# Properties

 Label 520.2.ca.a.101.3 Level $520$ Weight $2$ Character 520.101 Analytic conductor $4.152$ Analytic rank $0$ Dimension $56$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [520,2,Mod(101,520)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(520, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("520.101");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$520 = 2^{3} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 520.ca (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$4.15222090511$$ Analytic rank: $$0$$ Dimension: $$56$$ Relative dimension: $$28$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 101.3 Character $$\chi$$ $$=$$ 520.101 Dual form 520.2.ca.a.381.3

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-1.37890 - 0.314043i) q^{2} +(1.00502 - 0.580249i) q^{3} +(1.80275 + 0.866072i) q^{4} -1.00000 q^{5} +(-1.56805 + 0.484488i) q^{6} +(-2.74313 - 1.58374i) q^{7} +(-2.21384 - 1.76037i) q^{8} +(-0.826622 + 1.43175i) q^{9} +O(q^{10})$$ $$q+(-1.37890 - 0.314043i) q^{2} +(1.00502 - 0.580249i) q^{3} +(1.80275 + 0.866072i) q^{4} -1.00000 q^{5} +(-1.56805 + 0.484488i) q^{6} +(-2.74313 - 1.58374i) q^{7} +(-2.21384 - 1.76037i) q^{8} +(-0.826622 + 1.43175i) q^{9} +(1.37890 + 0.314043i) q^{10} +(1.23270 + 2.13510i) q^{11} +(2.31434 - 0.175626i) q^{12} +(-3.60242 + 0.150193i) q^{13} +(3.28514 + 3.04529i) q^{14} +(-1.00502 + 0.580249i) q^{15} +(2.49984 + 3.12263i) q^{16} +(0.369228 - 0.639522i) q^{17} +(1.58946 - 1.71465i) q^{18} +(-4.31749 + 7.47811i) q^{19} +(-1.80275 - 0.866072i) q^{20} -3.67586 q^{21} +(-1.02926 - 3.33122i) q^{22} +(2.88507 + 4.99708i) q^{23} +(-3.24641 - 0.484633i) q^{24} +1.00000 q^{25} +(5.01456 + 0.924215i) q^{26} +5.40008i q^{27} +(-3.57354 - 5.23084i) q^{28} +(-1.59257 + 0.919468i) q^{29} +(1.56805 - 0.484488i) q^{30} -9.05883i q^{31} +(-2.46640 - 5.09086i) q^{32} +(2.47778 + 1.43055i) q^{33} +(-0.709967 + 0.765885i) q^{34} +(2.74313 + 1.58374i) q^{35} +(-2.73020 + 1.86518i) q^{36} +(-1.35800 - 2.35212i) q^{37} +(8.30185 - 8.95571i) q^{38} +(-3.53336 + 2.24125i) q^{39} +(2.21384 + 1.76037i) q^{40} +(0.165016 - 0.0952718i) q^{41} +(5.06866 + 1.15438i) q^{42} +(-7.43510 - 4.29266i) q^{43} +(0.373106 + 4.91667i) q^{44} +(0.826622 - 1.43175i) q^{45} +(-2.40893 - 7.79654i) q^{46} +8.23945i q^{47} +(4.32429 + 1.68778i) q^{48} +(1.51649 + 2.62664i) q^{49} +(-1.37890 - 0.314043i) q^{50} -0.856977i q^{51} +(-6.62436 - 2.84919i) q^{52} +4.18560i q^{53} +(1.69586 - 7.44619i) q^{54} +(-1.23270 - 2.13510i) q^{55} +(3.28486 + 8.33508i) q^{56} +10.0209i q^{57} +(2.48475 - 0.767724i) q^{58} +(-5.72512 + 9.91620i) q^{59} +(-2.31434 + 0.175626i) q^{60} +(4.03040 + 2.32695i) q^{61} +(-2.84487 + 12.4913i) q^{62} +(4.53506 - 2.61832i) q^{63} +(1.80218 + 7.79437i) q^{64} +(3.60242 - 0.150193i) q^{65} +(-2.96737 - 2.75072i) q^{66} +(1.66496 + 2.88379i) q^{67} +(1.21950 - 0.833122i) q^{68} +(5.79911 + 3.34812i) q^{69} +(-3.28514 - 3.04529i) q^{70} +(-3.24673 - 1.87450i) q^{71} +(4.35043 - 1.71451i) q^{72} -1.03291i q^{73} +(1.13388 + 3.66982i) q^{74} +(1.00502 - 0.580249i) q^{75} +(-14.2599 + 9.74193i) q^{76} -7.80914i q^{77} +(5.57601 - 1.98084i) q^{78} -9.18672 q^{79} +(-2.49984 - 3.12263i) q^{80} +(0.653525 + 1.13194i) q^{81} +(-0.257460 + 0.0795486i) q^{82} -1.79420 q^{83} +(-6.62668 - 3.18356i) q^{84} +(-0.369228 + 0.639522i) q^{85} +(8.90422 + 8.25411i) q^{86} +(-1.06704 + 1.84817i) q^{87} +(1.02957 - 6.89679i) q^{88} +(12.1943 - 7.04039i) q^{89} +(-1.58946 + 1.71465i) q^{90} +(10.1198 + 5.29332i) q^{91} +(0.873233 + 11.5072i) q^{92} +(-5.25638 - 9.10431i) q^{93} +(2.58754 - 11.3614i) q^{94} +(4.31749 - 7.47811i) q^{95} +(-5.43275 - 3.68530i) q^{96} +(-14.8416 - 8.56882i) q^{97} +(-1.26622 - 4.09813i) q^{98} -4.07592 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9}+O(q^{10})$$ 56 * q - 6 * q^4 - 56 * q^5 - 5 * q^6 + 28 * q^9 $$56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9} + 8 q^{11} + 6 q^{12} - 4 q^{14} - 10 q^{16} - 18 q^{18} + 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 2 q^{24} + 56 q^{25} + 11 q^{26} + 6 q^{28} + 5 q^{30} + 16 q^{34} - 21 q^{36} - 4 q^{37} - 24 q^{39} + 29 q^{42} - 24 q^{44} - 28 q^{45} - 11 q^{46} + 3 q^{48} + 20 q^{49} + 18 q^{52} - 49 q^{54} - 8 q^{55} + 61 q^{56} - 47 q^{58} + 16 q^{59} - 6 q^{60} - 2 q^{62} - 30 q^{64} + 14 q^{66} + 36 q^{67} + 33 q^{68} + 4 q^{70} - 51 q^{72} - 2 q^{74} - 48 q^{76} - 35 q^{78} + 10 q^{80} - 28 q^{81} - 21 q^{82} - 40 q^{83} - 61 q^{84} + 28 q^{86} - 36 q^{87} + 41 q^{88} + 18 q^{90} - 16 q^{91} - 18 q^{92} - 41 q^{94} - 16 q^{95} + 48 q^{96} + 24 q^{97} + 28 q^{98} + 48 q^{99}+O(q^{100})$$ 56 * q - 6 * q^4 - 56 * q^5 - 5 * q^6 + 28 * q^9 + 8 * q^11 + 6 * q^12 - 4 * q^14 - 10 * q^16 - 18 * q^18 + 16 * q^19 + 6 * q^20 - 6 * q^22 + 12 * q^23 + 2 * q^24 + 56 * q^25 + 11 * q^26 + 6 * q^28 + 5 * q^30 + 16 * q^34 - 21 * q^36 - 4 * q^37 - 24 * q^39 + 29 * q^42 - 24 * q^44 - 28 * q^45 - 11 * q^46 + 3 * q^48 + 20 * q^49 + 18 * q^52 - 49 * q^54 - 8 * q^55 + 61 * q^56 - 47 * q^58 + 16 * q^59 - 6 * q^60 - 2 * q^62 - 30 * q^64 + 14 * q^66 + 36 * q^67 + 33 * q^68 + 4 * q^70 - 51 * q^72 - 2 * q^74 - 48 * q^76 - 35 * q^78 + 10 * q^80 - 28 * q^81 - 21 * q^82 - 40 * q^83 - 61 * q^84 + 28 * q^86 - 36 * q^87 + 41 * q^88 + 18 * q^90 - 16 * q^91 - 18 * q^92 - 41 * q^94 - 16 * q^95 + 48 * q^96 + 24 * q^97 + 28 * q^98 + 48 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/520\mathbb{Z}\right)^\times$$.

