668 + 1.17011i) q^{69} +(-0.574312 - 0.928353i) q^{70} +(1.22610 + 0.707891i) q^{71} +(-15.3273 - 7.07340i) q^{72} +16.3452i q^{73} +(-0.391468 - 12.8689i) q^{74} +(-2.59349 + 1.49735i) q^{75} +(-0.796816 + 0.0485228i) q^{76} -0.282739i q^{77} +(-11.8114 - 9.67812i) q^{78} -4.89500 q^{79} +(1.56488 - 3.68119i) q^{80} +(-4.35760 - 7.54758i) q^{81} +(-10.7241 + 0.326225i) q^{82} +2.70803 q^{83} +(2.55072 + 3.85594i) q^{84} +(-1.37075 + 2.37421i) q^{85} +(-4.62645 - 7.47847i) q^{86} +(-3.15698 + 5.46806i) q^{87} +(0.846293 - 0.597595i) q^{88} +(-10.0848 + 5.82248i) q^{89} +(7.17788 - 4.44049i) q^{90} +(0.902738 + 2.63267i) q^{91} +(0.697734 - 1.39851i) q^{92} +(-14.7302 - 25.5135i) q^{93} +(5.74095 - 10.6810i) q^{94} +(0.199573 - 0.345670i) q^{95} +(-6.15040 + 15.7847i) q^{96} +(11.2409 + 6.48992i) q^{97} +(0.275380 + 9.05267i) q^{98} +2.18609 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9} + 8 q^{11} + 6 q^{12} - 4 q^{14} - 10 q^{16} - 18 q^{18} + 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 2 q^{24} + 56 q^{25} + 11 q^{26} + 6 q^{28} + 5 q^{30} + 16 q^{34} - 21 q^{36} - 4 q^{37} - 24 q^{39} + 29 q^{42} - 24 q^{44} - 28 q^{45} - 11 q^{46} + 3 q^{48} + 20 q^{49} + 18 q^{52} - 49 q^{54} - 8 q^{55} + 61 q^{56} - 47 q^{58} + 16 q^{59} - 6 q^{60} - 2 q^{62} - 30 q^{64} + 14 q^{66} + 36 q^{67} + 33 q^{68} + 4 q^{70} - 51 q^{72} - 2 q^{74} - 48 q^{76} - 35 q^{78} + 10 q^{80} - 28 q^{81} - 21 q^{82} - 40 q^{83} - 61 q^{84} + 28 q^{86} - 36 q^{87} + 41 q^{88} + 18 q^{90} - 16 q^{91} - 18 q^{92} - 41 q^{94} - 16 q^{95} + 48 q^{96} + 24 q^{97} + 28 q^{98} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24568 0.669541i −0.880828 0.473437i
\(3\) −2.59349 + 1.49735i −1.49735 + 0.864496i −0.999995 0.00305049i \(-0.999029\pi\)
−0.497356 + 0.867547i \(0.665696\pi\)
\(4\) 1.10343 + 1.66806i 0.551715 + 0.834032i
\(5\) −1.00000 −0.447214
\(6\) 4.23319 0.128773i 1.72819 0.0525713i
\(7\) −0.668489 0.385952i −0.252665 0.145876i 0.368319 0.929700i \(-0.379933\pi\)
−0.620984 + 0.783823i \(0.713267\pi\)
\(8\) −0.257683 2.81666i −0.0911047 0.995841i
\(9\) 2.98412 5.16865i 0.994707 1.72288i
\(10\) 1.24568 + 0.669541i 0.393918 + 0.211727i
\(11\) 0.183144 + 0.317214i 0.0552199 + 0.0956437i 0.892314 0.451415i \(-0.149081\pi\)
−0.837094 + 0.547059i \(0.815747\pi\)
\(12\) −5.35941 2.67388i −1.54713 0.771884i
\(13\) −2.71812 2.36893i −0.753870 0.657023i
\(14\) 0.574312 + 0.928353i 0.153491 + 0.248113i
\(15\) 2.59349 1.49735i 0.669636 0.386614i
\(16\) −1.56488 + 3.68119i −0.391220 + 0.920297i
\(17\) 1.37075 2.37421i 0.332456 0.575831i −0.650537 0.759475i \(-0.725456\pi\)
0.982993 + 0.183644i \(0.0587893\pi\)
\(18\) −7.17788 + 4.44049i −1.69184 + 1.04663i
\(19\) −0.199573 + 0.345670i −0.0457852 + 0.0793022i −0.888010 0.459825i \(-0.847912\pi\)
0.842225 + 0.539127i \(0.181246\pi\)
\(20\) −1.10343 1.66806i −0.246735 0.372991i
\(21\) 2.31162 0.504438
\(22\) −0.0157504 0.517769i −0.00335800 0.110389i
\(23\) −0.390725 0.676756i −0.0814718 0.141113i 0.822411 0.568894i \(-0.192629\pi\)
−0.903882 + 0.427781i \(0.859295\pi\)
\(24\) 4.88583 + 6.91914i 0.997317 + 1.41236i
\(25\) 1.00000 0.200000
\(26\) 1.79981 + 4.77082i 0.352971 + 0.935634i
\(27\) 8.88900i 1.71069i
\(28\) −0.0938379 1.54095i −0.0177337 0.291213i
\(29\) 1.82591 1.05419i 0.339063 0.195758i −0.320795 0.947149i \(-0.603950\pi\)
0.659858 + 0.751391i \(0.270617\pi\)
\(30\) −4.23319 + 0.128773i −0.772871 + 0.0235106i
\(31\) 9.83751i 1.76687i 0.468555 + 0.883435i \(0.344775\pi\)
−0.468555 + 0.883435i \(0.655225\pi\)
\(32\) 4.41404 3.53783i 0.780300 0.625405i
\(33\) −0.949962 0.548461i −0.165367 0.0954748i
\(34\) −3.29715 + 2.03973i −0.565456 + 0.349811i
\(35\) 0.668489 + 0.385952i 0.112995 + 0.0652378i
\(36\) 11.9144 0.725539i 1.98574 0.120923i
\(37\) 4.55194 + 7.88418i 0.748334 + 1.29615i 0.948621 + 0.316415i \(0.102479\pi\)
−0.200287 + 0.979737i \(0.564188\pi\)
\(38\) 0.480044 0.296972i 0.0778734 0.0481752i
\(39\) 10.5965 + 2.07382i 1.69680 + 0.332076i
\(40\) 0.257683 + 2.81666i 0.0407433 + 0.445354i
\(41\) 6.57018 3.79330i 1.02609 0.592413i 0.110228 0.993906i \(-0.464842\pi\)
0.915862 + 0.401493i \(0.131509\pi\)
\(42\) −2.87954 1.54773i −0.444323 0.238819i
\(43\) 5.38510 + 3.10909i 0.821221 + 0.474132i 0.850837 0.525429i \(-0.176095\pi\)
−0.0296165 + 0.999561i \(0.509429\pi\)
\(44\) −0.327048 + 0.655520i −0.0493043 + 0.0988233i
\(45\) −2.98412 + 5.16865i −0.444847 + 0.770497i
\(46\) 0.0336025 + 1.10463i 0.00495442 + 0.162868i
\(47\) 8.57446i 1.25071i 0.780339 + 0.625357i \(0.215046\pi\)
−0.780339 + 0.625357i \(0.784954\pi\)
\(48\) −1.45353 11.8903i −0.209799 1.71622i
\(49\) −3.20208 5.54617i −0.457440 0.792310i
\(50\) −1.24568 0.669541i −0.176166 0.0946873i
\(51\) 8.20999i 1.14963i
\(52\) 0.952275 7.14795i 0.132057 0.991242i
\(53\) 4.85612i 0.667039i −0.942743 0.333520i \(-0.891764\pi\)
0.942743 0.333520i \(-0.108236\pi\)
\(54\) 5.95155 11.0728i 0.809903 1.50682i
\(55\) −0.183144 0.317214i −0.0246951 0.0427732i
\(56\) −0.914840 + 1.98236i −0.122251 + 0.264904i
\(57\) 1.19532i 0.158324i
\(58\) −2.98032 + 0.0906607i −0.391335 + 0.0119043i
\(59\) 6.27654 10.8713i 0.817135 1.41532i −0.0906489 0.995883i \(-0.528894\pi\)
0.907784 0.419437i \(-0.137773\pi\)
\(60\) 5.35941 + 2.67388i 0.691897 + 0.345197i
\(61\) 1.23481 + 0.712917i 0.158101 + 0.0912797i 0.576963 0.816770i \(-0.304238\pi\)
−0.418862 + 0.908050i \(0.637571\pi\)
\(62\) 6.58661 12.2544i 0.836501 1.55631i
\(63\) −3.98970 + 2.30346i −0.502656 + 0.290208i
\(64\) −7.86720 + 1.45161i −0.983400 + 0.181452i
\(65\) 2.71812 + 2.36893i 0.337141 + 0.293830i
\(66\) 0.816131 + 1.31924i 0.100459 + 0.162388i
\(67\) 2.10071 + 3.63853i 0.256642 + 0.444518i 0.965340 0.260994i \(-0.0840504\pi\)