 $$n$$ $$41$$ $$261$$ $$391$$ $$417$$ $$\chi(n)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.37890 0.314043i −0.975032 0.222062i
$$3$$ 1.00502 0.580249i 0.580249 0.335007i −0.180983 0.983486i $$-0.557928\pi$$
0.761232 + 0.648479i $$0.224595\pi$$
$$4$$ 1.80275 + 0.866072i 0.901377 + 0.433036i
$$5$$ −1.00000 −0.447214
$$6$$ −1.56805 + 0.484488i −0.640154 + 0.197791i
$$7$$ −2.74313 1.58374i −1.03680 0.598599i −0.117878 0.993028i $$-0.537609\pi$$
−0.918926 + 0.394429i $$0.870942\pi$$
$$8$$ −2.21384 1.76037i −0.782711 0.622386i
$$9$$ −0.826622 + 1.43175i −0.275541 + 0.477251i
$$10$$ 1.37890 + 0.314043i 0.436048 + 0.0993093i
$$11$$ 1.23270 + 2.13510i 0.371674 + 0.643758i 0.989823 0.142303i $$-0.0454507\pi$$
−0.618149 + 0.786061i $$0.712117\pi$$
$$12$$ 2.31434 0.175626i 0.668093 0.0506988i
$$13$$ −3.60242 + 0.150193i −0.999132 + 0.0416560i
$$14$$ 3.28514 + 3.04529i 0.877991 + 0.813888i
$$15$$ −1.00502 + 0.580249i −0.259495 + 0.149820i
$$16$$ 2.49984 + 3.12263i 0.624960 + 0.780657i
$$17$$ 0.369228 0.639522i 0.0895509 0.155107i −0.817770 0.575544i $$-0.804790\pi$$
0.907321 + 0.420438i $$0.138123\pi$$
$$18$$ 1.58946 1.71465i 0.374640 0.404148i
$$19$$ −4.31749 + 7.47811i −0.990499 + 1.71560i −0.376157 + 0.926556i $$0.622755\pi$$
−0.614342 + 0.789040i $$0.710579\pi$$
$$20$$ −1.80275 0.866072i −0.403108 0.193660i
$$21$$ −3.67586 −0.802139
$$22$$ −1.02926 3.33122i −0.219440 0.710220i
$$23$$ 2.88507 + 4.99708i 0.601578 + 1.04196i 0.992582 + 0.121575i $$0.0387945\pi$$
−0.391004 + 0.920389i $$0.627872\pi$$
$$24$$ −3.24641 0.484633i −0.662671 0.0989252i
$$25$$ 1.00000 0.200000
$$26$$ 5.01456 + 0.924215i 0.983436 + 0.181254i
$$27$$ 5.40008i 1.03925i
$$28$$ −3.57354 5.23084i −0.675336 0.988536i
$$29$$ −1.59257 + 0.919468i −0.295732 + 0.170741i −0.640524 0.767938i $$-0.721283\pi$$
0.344792 + 0.938679i $$0.387949\pi$$
$$30$$ 1.56805 0.484488i 0.286286 0.0884549i
$$31$$ 9.05883i 1.62701i −0.581556 0.813507i $$-0.697556\pi$$
0.581556 0.813507i $$-0.302444\pi$$
$$32$$ −2.46640 5.09086i −0.436002 0.899946i
$$33$$ 2.47778 + 1.43055i 0.431327 + 0.249027i
$$34$$ −0.709967 + 0.765885i −0.121758 + 0.131348i
$$35$$ 2.74313 + 1.58374i 0.463673 + 0.267702i
$$36$$ −2.73020 + 1.86518i −0.455033 + 0.310864i
$$37$$ −1.35800 2.35212i −0.223253 0.386686i 0.732541 0.680723i $$-0.238334\pi$$
−0.955794 + 0.294037i $$0.905001\pi$$
$$38$$ 8.30185 8.95571i 1.34674 1.45281i