−0.708698 + 0.705512i \(0.750717\pi\)
\(68\) 5.47287 0.333275i 0.663683 0.0404156i
\(69\) 2.02668 + 1.17011i 0.243984 + 0.140864i
\(70\) −0.574312 0.928353i −0.0686434 0.110959i
\(71\) 1.22610 + 0.707891i 0.145512 + 0.0840112i 0.570988 0.820958i \(-0.306560\pi\)
−0.425477 + 0.904969i \(0.639894\pi\)
\(72\) −15.3273 7.07340i −1.80634 0.833608i
\(73\) 16.3452i 1.91306i 0.291627 + 0.956532i \(0.405803\pi\)
−0.291627 + 0.956532i \(0.594197\pi\)
\(74\) −0.391468 12.8689i −0.0455073 1.49598i
\(75\) −2.59349 + 1.49735i −0.299470 + 0.172899i
\(76\) −0.796816 + 0.0485228i −0.0914010 + 0.00556595i
\(77\) 0.282739i 0.0322211i
\(78\) −11.8114 9.67812i −1.33737 1.09583i
\(79\) −4.89500 −0.550730 −0.275365 0.961340i \(-0.588799\pi\)
−0.275365 + 0.961340i \(0.588799\pi\)
\(80\) 1.56488 3.68119i 0.174959 0.411569i
\(81\) −4.35760 7.54758i −0.484177 0.838620i
\(82\) −10.7241 + 0.326225i −1.18428 + 0.0360255i
\(83\) 2.70803 0.297245 0.148622 0.988894i \(-0.452516\pi\)
0.148622 + 0.988894i \(0.452516\pi\)
\(84\) 2.55072 + 3.85594i 0.278306 + 0.420718i
\(85\) −1.37075 + 2.37421i −0.148679 + 0.257519i
\(86\) −4.62645 7.47847i −0.498883 0.806425i
\(87\) −3.15698 + 5.46806i −0.338464 + 0.586237i
\(88\) 0.846293 0.597595i 0.0902152 0.0637039i
\(89\) −10.0848 + 5.82248i −1.06899 + 0.617182i −0.927905 0.372816i \(-0.878392\pi\)
−0.141084 + 0.989998i \(0.545059\pi\)
\(90\) 7.17788 4.44049i 0.756615 0.468068i
\(91\) 0.902738 + 2.63267i 0.0946326 + 0.275979i
\(92\) 0.697734 1.39851i 0.0727438 0.145804i
\(93\) −14.7302 25.5135i −1.52745 2.64562i
\(94\) 5.74095 10.6810i 0.592134 1.10166i
\(95\) 0.199573 0.345670i 0.0204758 0.0354650i
\(96\) −6.15040 + 15.7847i −0.627723 + 1.61102i
\(97\) 11.2409 + 6.48992i 1.14134 + 0.658952i 0.946762 0.321936i \(-0.104334\pi\)
0.194576 + 0.980887i \(0.437667\pi\)
\(98\) 0.275380 + 9.05267i 0.0278176 + 0.914457i
\(99\) 2.18609 0.219711
\(100\) 1.10343 + 1.66806i 0.110343 + 0.166806i
\(101\) 2.07252 1.19657i 0.206224 0.119063i −0.393331 0.919397i \(-0.628678\pi\)
0.599555 + 0.800333i \(0.295344\pi\)
\(102\) 5.49692 10.2270i 0.544276 1.01262i
\(103\) −6.21721 −0.612599 −0.306300 0.951935i \(-0.599091\pi\)
−0.306300 + 0.951935i \(0.599091\pi\)
\(104\) −5.97207 + 8.26646i −0.585610 + 0.810593i
\(105\) −2.31162 −0.225591
\(106\) −3.25137 + 6.04916i −0.315801 + 0.587547i
\(107\) 5.79179 3.34389i 0.559913 0.323266i −0.193197 0.981160i \(-0.561886\pi\)
0.753111 + 0.657894i \(0.228552\pi\)
\(108\) −14.8274 + 9.80840i −1.42677 + 0.943814i
\(109\) 16.3988 1.57072 0.785361 0.619039i \(-0.212478\pi\)
0.785361 + 0.619039i \(0.212478\pi\)
\(110\) 0.0157504 + 0.517769i 0.00150174 + 0.0493674i
\(111\) −23.6108 13.6317i −2.24104 1.29386i
\(112\) 2.46687 1.85686i 0.233097 0.175457i
\(113\) 8.42307 14.5892i 0.792375 1.37243i −0.132117 0.991234i \(-0.542178\pi\)
0.924493 0.381200i \(-0.124489\pi\)
\(114\) −0.800317 + 1.48899i −0.0749566 + 0.139457i
\(115\) 0.390725 + 0.676756i 0.0364353 + 0.0631078i
\(116\) 3.77322 + 1.88251i 0.350335 + 0.174787i
\(117\) −20.3554 + 6.97982i −1.88185 + 0.645285i
\(118\) −15.0973 + 9.33973i −1.38982 + 0.859791i
\(119\) −1.83266 + 1.05809i −0.168000 + 0.0969949i
\(120\) −4.88583 6.91914i −0.446014 0.631629i
\(121\) 5.43292 9.41009i 0.493902 0.855463i
\(122\) −1.06085 1.71482i −0.0960447 0.155253i
\(123\) −11.3598 + 19.6757i −1.02428 + 1.77410i
\(124\) −16.4096 + 10.8550i −1.47363 + 0.974809i
\(125\) −1.00000 −0.0894427
\(126\) 6.51215 0.198098i 0.580148 0.0176480i
\(127\) −4.90403 8.49402i −0.435162 0.753723i 0.562147 0.827037i \(-0.309976\pi\)
−0.997309 + 0.0733147i \(0.976642\pi\)
\(128\) 10.7719 + 3.45916i 0.952112 + 0.305750i
\(129\) −18.6216 −1.63954
\(130\) −1.79981 4.77082i −0.157853 0.418428i
\(131\) 5.06554i 0.442578i 0.975208 + 0.221289i \(0.0710264\pi\)
−0.975208 + 0.221289i \(0.928974\pi\)
\(132\) −0.133349 2.18979i −0.0116066 0.190597i
\(133\) 0.266825 0.154051i 0.0231366 0.0133579i
\(134\) −0.180662 5.93895i −0.0156068 0.513047i
\(135\) 8.88900i 0.765044i
\(136\) −7.04058 3.24915i −0.603724 0.278613i
\(137\) 14.4204 + 8.32560i 1.23202 + 0.711304i 0.967450 0.253064i \(-0.0814382\pi\)
0.264565 + 0.964368i \(0.414772\pi\)
\(138\) −1.74116 2.81452i −0.148217 0.239588i
\(139\) 4.85477 + 2.80290i 0.411776 + 0.237739i 0.691553 0.722326i \(-0.256927\pi\)
−0.279776 + 0.960065i \(0.590260\pi\)
\(140\) 0.0938379 + 1.54095i 0.00793075 + 0.130234i
\(141\) −12.8390 22.2378i −1.08124 1.87276i
\(142\) −1.05337 1.70273i −0.0883967 0.142890i
\(143\) 0.253652 1.29608i 0.0212115 0.108384i
\(144\) 14.3570 + 19.0734i 1.19641 + 1.58945i
\(145\) −1.82591 + 1.05419i −0.151634 + 0.0875457i
\(146\) 10.9438 20.3609i 0.905715 1.68508i
\(147\) 16.6091 + 9.58928i 1.36990 + 0.790911i
\(148\) −8.12858 + 16.2926i −0.668166 + 1.33924i
\(149\) −10.8116 + 18.7262i −0.885720 + 1.53411i −0.0408344 + 0.999166i \(0.513002\pi\)
−0.844886 + 0.534947i \(0.820332\pi\)
\(150\) 4.23319 0.128773i 0.345639 0.0105143i
\(151\) 16.9637i 1.38049i −0.723577 0.690243i \(-0.757503\pi\)
0.723577 0.690243i \(-0.242497\pi\)
\(152\) 1.02506 + 0.473057i 0.0831437 + 0.0383700i
\(153\) −8.18098 14.1699i −0.661393 1.14557i
\(154\) −0.189305 + 0.352202i −0.0152546 + 0.0283812i
\(155\) 9.83751i 0.790168i
\(156\) 8.23328 + 19.9640i 0.659190 + 1.59840i
\(157\) 14.5213i 1.15893i −0.814997 0.579465i \(-0.803262\pi\)
0.814997 0.579465i \(-0.196738\pi\)
\(158\) 6.09759 + 3.27740i 0.485098 + 0.260736i
\(159\) 7.27132 + 12.5943i 0.576653 + 0.998792i
\(160\) −4.41404 + 3.53783i −0.348961 + 0.279690i
\(161\) 0.603205i 0.0475392i
\(162\) 0.374755 + 12.3194i 0.0294435 + 0.967907i
\(163\) 6.31713 10.9416i 0.494796 0.857012i −0.505186 0.863010i \(-0.668576\pi\)
0.999982 + 0.00599866i \(0.00190944\pi\)