$$39$$ −3.53336 + 2.24125i −0.565790 + 0.358887i
$$40$$ 2.21384 + 1.76037i 0.350039 + 0.278339i
$$41$$ 0.165016 0.0952718i 0.0257711 0.0148790i −0.487059 0.873369i $$-0.661930\pi$$
0.512830 + 0.858490i $$0.328597\pi$$
$$42$$ 5.06866 + 1.15438i 0.782112 + 0.178125i
$$43$$ −7.43510 4.29266i −1.13384 0.654624i −0.188944 0.981988i $$-0.560507\pi$$
−0.944899 + 0.327363i $$0.893840\pi$$
$$44$$ 0.373106 + 4.91667i 0.0562479 + 0.741216i
$$45$$ 0.826622 1.43175i 0.123226 0.213433i
$$46$$ −2.40893 7.79654i −0.355177 1.14954i
$$47$$ 8.23945i 1.20185i 0.799307 + 0.600923i $$0.205200\pi$$
−0.799307 + 0.600923i $$0.794800\pi$$
$$48$$ 4.32429 + 1.68778i 0.624158 + 0.243609i
$$49$$ 1.51649 + 2.62664i 0.216642 + 0.375234i
$$50$$ −1.37890 0.314043i −0.195006 0.0444124i
$$51$$ 0.856977i 0.120001i
$$52$$ −6.62436 2.84919i −0.918633 0.395112i
$$53$$ 4.18560i 0.574936i 0.957790 + 0.287468i $$0.0928135\pi$$
−0.957790 + 0.287468i $$0.907186\pi$$
$$54$$ 1.69586 7.44619i 0.230777 1.01330i
$$55$$ −1.23270 2.13510i −0.166218 0.287897i
$$56$$ 3.28486 + 8.33508i 0.438958 + 1.11382i
$$57$$ 10.0209i 1.32730i
$$58$$ 2.48475 0.767724i 0.326263 0.100807i
$$59$$ −5.72512 + 9.91620i −0.745347 + 1.29098i 0.204685 + 0.978828i $$0.434383\pi$$
−0.950032 + 0.312151i $$0.898950\pi$$
$$60$$ −2.31434 + 0.175626i −0.298780 + 0.0226732i
$$61$$ 4.03040 + 2.32695i 0.516040 + 0.297936i 0.735313 0.677728i $$-0.237035\pi$$
−0.219273 + 0.975664i $$0.570368\pi$$
$$62$$ −2.84487 + 12.4913i −0.361298 + 1.58639i
$$63$$ 4.53506 2.61832i 0.571363 0.329877i
$$64$$ 1.80218 + 7.79437i 0.225272 + 0.974296i
$$65$$ 3.60242 0.150193i 0.446825 0.0186291i
$$66$$ −2.96737 2.75072i −0.365258 0.338590i
$$67$$ 1.66496 + 2.88379i 0.203407 + 0.352311i 0.949624 0.313391i $$-0.101465\pi$$
−0.746217 + 0.665703i $$0.768132\pi$$
$$68$$ 1.21950 0.833122i 0.147886 0.101031i
$$69$$ 5.79911 + 3.34812i 0.698130 + 0.403066i
$$70$$ −3.28514 3.04529i −0.392650 0.363982i
$$71$$ −3.24673 1.87450i −0.385316 0.222462i 0.294813 0.955555i $$-0.404743\pi$$
−0.680129 + 0.733093i $$0.738076\pi$$
$$72$$ 4.35043 1.71451i 0.512703 0.202056i
$$73$$ 1.03291i 0.120893i −0.998171 0.0604467i $$-0.980747\pi$$
0.998171 0.0604467i $$-0.0192525\pi$$
$$74$$ 1.13388 + 3.66982i 0.131811 + 0.426608i
$$75$$ 1.00502 0.580249i 0.116050 0.0670014i
$$76$$ −14.2599 + 9.74193i −1.63573 + 1.11748i
$$77$$ 7.80914i 0.889934i
$$78$$ 5.57601 1.98084i 0.631359 0.224286i