\(164\) 13.5772 + 6.77385i 1.06020 + 0.528949i
\(165\) 0.949962 + 0.548461i 0.0739545 + 0.0426976i
\(166\) −3.37334 1.81314i −0.261822 0.140727i
\(167\) 12.8775 7.43485i 0.996494 0.575326i 0.0892849 0.996006i \(-0.471542\pi\)
0.907209 + 0.420680i \(0.138208\pi\)
\(168\) −0.595667 6.51107i −0.0459567 0.502340i
\(169\) 1.77633 + 12.8781i 0.136641 + 0.990621i
\(170\) 3.29715 2.03973i 0.252880 0.156440i
\(171\) 1.19110 + 2.06305i 0.0910857 + 0.157765i
\(172\) 0.755924 + 12.4134i 0.0576386 + 0.946511i
\(173\) −8.47690 4.89414i −0.644487 0.372095i 0.141854 0.989888i \(-0.454694\pi\)
−0.786341 + 0.617793i \(0.788027\pi\)
\(174\) 7.59367 4.69771i 0.575675 0.356133i
\(175\) −0.668489 0.385952i −0.0505330 0.0291753i
\(176\) −1.45432 + 0.177784i −0.109624 + 0.0134010i
\(177\) 37.5927i 2.82564i
\(178\) 16.4608 0.500735i 1.23379 0.0375317i
\(179\) −6.67998 + 3.85669i −0.499286 + 0.288263i −0.728418 0.685133i \(-0.759744\pi\)
0.229133 + 0.973395i \(0.426411\pi\)
\(180\) −11.9144 + 0.725539i −0.888048 + 0.0540785i
\(181\) 12.1896i 0.906047i 0.891499 + 0.453023i \(0.149655\pi\)
−0.891499 + 0.453023i \(0.850345\pi\)
\(182\) 0.638157 3.88388i 0.0473033 0.287892i
\(183\) −4.26995 −0.315644
\(184\) −1.80551 + 1.27493i −0.133104 + 0.0939891i
\(185\) −4.55194 7.88418i −0.334665 0.579657i
\(186\) 1.26680 + 41.6441i 0.0928865 + 3.05349i
\(187\) 1.00418 0.0734328
\(188\) −14.3028 + 9.46132i −1.04314 + 0.690038i
\(189\) 3.43073 5.94220i 0.249549 0.432232i
\(190\) −0.480044 + 0.296972i −0.0348261 + 0.0215446i
\(191\) 3.86844 6.70033i 0.279911 0.484819i −0.691452 0.722423i \(-0.743029\pi\)
0.971362 + 0.237603i \(0.0763619\pi\)
\(192\) 18.2299 15.5447i 1.31563 1.12184i
\(193\) 13.9837 8.07351i 1.00657 0.581144i 0.0963852 0.995344i \(-0.469272\pi\)
0.910186 + 0.414200i \(0.135939\pi\)
\(194\) −9.65725 15.6106i −0.693350 1.12077i
\(195\) −10.5965 2.07382i −0.758833 0.148509i
\(196\) 5.71809 11.4611i 0.408435 0.818649i
\(197\) 0.485382 + 0.840706i 0.0345820 + 0.0598978i 0.882798 0.469752i \(-0.155657\pi\)
−0.848216 + 0.529650i \(0.822323\pi\)
\(198\) −2.72317 1.46368i −0.193527 0.104019i
\(199\) −1.60816 + 2.78542i −0.114000 + 0.197453i −0.917379 0.398014i \(-0.869700\pi\)
0.803380 + 0.595467i \(0.203033\pi\)
\(200\) −0.257683 2.81666i −0.0182209 0.199168i
\(201\) −10.8963 6.29100i −0.768568 0.443733i
\(202\) −3.38285 + 0.102906i −0.238016 + 0.00724041i
\(203\) −1.62747 −0.114226
\(204\) −13.6948 + 9.05915i −0.958827 + 0.634267i
\(205\) −6.57018 + 3.79330i −0.458882 + 0.264935i
\(206\) 7.74464 + 4.16267i 0.539595 + 0.290027i
\(207\) −4.66388 −0.324162
\(208\) 12.9740 6.29881i 0.899586 0.436744i
\(209\) −0.146202 −0.0101130
\(210\) 2.87954 + 1.54773i 0.198707 + 0.106803i
\(211\) 23.8237 13.7546i 1.64009 0.946906i 0.659290 0.751889i \(-0.270857\pi\)
0.980800 0.195017i \(-0.0624764\pi\)
\(212\) 8.10032 5.35839i 0.556332 0.368016i
\(213\) −4.23984 −0.290509
\(214\) −9.45358 + 0.287576i −0.646233 + 0.0196583i
\(215\) −5.38510 3.10909i −0.367261 0.212038i
\(216\) 25.0373 2.29055i 1.70358 0.155852i
\(217\) 3.79681 6.57627i 0.257744 0.446426i
\(218\) −20.4276 10.9797i −1.38353 0.743637i
\(219\) −24.4745 42.3912i −1.65384 2.86453i
\(220\) 0.327048 0.655520i 0.0220495 0.0441951i
\(221\) −9.35021 + 3.20617i −0.628963 + 0.215670i
\(222\) 20.2845 + 32.7891i 1.36141 + 2.20066i
\(223\) −10.0424 + 5.79797i −0.672488 + 0.388261i −0.797019 0.603955i \(-0.793591\pi\)
0.124531 + 0.992216i \(0.460257\pi\)
\(224\) −4.31617 + 0.661388i −0.288386 + 0.0441908i
\(225\) 2.98412 5.16865i 0.198941 0.344577i
\(226\) −20.2605 + 12.5338i −1.34771 + 0.833739i
\(227\) 6.20835 10.7532i 0.412063 0.713714i −0.583052 0.812435i \(-0.698142\pi\)
0.995115 + 0.0987210i \(0.0314751\pi\)
\(228\) 1.99388 1.31896i 0.132048 0.0873500i
\(229\) 13.8237 0.913494 0.456747 0.889597i \(-0.349014\pi\)
0.456747 + 0.889597i \(0.349014\pi\)
\(230\) −0.0336025 1.10463i −0.00221568 0.0728369i
\(231\) 0.423360 + 0.733280i 0.0278550 + 0.0482463i
\(232\) −3.43980 4.87133i −0.225834 0.319818i
\(233\) 14.8667 0.973948 0.486974 0.873417i \(-0.338101\pi\)
0.486974 + 0.873417i \(0.338101\pi\)
\(234\) 30.0295 + 4.93413i 1.96309 + 0.322554i
\(235\) 8.57446i 0.559336i
\(236\) 25.0597 1.52604i 1.63125 0.0993364i
\(237\) 12.6951 7.32953i 0.824637 0.476104i
\(238\) 2.99135 0.0909961i 0.193900 0.00589840i
\(239\) 14.4448i 0.934357i −0.884163 0.467178i \(-0.845271\pi\)
0.884163 0.467178i \(-0.154729\pi\)
\(240\) 1.45353 + 11.8903i 0.0938250 + 0.767515i
\(241\) −10.2446 5.91471i −0.659911 0.381000i 0.132332 0.991205i \(-0.457754\pi\)
−0.792243 + 0.610205i \(0.791087\pi\)
\(242\) −13.0681 + 8.08439i −0.840050 + 0.519684i
\(243\) −0.491557 0.283801i −0.0315334 0.0182058i
\(244\) 0.173334 + 2.84640i 0.0110966 + 0.182222i
\(245\) 3.20208 + 5.54617i 0.204573 + 0.354332i
\(246\) 27.3244 16.9038i 1.74214 1.07775i
\(247\) 1.36133 0.466799i 0.0866195 0.0297017i
\(248\) 27.7090 2.53496i 1.75952 0.160970i
\(249\) −7.02325 + 4.05487i −0.445080 + 0.256967i
\(250\) 1.24568 + 0.669541i 0.0787836 + 0.0423455i
\(251\) 18.9533 + 10.9427i 1.19632 + 0.690697i 0.959733 0.280913i \(-0.0906372\pi\)
0.236589 + 0.971610i \(0.423971\pi\)
\(252\) −8.24468 4.11338i −0.519366 0.259119i
\(253\) 0.143118 0.247887i 0.00899773 0.0155845i
\(254\) 0.421748 + 13.8643i 0.0264628 + 0.869922i
\(255\) 8.20999i 0.514129i
\(256\) −11.1023 11.5212i −0.693893 0.720078i
\(257\) 11.5238 + 19.9598i 0.718836 + 1.24506i 0.961461 + 0.274941i \(0.0886582\pi\)
−0.242625 + 0.970120i \(0.578008\pi\)
\(258\) 23.1965 + 12.4679i 1.44415 + 0.776219i
\(259\) 7.02732i 0.436656i
\(260\) −0.952275 + 7.14795i −0.0590576 + 0.443297i
\(261\) 12.5833i 0.778888i
\(262\) 3.39158 6.31003i 0.209533 0.389835i
\(263\) 13.9302 + 24.1278i 0.858972 + 1.48778i 0.872911 + 0.487880i \(0.162230\pi\)