$$79$$ −9.18672 −1.03359 −0.516793 0.856110i $$-0.672874\pi$$
−0.516793 + 0.856110i $$0.672874\pi$$
$$80$$ −2.49984 3.12263i −0.279491 0.349120i
$$81$$ 0.653525 + 1.13194i 0.0726139 + 0.125771i
$$82$$ −0.257460 + 0.0795486i −0.0284317 + 0.00878467i
$$83$$ −1.79420 −0.196939 −0.0984693 0.995140i $$-0.531395\pi$$
−0.0984693 + 0.995140i $$0.531395\pi$$
$$84$$ −6.62668 3.18356i −0.723030 0.347355i
$$85$$ −0.369228 + 0.639522i −0.0400484 + 0.0693658i
$$86$$ 8.90422 + 8.25411i 0.960166 + 0.890064i
$$87$$ −1.06704 + 1.84817i −0.114399 + 0.198145i
$$88$$ 1.02957 6.89679i 0.109753 0.735201i
$$89$$ 12.1943 7.04039i 1.29260 0.746280i 0.313482 0.949594i $$-0.398505\pi$$
0.979114 + 0.203314i $$0.0651712\pi$$
$$90$$ −1.58946 + 1.71465i −0.167544 + 0.180740i
$$91$$ 10.1198 + 5.29332i 1.06084 + 0.554890i
$$92$$ 0.873233 + 11.5072i 0.0910409 + 1.19971i
$$93$$ −5.25638 9.10431i −0.545061 0.944073i
$$94$$ 2.58754 11.3614i 0.266885 1.17184i
$$95$$ 4.31749 7.47811i 0.442965 0.767238i
$$96$$ −5.43275 3.68530i −0.554478 0.376129i
$$97$$ −14.8416 8.56882i −1.50694 0.870032i −0.999967 0.00806860i $$-0.997432\pi$$
−0.506971 0.861963i $$-0.669235\pi$$
$$98$$ −1.26622 4.09813i −0.127907 0.413973i
$$99$$ −4.07592 −0.409645
$$100$$ 1.80275 + 0.866072i 0.180275 + 0.0866072i
$$101$$ −4.58812 + 2.64895i −0.456535 + 0.263580i −0.710586 0.703610i $$-0.751570\pi$$
0.254051 + 0.967191i $$0.418237\pi$$
$$102$$ −0.269128 + 1.18169i −0.0266476 + 0.117005i
$$103$$ −7.06565 −0.696199 −0.348100 0.937458i $$-0.613173\pi$$
−0.348100 + 0.937458i $$0.613173\pi$$
$$104$$ 8.23958 + 6.00910i 0.807957 + 0.589241i
$$105$$ 3.67586 0.358728
$$106$$ 1.31446 5.77154i 0.127672 0.560581i
$$107$$ 10.2327 5.90788i 0.989237 0.571136i 0.0841908 0.996450i $$-0.473169\pi$$
0.905046 + 0.425313i $$0.139836\pi$$
$$108$$ −4.67686 + 9.73501i −0.450031 + 0.936752i
$$109$$ −3.12953 −0.299754 −0.149877 0.988705i $$-0.547888\pi$$
−0.149877 + 0.988705i $$0.547888\pi$$
$$110$$ 1.02926 + 3.33122i 0.0981364 + 0.317620i
$$111$$ −2.72963 1.57595i −0.259085 0.149583i
$$112$$ −1.91193 12.5249i −0.180661 1.18349i
$$113$$ 9.72386 16.8422i 0.914744 1.58438i 0.107468 0.994209i $$-0.465726\pi$$
0.807276 0.590174i $$-0.200941\pi$$
$$114$$ 3.14699 13.8178i 0.294743 1.29416i
$$115$$ −2.88507 4.99708i −0.269034 0.465980i
$$116$$ −3.66733 + 0.278299i −0.340503 + 0.0258394i
$$117$$ 2.76280 5.28193i 0.255421 0.488314i