−0.0139390 + 0.999903i \(0.504437\pi\)
\(264\) −1.30004 + 2.81705i −0.0800120 + 0.173378i
\(265\) 4.85612i 0.298309i
\(266\) −0.435521 + 0.0132485i −0.0267035 + 0.000812316i
\(267\) 17.4366 30.2011i 1.06710 1.84827i
\(268\) −3.75132 + 7.51899i −0.229149 + 0.459295i
\(269\) −22.5817 13.0375i −1.37683 0.794912i −0.385052 0.922895i \(-0.625816\pi\)
−0.991776 + 0.127983i \(0.959150\pi\)
\(270\) −5.95155 + 11.0728i −0.362200 + 0.673872i
\(271\) 7.33087 4.23248i 0.445319 0.257105i −0.260532 0.965465i \(-0.583898\pi\)
0.705851 + 0.708360i \(0.250565\pi\)
\(272\) 6.59486 + 8.76135i 0.399872 + 0.531235i
\(273\) −6.28327 5.47608i −0.380281 0.331427i
\(274\) −12.3888 20.0260i −0.748436 1.20982i
\(275\) 0.183144 + 0.317214i 0.0110440 + 0.0191287i
\(276\) 0.284492 + 4.67177i 0.0171244 + 0.281207i
\(277\) 22.1387 + 12.7818i 1.33019 + 0.767983i 0.985328 0.170672i \(-0.0545938\pi\)
0.344858 + 0.938655i \(0.387927\pi\)
\(278\) −4.17083 6.74198i −0.250149 0.404357i
\(279\) 50.8466 + 29.3563i 3.04411 + 1.75752i
\(280\) 0.914840 1.98236i 0.0546721 0.118469i
\(281\) 8.03285i 0.479200i −0.970872 0.239600i \(-0.922984\pi\)
0.970872 0.239600i \(-0.0770162\pi\)
\(282\) 1.10416 + 36.2973i 0.0657516 + 2.16147i
\(283\) −26.1531 + 15.0995i −1.55464 + 0.897573i −0.556888 + 0.830588i \(0.688005\pi\)
−0.997754 + 0.0669853i \(0.978662\pi\)
\(284\) 0.172112 + 2.82633i 0.0102130 + 0.167712i
\(285\) 1.19532i 0.0708048i
\(286\) −1.18375 + 1.44467i −0.0699965 + 0.0854251i
\(287\) −5.85613 −0.345676
\(288\) −5.11374 33.3720i −0.301330 1.96646i
\(289\) 4.74208 + 8.21352i 0.278946 + 0.483148i
\(290\) 2.98032 0.0906607i 0.175010 0.00532378i
\(291\) −38.8708 −2.27864
\(292\) −27.2649 + 18.0358i −1.59556 + 1.05547i
\(293\) 0.595312 1.03111i 0.0347785 0.0602381i −0.848112 0.529817i \(-0.822261\pi\)
0.882891 + 0.469578i \(0.155594\pi\)
\(294\) −14.2692 23.0656i −0.832198 1.34522i
\(295\) −6.27654 + 10.8713i −0.365434 + 0.632950i
\(296\) 21.0341 14.8529i 1.22258 0.863307i
\(297\) −2.81972 + 1.62797i −0.163617 + 0.0944641i
\(298\) 26.0057 16.0881i 1.50647 0.931957i
\(299\) −0.541150 + 2.76510i −0.0312955 + 0.159910i
\(300\) −5.35941 2.67388i −0.309426 0.154377i
\(301\) −2.39992 4.15679i −0.138329 0.239593i
\(302\) −11.3579 + 21.1313i −0.653573 + 1.21597i
\(303\) −3.58338 + 6.20659i −0.205860 + 0.356559i
\(304\) −0.960170 1.27560i −0.0550695 0.0731606i
\(305\) −1.23481 0.712917i −0.0707049 0.0408215i
\(306\) 0.703567 + 23.1286i 0.0402203 + 1.32217i
\(307\) −16.6908 −0.952593 −0.476297 0.879285i \(-0.658021\pi\)
−0.476297 + 0.879285i \(0.658021\pi\)
\(308\) 0.471627 0.311983i 0.0268734 0.0177769i
\(309\) 16.1243 9.30934i 0.917277 0.529590i
\(310\) −6.58661 + 12.2544i −0.374094 + 0.696002i
\(311\) −3.24826 −0.184192 −0.0920961 0.995750i \(-0.529357\pi\)
−0.0920961 + 0.995750i \(0.529357\pi\)
\(312\) 3.11070 30.3813i 0.176109 1.72000i
\(313\) 1.89125 0.106900 0.0534499 0.998571i \(-0.482978\pi\)
0.0534499 + 0.998571i \(0.482978\pi\)
\(314\) −9.72263 + 18.0889i −0.548680 + 1.02082i
\(315\) 3.98970 2.30346i 0.224794 0.129785i
\(316\) −5.40129 8.16517i −0.303846 0.459327i
\(317\) −16.9803 −0.953707 −0.476854 0.878983i \(-0.658223\pi\)
−0.476854 + 0.878983i \(0.658223\pi\)
\(318\) −0.625336 20.5569i −0.0350671 1.15277i
\(319\) 0.668808 + 0.386136i 0.0374460 + 0.0216195i
\(320\) 7.86720 1.45161i 0.439790 0.0811477i
\(321\) −10.0140 + 17.3447i −0.558925 + 0.968086i
\(322\) 0.403870 0.751399i 0.0225068 0.0418739i
\(323\) 0.547130 + 0.947657i 0.0304431 + 0.0527290i
\(324\) 7.78154 15.5970i 0.432308 0.866499i
\(325\) −2.71812 2.36893i −0.150774 0.131405i
\(326\) −15.1950 + 9.40013i −0.841571 + 0.520625i
\(327\) −42.5301 + 24.5548i −2.35192 + 1.35788i
\(328\) −12.3775 17.5285i −0.683432 0.967851i
\(329\) 3.30933 5.73193i 0.182449 0.316012i
\(330\) −0.816131 1.31924i −0.0449265 0.0726220i
\(331\) −10.0567 + 17.4187i −0.552767 + 0.957420i 0.445307 + 0.895378i \(0.353095\pi\)
−0.998074 + 0.0620419i \(0.980239\pi\)
\(332\) 2.98812 + 4.51717i 0.163995 + 0.247912i
\(333\) 54.3341 2.97749
\(334\) −21.0192 + 0.639400i −1.15012 + 0.0349864i
\(335\) −2.10071 3.63853i −0.114774 0.198794i
\(336\) −3.61742 + 8.50953i −0.197346 + 0.464233i
\(337\) −10.1602 −0.553460 −0.276730 0.960948i \(-0.589251\pi\)
−0.276730 + 0.960948i \(0.589251\pi\)
\(338\) 6.40965 17.2313i 0.348639 0.937257i
\(339\) 50.4491i 2.74002i
\(340\) −5.47287 + 0.333275i −0.296808 + 0.0180744i
\(341\) −3.12060 + 1.80168i −0.168990 + 0.0975664i
\(342\) −0.102435 3.36738i −0.00553905 0.182087i
\(343\) 10.3467i 0.558671i
\(344\) 7.36962 15.9692i 0.397343 0.861001i
\(345\) −2.02668 1.17011i −0.109113 0.0629963i
\(346\) 7.28267 + 11.7722i 0.391519 + 0.632875i
\(347\) −13.3705 7.71947i −0.717767 0.414403i 0.0961633 0.995366i \(-0.469343\pi\)
−0.813930 + 0.580963i \(0.802676\pi\)
\(348\) −12.6046 + 0.767568i −0.675677 + 0.0411460i
\(349\) 5.42931 + 9.40383i 0.290624 + 0.503376i 0.973957 0.226731i \(-0.0728038\pi\)
−0.683333 + 0.730106i \(0.739470\pi\)
\(350\) 0.574312 + 0.928353i 0.0306983 + 0.0496226i
\(351\) 21.0574 24.1614i 1.12396 1.28964i
\(352\) 1.93065 + 0.752267i 0.102904 + 0.0400960i
\(353\) −17.3940 + 10.0424i −0.925791 + 0.534505i −0.885478 0.464682i \(-0.846169\pi\)
−0.0403128 + 0.999187i \(0.512835\pi\)
\(354\) 25.1699 46.8284i 1.33776 2.48890i
\(355\) −1.22610 0.707891i −0.0650748 0.0375709i
\(356\) −20.8402 10.3974i −1.10453 0.551064i
\(357\) 3.16866 5.48829i 0.167703 0.290471i
\(358\) 10.9033 0.331677i 0.576259 0.0175297i
\(359\) 19.0632i 1.00612i 0.864252 + 0.503060i \(0.167792\pi\)
−0.864252 + 0.503060i \(0.832208\pi\)
\(360\) 15.3273 + 7.07340i 0.807820 + 0.372801i
\(361\) 9.42034 + 16.3165i 0.495807 + 0.858764i
\(362\) 8.16144 15.1843i 0.428956 0.798071i
\(363\) 32.5399i 1.70790i
\(364\) −3.39535 + 4.41079i −0.177965 + 0.231188i
\(365\) 16.3452i 0.855548i
\(366\) 5.31898 + 2.85890i 0.278028 + 0.149437i
\(367\) −4.48429 7.76702i −0.234078 0.405435i 0.724926 0.688827i \(-0.241874\pi\)
−0.959004 + 0.283391i \(0.908540\pi\)
\(368\) 3.10270 0.379290i 0.161740 0.0197719i
\(369\) 45.2786i 2.35711i
\(370\) 0.391468 + 12.8689i 0.0203515 + 0.669020i
\(371\) −1.87423 + 3.24626i −0.0973052 + 0.168538i
\(372\) 26.3044 52.7233i 1.36382 2.73358i
\(373\) 22.0539 + 12.7328i 1.14191 + 0.659280i 0.946902 0.321522i \(-0.104194\pi\)
0.195005 + 0.980802i \(0.437528\pi\)
\(374\) −1.25088 0.672338i −0.0646816 0.0347658i
\(375\) 2.59349 1.49735i 0.133927 0.0773229i
\(376\) 24.1514 2.20949i 1.24551 0.113946i
\(377\) −7.46034 1.46004i −0.384227 0.0751960i
\(378\) −8.25213 + 5.10506i −0.424444 + 0.262576i
\(379\) −6.24679 10.8198i −0.320876 0.555773i 0.659793 0.751447i \(-0.270644\pi\)
−0.980669 + 0.195674i \(0.937311\pi\)
\(380\) 0.796816 0.0485228i 0.0408758 0.00248917i
\(381\) 25.4371 + 14.6861i 1.30318 + 0.752392i
\(382\) −9.30498 + 5.75639i −0.476084 + 0.294522i
\(383\) 5.36702 + 3.09865i 0.274242 + 0.158334i 0.630814 0.775934i \(-0.282721\pi\)
−0.356572 + 0.934268i \(0.616054\pi\)
\(384\) −33.1164 + 7.15804i −1.68997 + 0.365282i
\(385\) 0.282739i 0.0144097i
\(386\) −22.8248 + 0.694325i −1.16175 + 0.0353402i
\(387\) 32.1396 18.5558i 1.63375 0.943245i
\(388\) 1.57792 + 25.9117i 0.0801065 + 1.31547i
\(389\) 34.3087i 1.73952i 0.493476 + 0.869759i \(0.335726\pi\)
−0.493476 + 0.869759i \(0.664274\pi\)
\(390\) 11.8114 + 9.67812i 0.598092 + 0.490070i
\(391\) −2.14235 −0.108343
\(392\) −14.7966 + 10.4483i −0.747340 + 0.527721i
\(393\) −7.58489 13.1374i −0.382607 0.662695i
\(394\) −0.0417430 1.37223i −0.00210298 0.0691321i
\(395\) 4.89500 0.246294
\(396\) 2.41220 + 3.64654i 0.121218 + 0.183246i
\(397\) −1.74941 + 3.03007i −0.0878004 + 0.152075i −0.906581 0.422032i \(-0.861317\pi\)
0.818781 + 0.574106i \(0.194650\pi\)
\(398\) 3.86821 2.39301i 0.193896 0.119951i
\(399\) −0.461338 + 0.799060i −0.0230958 + 0.0400031i
\(400\) −1.56488 + 3.68119i −0.0782440 + 0.184059i
\(401\) 26.1071 15.0729i 1.30372 0.752706i 0.322683 0.946507i \(-0.395415\pi\)
0.981041 + 0.193801i \(0.0620817\pi\)
\(402\) 9.36124 + 15.1321i 0.466896 + 0.754720i
\(403\) 23.3044 26.7395i 1.16087 1.33199i
\(404\) 4.28284 + 2.13677i 0.213079 + 0.106308i
\(405\) 4.35760 + 7.54758i 0.216531 + 0.375042i
\(406\) 2.02730 + 1.08966i 0.100613 + 0.0540787i
\(407\) −1.66732 + 2.88788i −0.0826458 + 0.143147i
\(408\) 23.1248 2.11557i 1.14485 0.104737i
\(409\) −11.4804 6.62824i −0.567672 0.327745i 0.188547 0.982064i \(-0.439622\pi\)
−0.756219 + 0.654319i \(0.772955\pi\)
\(410\) 10.7241 0.326225i 0.529626 0.0161111i
\(411\) −49.8654 −2.45968
\(412\) −6.86026 10.3707i −0.337981 0.510928i
\(413\) −8.39159 + 4.84489i −0.412923 + 0.238401i
\(414\) 5.80970 + 3.12266i 0.285531 + 0.153470i
\(415\) −2.70803 −0.132932
\(416\) −20.3788 0.840334i −0.999151 0.0412007i
\(417\) −16.7877 −0.822098
\(418\) 0.182121 + 0.0978883i 0.00890782 + 0.00478787i
\(419\) −25.6127 + 14.7875i −1.25126 + 0.722418i −0.971361 0.237610i \(-0.923636\pi\)
−0.279904 + 0.960028i \(0.590303\pi\)
\(420\) −2.55072 3.85594i −0.124462 0.188151i
\(421\) −5.81368 −0.283342 −0.141671 0.989914i \(-0.545247\pi\)
−0.141671 + 0.989914i \(0.545247\pi\)
\(422\) −38.8859 + 1.18290i −1.89294 + 0.0575827i
\(423\) 44.3184 + 25.5872i 2.15483 + 1.24409i
\(424\) −13.6781 + 1.25134i −0.664265 + 0.0607704i
\(425\) 1.37075 2.37421i 0.0664912 0.115166i
\(426\) 5.28148 + 2.83875i 0.255889 + 0.137538i
\(427\) −0.550304 0.953155i −0.0266311 0.0461264i
\(428\) 11.9687 + 5.97133i 0.578527 + 0.288635i
\(429\) 1.28284 + 3.74118i 0.0619363 + 0.180626i
\(430\) 4.62645 + 7.47847i 0.223107 + 0.360644i
\(431\) −11.2754 + 6.50987i −0.543118 + 0.313570i −0.746342 0.665563i \(-0.768192\pi\)
0.203223 + 0.979132i \(0.434858\pi\)
\(432\) −32.7221 13.9102i −1.57434 0.669256i
\(433\) −1.42803 + 2.47342i −0.0686268 + 0.118865i −0.898297 0.439389i \(-0.855195\pi\)
0.829670 + 0.558254i \(0.188528\pi\)
\(434\) −9.13268 + 5.64980i −0.438383 + 0.271199i
\(435\) 3.15698 5.46806i 0.151366 0.262173i
\(436\) 18.0950 + 27.3543i 0.866591 + 1.31003i
\(437\) 0.311913 0.0149208
\(438\) 2.10482 + 69.1925i 0.100572 + 3.30614i
\(439\) 3.81841 + 6.61368i 0.182243 + 0.315654i 0.942644 0.333800i \(-0.108331\pi\)
−0.760401 + 0.649454i \(0.774998\pi\)
\(440\) −0.846293 + 0.597595i −0.0403454 + 0.0284892i
\(441\) −38.2216 −1.82008
\(442\) 13.7940 + 2.26648i 0.656114 + 0.107806i
\(443\) 7.97304i 0.378810i −0.981899 0.189405i \(-0.939344\pi\)
0.981899 0.189405i \(-0.0606560\pi\)
\(444\) −3.31432 54.4260i −0.157291 2.58294i
\(445\) 10.0848 5.82248i 0.478067 0.276012i
\(446\) 16.3916 0.498628i 0.776163 0.0236107i
\(447\) 64.7550i 3.06281i
\(448\) 5.81939 + 2.06598i 0.274940 + 0.0976082i
\(449\) −19.1672 11.0662i −0.904558 0.522247i −0.0258815 0.999665i \(-0.508239\pi\)
−0.878676 + 0.477418i \(0.841573\pi\)
\(450\) −7.17788 + 4.44049i −0.338368 + 0.209327i
\(451\) 2.40658 + 1.38944i 0.113321 + 0.0654260i
\(452\) 33.6300 2.04793i 1.58182 0.0963264i
\(453\) 25.4006 + 43.9952i 1.19343 + 2.06707i
\(454\) −14.9333 + 9.23826i −0.700855 + 0.433573i
\(455\) −0.902738 2.63267i −0.0423210 0.123421i
\(456\) −3.36682 + 0.308015i −0.157666 + 0.0144241i
\(457\) 6.92974 4.00089i 0.324159 0.187154i −0.329086 0.944300i \(-0.606740\pi\)
0.653245 + 0.757147i \(0.273407\pi\)
\(458\) −17.2199 9.25551i −0.804631 0.432482i
\(459\) 21.1044 + 12.1846i 0.985068 + 0.568729i
\(460\) −0.697734 + 1.39851i −0.0325320 + 0.0652058i
\(461\) 0.951302 1.64770i 0.0443066 0.0767412i −0.843022 0.537880i \(-0.819225\pi\)