$$118$$ 11.0085 11.8756i 1.01342 1.09323i
$$119$$ −2.02568 + 1.16953i −0.185693 + 0.107210i
$$120$$ 3.24641 + 0.484633i 0.296355 + 0.0442407i
$$121$$ 2.46089 4.26239i 0.223717 0.387490i
$$122$$ −4.82677 4.47437i −0.436996 0.405090i
$$123$$ 0.110563 0.191500i 0.00996910 0.0172670i
$$124$$ 7.84559 16.3308i 0.704555 1.46655i
$$125$$ −1.00000 −0.0894427
$$126$$ −7.07567 + 2.18620i −0.630351 + 0.194762i
$$127$$ −1.96907 3.41052i −0.174726 0.302635i 0.765340 0.643626i $$-0.222571\pi$$
−0.940067 + 0.340991i $$0.889237\pi$$
$$128$$ −0.0372585 11.3136i −0.00329322 0.999995i
$$129$$ −9.96325 −0.877215
$$130$$ −5.01456 0.924215i −0.439806 0.0810590i
$$131$$ 9.67553i 0.845355i 0.906280 + 0.422678i $$0.138910\pi$$
−0.906280 + 0.422678i $$0.861090\pi$$
$$132$$ 3.22787 + 4.72486i 0.280950 + 0.411247i
$$133$$ 23.6868 13.6756i 2.05391 1.18582i
$$134$$ −1.39018 4.49934i −0.120093 0.388684i
$$135$$ 5.40008i 0.464765i
$$136$$ −1.94321 + 0.765820i −0.166629 + 0.0656685i
$$137$$ 13.2517 + 7.65088i 1.13217 + 0.653659i 0.944480 0.328569i $$-0.106566\pi$$
0.187691 + 0.982228i $$0.439900\pi$$
$$138$$ −6.94496 6.43790i −0.591194 0.548031i
$$139$$ −7.64524 4.41398i −0.648461 0.374389i 0.139406 0.990235i $$-0.455481\pi$$
−0.787866 + 0.615846i $$0.788814\pi$$
$$140$$ 3.57354 + 5.23084i 0.302019 + 0.442087i
$$141$$ 4.78093 + 8.28082i 0.402627 + 0.697371i
$$142$$ 3.88825 + 3.60437i 0.326295 + 0.302472i
$$143$$ −4.76139 7.50640i −0.398168 0.627717i
$$144$$ −6.53725 + 0.997917i −0.544771 + 0.0831597i
$$145$$ 1.59257 0.919468i 0.132255 0.0763577i
$$146$$ −0.324380 + 1.42429i −0.0268459 + 0.117875i
$$147$$ 3.04821 + 1.75988i 0.251412 + 0.145153i
$$148$$ −0.411030 5.41642i −0.0337864 0.445227i
$$149$$ 6.58106 11.3987i 0.539141 0.933820i −0.459809 0.888018i $$-0.652082\pi$$
0.998951 0.0458023i $$-0.0145844\pi$$
$$150$$ −1.56805 + 0.484488i −0.128031 + 0.0395582i
$$151$$ 17.2918i 1.40719i 0.710602 + 0.703594i $$0.248422\pi$$
−0.710602 + 0.703594i $$0.751578\pi$$
$$152$$ 22.7225 8.95495i 1.84304 0.726342i
$$153$$ 0.610424 + 1.05729i 0.0493499 + 0.0854765i
$$154$$ −2.45241 + 10.7681i −0.197621 + 0.867715i
$$155$$ 9.05883i 0.727623i
$$156$$ −8.31086 + 0.980277i −0.665401 + 0.0784849i
$$157$$ 23.8530i 1.90367i 0.306603 + 0.951837i $$0.400808\pi$$
−0.306603 + 0.951837i $$0.599192\pi$$
$$158$$ 12.6676 + 2.88503i 1.00778 + 0.229521i
$$159$$ 2.42869 + 4.20661i 0.192608 + 0.333606i