0.887328 + 0.461138i \(0.152559\pi\)
\(462\) −0.0364091 1.19689i −0.00169390 0.0556843i
\(463\) 37.9962i 1.76583i −0.469529 0.882917i \(-0.655576\pi\)
0.469529 0.882917i \(-0.344424\pi\)
\(464\) 1.02334 + 8.37120i 0.0475073 + 0.388623i
\(465\) 14.7302 + 25.5135i 0.683097 + 1.18316i
\(466\) −18.5191 9.95384i −0.857880 0.461103i
\(467\) 24.0549i 1.11313i −0.830805 0.556563i \(-0.812120\pi\)
0.830805 0.556563i \(-0.187880\pi\)
\(468\) −34.1035 26.2523i −1.57644 1.21351i
\(469\) 3.24309i 0.149752i
\(470\) −5.74095 + 10.6810i −0.264810 + 0.492679i
\(471\) 21.7435 + 37.6609i 1.00189 + 1.73532i
\(472\) −32.2381 14.8776i −1.48388 0.684795i
\(473\) 2.27764i 0.104726i
\(474\) −20.7215 + 0.630342i −0.951768 + 0.0289526i
\(475\) −0.199573 + 0.345670i −0.00915703 + 0.0158604i
\(476\) −3.78718 1.88948i −0.173585 0.0866039i
\(477\) −25.0996 14.4912i −1.14923 0.663509i
\(478\) −9.67138 + 17.9936i −0.442359 + 0.823008i
\(479\) −19.8904 + 11.4838i −0.908818 + 0.524706i −0.880051 0.474880i \(-0.842491\pi\)
−0.0287672 + 0.999586i \(0.509158\pi\)
\(480\) 6.15040 15.7847i 0.280726 0.720469i
\(481\) 6.30439 32.2134i 0.287455 1.46880i
\(482\) 8.80132 + 14.2270i 0.400889 + 0.648022i
\(483\) −0.903210 1.56440i −0.0410975 0.0711829i
\(484\) 21.6915 1.32092i 0.985977 0.0600420i
\(485\) −11.2409 6.48992i −0.510422 0.294692i
\(486\) 0.422306 + 0.682642i 0.0191562 + 0.0309653i
\(487\) −22.7269 13.1214i −1.02985 0.594586i −0.112911 0.993605i \(-0.536017\pi\)
−0.916943 + 0.399019i \(0.869351\pi\)
\(488\) 1.68986 3.66175i 0.0764963 0.165760i
\(489\) 37.8359i 1.71100i
\(490\) −0.275380 9.05267i −0.0124404 0.408958i
\(491\) 15.1930 8.77168i 0.685650 0.395860i −0.116330 0.993211i \(-0.537113\pi\)
0.801980 + 0.597350i \(0.203780\pi\)
\(492\) −45.3552 + 2.76195i −2.04477 + 0.124518i
\(493\) 5.78013i 0.260324i
\(494\) −2.00832 0.329986i −0.0903587 0.0148468i
\(495\) −2.18609 −0.0982576
\(496\) −36.2137 15.3945i −1.62604 0.691235i
\(497\) −0.546424 0.946434i −0.0245105 0.0424534i
\(498\) 11.4636 0.348721i 0.513697 0.0156265i
\(499\) −13.0252 −0.583089 −0.291544 0.956557i \(-0.594169\pi\)
−0.291544 + 0.956557i \(0.594169\pi\)
\(500\) −1.10343 1.66806i −0.0493469 0.0745981i
\(501\) −22.2652 + 38.5644i −0.994734 + 1.72293i
\(502\) −16.2832 26.3211i −0.726753 1.17477i
\(503\) 13.4851 23.3568i 0.601269 1.04143i −0.391360 0.920237i \(-0.627995\pi\)
0.992629 0.121191i \(-0.0386712\pi\)
\(504\) 7.51615 + 10.6441i 0.334796 + 0.474126i
\(505\) −2.07252 + 1.19657i −0.0922260 + 0.0532467i
\(506\) −0.344249 + 0.212965i −0.0153037 + 0.00946743i
\(507\) −23.8899 30.7393i −1.06099 1.36518i
\(508\) 8.75733 17.5528i 0.388544 0.778780i
\(509\) −5.29626 9.17339i −0.234753 0.406603i 0.724448 0.689329i \(-0.242095\pi\)
−0.959201 + 0.282726i \(0.908761\pi\)
\(510\) −5.49692 + 10.2270i −0.243408 + 0.452859i
\(511\) 6.30848 10.9266i 0.279071 0.483364i
\(512\) 6.11595 + 21.7852i 0.270289 + 0.962779i
\(513\) −3.07267 1.77400i −0.135662 0.0783242i
\(514\) −0.991053 32.5792i −0.0437135 1.43701i
\(515\) 6.21721 0.273963
\(516\) −20.5477 31.0621i −0.904560 1.36743i
\(517\) −2.71994 + 1.57036i −0.119623 + 0.0690643i
\(518\) −4.70508 + 8.75378i −0.206729 + 0.384619i
\(519\) 29.3130 1.28670
\(520\) 5.97207 8.26646i 0.261893 0.362508i
\(521\) 12.4487 0.545386 0.272693 0.962101i \(-0.412086\pi\)
0.272693 + 0.962101i \(0.412086\pi\)
\(522\) −8.42504 + 15.6748i −0.368754 + 0.686066i
\(523\) −0.832112 + 0.480420i −0.0363857 + 0.0210073i −0.518083 0.855331i \(-0.673354\pi\)
0.481697 + 0.876338i \(0.340021\pi\)
\(524\) −8.44965 + 5.58947i −0.369125 + 0.244177i
\(525\) 2.31162 0.100888
\(526\) −1.19800 39.3823i −0.0522353 1.71715i
\(527\) 23.3563 + 13.4848i 1.01742 + 0.587406i
\(528\) 3.50557 2.63871i 0.152560 0.114835i
\(529\) 11.1947 19.3897i 0.486725 0.843032i
\(530\) 3.25137 6.04916i 0.141230 0.262759i
\(531\) −37.4599 64.8824i −1.62562 2.81566i
\(532\) 0.551390 + 0.275096i 0.0239058 + 0.0119269i
\(533\) −26.8446 5.25368i −1.16277 0.227562i
\(534\) −41.9412 + 25.9463i −1.81497 + 1.12281i
\(535\) −5.79179 + 3.34389i −0.250401 + 0.144569i
\(536\) 9.70721 6.85458i 0.419288 0.296073i
\(537\) 11.5496 20.0046i 0.498404 0.863261i
\(538\) 19.4003 + 31.3599i 0.836408 + 1.35202i
\(539\) 1.17288 2.03149i 0.0505196 0.0875026i
\(540\) 14.8274 9.80840i 0.638071 0.422086i
\(541\) 7.60998 0.327179 0.163589 0.986529i \(-0.447693\pi\)
0.163589 + 0.986529i \(0.447693\pi\)
\(542\) −11.9657 + 0.363995i −0.513972 + 0.0156349i
\(543\) −18.2521 31.6136i −0.783274 1.35667i
\(544\) −2.34899 15.3294i −0.100712 0.657241i
\(545\) −16.3988 −0.702448
\(546\) 4.16048 + 11.0283i 0.178052 + 0.471969i
\(547\) 27.5793i 1.17921i 0.807693 + 0.589603i \(0.200716\pi\)
−0.807693 + 0.589603i \(0.799284\pi\)
\(548\) 2.02423 + 33.2408i 0.0864709 + 1.41998i
\(549\) 7.36964 4.25486i 0.314528 0.181593i
\(550\) −0.0157504 0.517769i −0.000671601 0.0220778i
\(551\) 0.841551i 0.0358513i
\(552\) 2.77355 6.01000i 0.118050 0.255803i
\(553\) 3.27225 + 1.88924i 0.139150 + 0.0803385i
\(554\) −19.0198 30.7448i −0.808073 1.30622i
\(555\) 23.6108 + 13.6317i 1.00222 + 0.578633i
\(556\) 0.681479 + 11.1909i 0.0289011 + 0.474599i
\(557\) 17.3965 + 30.1316i 0.737112 + 1.27672i 0.953790 + 0.300473i \(0.0971446\pi\)
−0.216678 + 0.976243i \(0.569522\pi\)
\(558\) −43.6833 70.6124i −1.84926 2.98926i
\(559\) −7.27213 21.2078i −0.307578 0.896995i
\(560\) −2.46687 + 1.85686i −0.104244 + 0.0784668i
\(561\) −2.60432 + 1.50361i −0.109955 + 0.0634824i
\(562\) −5.37832 + 10.0064i −0.226871 + 0.422092i
\(563\) −28.4103 16.4027i −1.19735 0.691291i −0.237388 0.971415i \(-0.576291\pi\)
−0.959964 + 0.280124i \(0.909625\pi\)
\(564\) 22.9271 45.9541i 0.965405 1.93502i
\(565\) −8.42307 + 14.5892i −0.354361 + 0.613771i
\(566\) 42.6881 1.29856i 1.79432 0.0545827i
\(567\) 6.72730i 0.282520i
\(568\) 1.67794 3.63593i 0.0704050 0.152560i
\(569\) 0.0298020 + 0.0516186i 0.00124937 + 0.00216397i 0.866649 0.498918i \(-0.166269\pi\)
−0.865400 + 0.501082i \(0.832936\pi\)
\(570\) 0.800317 1.48899i 0.0335216 0.0623669i
\(571\) 13.2683i 0.555261i 0.960688 + 0.277630i \(0.0895490\pi\)
−0.960688 + 0.277630i \(0.910451\pi\)
\(572\) 2.44183 1.00703i 0.102098 0.0421059i
\(573\) 23.1697i 0.967926i
\(574\) 7.29485 + 3.92091i 0.304481 + 0.163656i
\(575\) −0.390725 0.676756i −0.0162944 0.0282227i
\(576\) −15.9738 + 44.9946i −0.665575 + 1.87477i
\(577\) 38.2758i 1.59344i 0.604347 + 0.796722i \(0.293434\pi\)
−0.604347 + 0.796722i \(0.706566\pi\)
\(578\) −0.407821 13.4064i −0.0169631 0.557634i
\(579\) −24.1778 + 41.8771i −1.00479 + 1.74035i
\(580\) −3.77322 1.88251i −0.156674 0.0781670i
\(581\) −1.81029 1.04517i −0.0751034 0.0433610i
\(582\) 48.4205 + 26.0256i 2.00709 + 1.07879i
\(583\) 1.54043 0.889368i 0.0637981 0.0368338i
\(584\) 46.0390 4.21189i 1.90511 0.174289i
\(585\) 20.3554 6.97982i 0.841591 0.288580i
\(586\) −1.43194 + 0.885847i −0.0591528 + 0.0365940i
\(587\) 14.0435 + 24.3241i 0.579639 + 1.00396i 0.995521 + 0.0945454i \(0.0301398\pi\)
−0.415882 + 0.909419i \(0.636527\pi\)
\(588\) 2.33147 + 38.2862i 0.0961484 + 1.57890i
\(589\) −3.40054 1.96330i −0.140117 0.0808964i
\(590\) 15.0973 9.33973i 0.621546 0.384510i
\(591\) −2.51767 1.45357i −0.103563 0.0597921i
\(592\) −36.1464 + 4.41872i −1.48561 + 0.181608i
\(593\) 8.76776i 0.360049i 0.983662 + 0.180024i \(0.0576177\pi\)
−0.983662 + 0.180024i \(0.942382\pi\)
\(594\) 4.60245 0.140006i 0.188841 0.00574450i
\(595\) 1.83266 1.05809i 0.0751319 0.0433774i
\(596\) −43.1664 + 2.62866i −1.76817 + 0.107674i
\(597\) 9.63194i 0.394209i
\(598\) 2.52545 3.08211i 0.103273 0.126037i
\(599\) −44.0675 −1.80055 −0.900275 0.435321i \(-0.856635\pi\)
−0.900275 + 0.435321i \(0.856635\pi\)
\(600\) 4.88583 + 6.91914i 0.199463 + 0.282473i
\(601\) 3.41495 + 5.91487i 0.139299 + 0.241273i 0.927231 0.374489i \(-0.122182\pi\)
−0.787933 + 0.615762i \(0.788848\pi\)
\(602\) 0.206394 + 6.78487i 0.00841200 + 0.276530i
\(603\) 25.0751 1.02114
\(604\) 28.2966 18.7183i 1.15137 0.761636i
\(605\) −5.43292 + 9.41009i −0.220879 + 0.382574i
\(606\) 8.61930 5.33220i 0.350135 0.216606i
\(607\) 20.7623 35.9613i 0.842715 1.45962i −0.0448766 0.998993i \(-0.514289\pi\)
0.887591 0.460632i \(-0.152377\pi\)
\(608\) 0.341998 + 2.23186i 0.0138699 + 0.0905138i
\(609\) 4.22082 2.43689i 0.171036 0.0987478i
\(610\) 1.06085 + 1.71482i 0.0429525 + 0.0694310i
\(611\) 20.3123 23.3064i 0.821748 0.942876i
\(612\) 14.6091 29.2819i 0.590539 1.18365i
\(613\) −6.61499 11.4575i −0.267177 0.462764i 0.700955 0.713206i \(-0.252758\pi\)
−0.968132 + 0.250442i \(0.919424\pi\)
\(614\) 20.7914 + 11.1752i 0.839071 + 0.450993i
\(615\) 11.3598 19.6757i 0.458071 0.793403i
\(616\) −0.796381 + 0.0728571i −0.0320871 + 0.00293549i
\(617\) −17.8931 10.3306i −0.720350 0.415894i 0.0945313 0.995522i \(-0.469865\pi\)
−0.814882 + 0.579627i \(0.803198\pi\)
\(618\) −26.3186 + 0.800607i −1.05869 + 0.0322051i
\(619\) 40.2474 1.61768 0.808840 0.588029i \(-0.200096\pi\)
0.808840 + 0.588029i \(0.200096\pi\)
\(620\) 16.4096 10.8550i 0.659026 0.435948i
\(621\) 6.01568 3.47316i 0.241401 0.139373i
\(622\) 4.04629 + 2.17484i 0.162242 + 0.0872033i
\(623\) 8.98880 0.360129
\(624\) −24.2164 + 35.7625i −0.969433 + 1.43165i
\(625\) 1.00000 0.0400000
\(626\) −2.35589 1.26627i −0.0941603 0.0506103i
\(627\) 0.379174 0.218916i 0.0151427 0.00874266i
\(628\) 24.2225 16.0233i 0.966585 0.639399i
\(629\) 24.9583 0.995152
\(630\) −6.51215 + 0.198098i −0.259450 + 0.00789242i
\(631\) 26.3130 + 15.1918i 1.04751 + 0.604778i 0.921950 0.387309i \(-0.126595\pi\)
0.125556 + 0.992087i \(0.459929\pi\)
\(632\) 1.26136 + 13.7876i 0.0501741 + 0.548440i
\(633\) −41.1910 + 71.3448i −1.63719 + 2.83570i
\(634\) 21.1520 + 11.3690i 0.840052 + 0.451520i
\(635\) 4.90403 + 8.49402i 0.194610 + 0.337075i
\(636\) −12.9847 + 26.0259i −0.514877 + 1.03200i
\(637\) −4.43485 + 22.6607i −0.175715 + 0.897848i
\(638\) −0.574586 0.928796i −0.0227481 0.0367714i
\(639\) 7.31768 4.22486i 0.289483 0.167133i
\(640\) −10.7719 3.45916i −0.425797 0.136735i
\(641\) 12.4586 21.5790i 0.492086 0.852317i −0.507873 0.861432i \(-0.669568\pi\)
0.999958 + 0.00911474i \(0.00290135\pi\)
\(642\) 24.0871 14.9012i 0.950644 0.588102i
\(643\) −5.62459 + 9.74208i −0.221812 + 0.384190i −0.955358 0.295450i \(-0.904531\pi\)
0.733546 + 0.679640i \(0.237864\pi\)
\(644\) −1.00618 + 0.665595i −0.0396492 + 0.0262281i
\(645\) 18.6216 0.733225
\(646\) −0.0470534 1.54680i −0.00185129 0.0608581i
\(647\) −11.5954 20.0837i −0.455860 0.789573i 0.542877 0.839812i \(-0.317335\pi\)
−0.998737 + 0.0502389i \(0.984002\pi\)
\(648\) −20.1361 + 14.2188i −0.791021 + 0.558566i
\(649\) 4.59803 0.180489
\(650\) 1.79981 + 4.77082i 0.0705942 + 0.187127i
\(651\) 22.7406i 0.891276i
\(652\) 25.2218 1.53591i 0.987762 0.0601507i
\(653\) −21.8184 + 12.5969i −0.853820 + 0.492953i −0.861938 0.507014i \(-0.830749\pi\)
0.00811809 + 0.999967i \(0.497416\pi\)
\(654\) 69.4193 2.11172i 2.71451 0.0825748i
\(655\) 5.06554i 0.197927i
\(656\) 3.68229 + 30.1221i 0.143769 + 1.17607i
\(657\) 84.4827 + 48.7761i 3.29599 + 1.90294i
\(658\) −7.96012 + 4.92441i −0.310318 + 0.191974i
\(659\) 29.7310 + 17.1652i 1.15816 + 0.668662i 0.950861 0.309617i \(-0.100201\pi\)
0.207294 + 0.978279i \(0.433534\pi\)
\(660\) 0.133349 + 2.18979i 0.00519061 + 0.0852374i
\(661\) −0.537260 0.930562i −0.0208970 0.0361946i 0.855388 0.517988i \(-0.173319\pi\)
−0.876285 + 0.481793i \(0.839986\pi\)
\(662\) 24.1900 14.9648i 0.940170 0.581622i
\(663\) 19.4489 22.3157i 0.755332 0.866670i
\(664\) −0.697814 7.62761i −0.0270804 0.296009i
\(665\) −0.266825 + 0.154051i −0.0103470 + 0.00597385i
\(666\) −67.6828 36.3789i −2.62266 1.40965i
\(667\) −1.42686 0.823796i −0.0552481 0.0318975i
\(668\) 26.6113 + 13.2767i 1.02962 + 0.513692i
\(669\) 17.3632 30.0740i 0.671300 1.16273i
\(670\) 0.180662 + 5.93895i 0.00697957 + 0.229442i
\(671\) 0.522265i 0.0201618i
\(672\) 10.2036 8.17813i 0.393613 0.315478i
\(673\) −6.50789 11.2720i −0.250861 0.434503i 0.712902 0.701263i \(-0.247380\pi\)
−0.963763 + 0.266760i \(0.914047\pi\)
\(674\) 12.6563 + 6.80265i 0.487503 + 0.262028i
\(675\) 8.88900i 0.342138i
\(676\) −19.5214 + 17.1731i −0.750823 + 0.660504i
\(677\) 8.50951i 0.327047i 0.986539 + 0.163524i \(0.0522860\pi\)
−0.986539 + 0.163524i \(0.947714\pi\)
\(678\) 33.7778 62.8434i 1.29723 2.41349i
\(679\) −5.00960 8.67688i −0.192251 0.332988i
\(680\) 7.04058 + 3.24915i 0.269994 + 0.124599i
\(681\) 37.1843i 1.42491i
\(682\) 5.09356 0.154945i 0.195043 0.00593315i
\(683\) 18.6230 32.2559i 0.712588 1.23424i −0.251295 0.967911i \(-0.580856\pi\)
0.963883 0.266327i \(-0.0858102\pi\)
\(684\) −2.12700 + 4.26326i −0.0813278 + 0.163010i
\(685\) −14.4204 8.32560i −0.550974 0.318105i
\(686\) 6.92756 12.8887i 0.264495 0.492093i
\(687\) −35.8515 + 20.6989i −1.36782 + 0.789712i
\(688\) −19.8722 + 14.9582i −0.757620 + 0.570277i
\(689\) −11.5038 + 13.1995i −0.438260 + 0.502861i
\(690\) 1.74116 + 2.81452i 0.0662849 + 0.107147i
\(691\) 13.5936 + 23.5448i 0.517125 + 0.895686i 0.999802 + 0.0198882i \(0.00633103\pi\)
−0.482677 + 0.875798i \(0.660336\pi\)
\(692\) −1.18993 19.5404i −0.0452343 0.742814i
\(693\) −1.46138 0.843727i −0.0555132 0.0320506i
\(694\) 11.4869 + 18.5681i 0.436036 + 0.704835i
\(695\) −4.85477 2.80290i −0.184152 0.106320i
\(696\) 16.2152 + 7.48314i 0.614635 + 0.283648i
\(697\) 20.7987i 0.787806i
\(698\) −0.466922 15.3493i −0.0176733 0.580979i
\(699\) −38.5565 + 22.2606i −1.45834 + 0.841974i
\(700\) −0.0938379 1.54095i −0.00354674 0.0582426i
\(701\) 0.970524i 0.0366562i 0.999832 + 0.0183281i \(0.00583434\pi\)
−0.999832 + 0.0183281i \(0.994166\pi\)
\(702\) −42.4078 + 15.9985i −1.60058 + 0.603824i
\(703\) −3.63377 −0.137050
\(704\) −1.90130 2.22973i −0.0716580 0.0840363i
\(705\) 12.8390 + 22.2378i 0.483544 + 0.837522i
\(706\) 28.3912 0.863654i 1.06852 0.0325041i
\(707\) −1.84728 −0.0694740
\(708\) −62.7071 + 41.4810i −2.35668 + 1.55895i
\(709\) 23.9119 41.4166i 0.898030 1.55543i 0.0680217 0.997684i \(-0.478331\pi\)
0.830009 0.557750i \(-0.188335\pi\)
\(710\) 1.05337 + 1.70273i 0.0395322 + 0.0639023i
\(711\) −14.6073 + 25.3005i −0.547815 + 0.948844i
\(712\) 18.9987 + 26.9052i 0.712005 + 1.00832i
\(713\) 6.65759 3.84376i 0.249329 0.143950i
\(714\) −7.62177 + 4.71509i −0.285237 + 0.176458i
\(715\) −0.253652 + 1.29608i −0.00948606 + 0.0484707i
\(716\) −13.8041 6.88706i −0.515884 0.257381i
\(717\) 21.6289 + 37.4624i 0.807748 + 1.39906i
\(718\) 12.7636 23.7467i 0.476334 0.886218i
\(719\) −2.67744 + 4.63746i −0.0998516 + 0.172948i −0.911623 0.411027i \(-0.865170\pi\)
0.811772 + 0.583975i \(0.198503\pi\)
\(720\) −14.3570 19.0734i −0.535053 0.710825i
\(721\) 4.15613 + 2.39954i 0.154782 + 0.0893637i
\(722\) −0.810153 26.6324i −0.0301508 0.991156i
\(723\) 35.4256 1.31749
\(724\) −20.3331 + 13.4504i −0.755672 + 0.499880i
\(725\) 1.82591 1.05419i 0.0678126 0.0391516i
\(726\) 21.7868 40.5343i 0.808584 1.50437i
\(727\) 34.2028 1.26851 0.634256 0.773123i \(-0.281307\pi\)
0.634256 + 0.773123i \(0.281307\pi\)
\(728\) 7.18272 3.22110i 0.266209 0.119382i
\(729\) 27.8454 1.03131
\(730\) −10.9438 + 20.3609i −0.405048 + 0.753591i
\(731\) 14.7633 8.52358i 0.546040 0.315256i
\(732\) −4.71159 7.12255i −0.174146 0.263257i
\(733\) 18.3791 0.678848 0.339424 0.940634i \(-0.389768\pi\)
0.339424 + 0.940634i \(0.389768\pi\)
\(734\) 0.385651 + 12.6776i 0.0142346 + 0.467940i
\(735\) −16.6091 9.58928i −0.612637 0.353706i
\(736\) −4.11892 1.60491i −0.151825 0.0591578i
\(737\) −0.769463 + 1.33275i −0.0283435 + 0.0490925i
\(738\) −30.3159 + 56.4026i −1.11594 + 2.07621i
\(739\) −0.350031 0.606272i −0.0128761 0.0223021i 0.859516 0.511110i \(-0.170765\pi\)
−0.872392 + 0.488808i \(0.837432\pi\)
\(740\) 8.12858 16.2926i 0.298813 0.598927i
\(741\) −2.83164 + 3.24903i −0.104023 + 0.119356i
\(742\) 4.50819 2.78893i 0.165501 0.102385i
\(743\) 0.177140 0.102272i 0.00649865 0.00375200i −0.496747 0.867895i \(-0.665472\pi\)
0.503246 + 0.864143i \(0.332139\pi\)
\(744\) −68.0672 + 48.0644i −2.49546 + 1.76213i
\(745\) 10.8116 18.7262i 0.396106 0.686076i
\(746\) −18.9469 30.6270i −0.693696 1.12133i
\(747\) 8.08109 13.9969i 0.295672 0.512118i
\(748\) 1.10804 + 1.67503i 0.0405140 + 0.0612453i
\(749\) −5.16233 −0.188627
\(750\) −4.23319 + 0.128773i −0.154574 + 0.00470212i
\(751\) −8.18415 14.1754i −0.298644 0.517266i 0.677182 0.735815i \(-0.263201\pi\)
−0.975826 + 0.218549i \(0.929868\pi\)
\(752\) −31.5642 13.4180i −1.15103 0.489304i
\(753\) −65.5402 −2.38842
\(754\) 8.31563 + 6.81374i 0.302837 + 0.248142i
\(755\) 16.9637i 0.617373i
\(756\) 13.6976 0.834125i 0.498175 0.0303368i
\(757\) 0.227301 0.131232i 0.00826140 0.00476972i −0.495864 0.868400i \(-0.665148\pi\)
0.504125 + 0.863631i \(0.331815\pi\)
\(758\) 0.537226 + 17.6604i 0.0195129 + 0.641455i
\(759\) 0.857190i 0.0311140i
\(760\) −1.02506 0.473057i −0.0371830 0.0171596i
\(761\) −31.7560 18.3343i −1.15115 0.664618i −0.201985 0.979389i \(-0.564739\pi\)
−0.949168 + 0.314770i \(0.898073\pi\)
\(762\) −21.8535 35.3253i −0.791668 1.27970i
\(763\) −10.9624 6.32916i −0.396866 0.229131i
\(764\) 15.4451 0.940547i 0.558786 0.0340278i
\(765\) 8.18098 + 14.1699i 0.295784 + 0.512313i
\(766\) −4.61091 7.45336i −0.166599 0.269301i
\(767\) −42.8137 + 14.6807i −1.54591 + 0.530091i
\(768\) 46.0450 + 13.2562i 1.66151 + 0.478341i
\(769\) 7.11636 4.10863i