$$160$$ 2.46640 + 5.09086i 0.194986 + 0.402468i
$$161$$ 18.2768i 1.44042i
$$162$$ −0.545671 1.76607i −0.0428719 0.138756i
$$163$$ −1.04268 + 1.80598i −0.0816692 + 0.141455i −0.903967 0.427602i $$-0.859358\pi$$
0.822298 + 0.569057i $$0.192692\pi$$
$$164$$ 0.379995 0.0288362i 0.0296726 0.00225173i
$$165$$ −2.47778 1.43055i −0.192895 0.111368i
$$166$$ 2.47402 + 0.563455i 0.192021 + 0.0437326i
$$167$$ −13.6936 + 7.90603i −1.05965 + 0.611787i −0.925334 0.379152i $$-0.876216\pi$$
−0.134312 + 0.990939i $$0.542882\pi$$
$$168$$ 8.13777 + 6.47089i 0.627843 + 0.499240i
$$169$$ 12.9549 1.08212i 0.996530 0.0832398i
$$170$$ 0.709967 0.765885i 0.0544520 0.0587407i
$$171$$ −7.13786 12.3631i −0.545846 0.945433i
$$172$$ −9.68591 14.1779i −0.738544 1.08106i
$$173$$ −7.84473 4.52916i −0.596424 0.344345i 0.171210 0.985235i $$-0.445232\pi$$
−0.767633 + 0.640889i $$0.778566\pi$$
$$174$$ 2.05175 2.21335i 0.155543 0.167794i
$$175$$ −2.74313 1.58374i −0.207361 0.119720i
$$176$$ −3.58557 + 9.18669i −0.270273 + 0.692473i
$$177$$ 13.2880i 0.998786i
$$178$$ −19.0258 + 5.87848i −1.42604 + 0.440611i
$$179$$ 9.85005 5.68693i 0.736227 0.425061i −0.0844689 0.996426i $$-0.526919\pi$$
0.820696 + 0.571365i $$0.193586\pi$$
$$180$$ 2.73020 1.86518i 0.203497 0.139022i
$$181$$ 17.5350i 1.30337i −0.758490 0.651685i $$-0.774063\pi$$
0.758490 0.651685i $$-0.225937\pi$$
$$182$$ −12.2918 10.4770i −0.911132 0.776608i
$$183$$ 5.40085 0.399242
$$184$$ 2.40965 16.1415i 0.177642 1.18997i
$$185$$ 1.35800 + 2.35212i 0.0998420 + 0.172931i
$$186$$ 4.38889 + 14.2047i 0.321809 + 1.04154i
$$187$$ 1.82059 0.133135
$$188$$ −7.13595 + 14.8537i −0.520443 + 1.08332i
$$189$$ 8.55235 14.8131i 0.622092 1.07749i
$$190$$ −8.30185 + 8.95571i −0.602280 + 0.649716i
$$191$$ 0.345693 0.598758i 0.0250135 0.0433246i −0.853248 0.521506i $$-0.825370\pi$$
0.878261 + 0.478181i $$0.158704\pi$$
$$192$$ 6.33390 + 6.78779i 0.457110 + 0.489867i
$$193$$ 4.73055 2.73118i 0.340512 0.196595i −0.319986 0.947422i $$-0.603678\pi$$
0.660499 + 0.750827i $$0.270345\pi$$
$$194$$ 17.7742 + 16.4765i 1.27611 + 1.18294i
$$195$$ 3.53336 2.24125i 0.253029 0.160499i
$$196$$ 0.459001 + 6.04857i 0.0327858 + 0.432041i
$$197$$ −6.97854 12.0872i −0.497200 0.861176i 0.502795 0.864406i $$-0.332305\pi$$
−0.999995 + 0.00322997i $$0.998972\pi$$
$$198$$ 5.62030 + 1.28001i 0.399417 + 0.0909667i
$$199$$ −12.4653 + 21.5906i −0.883644 + 1.53052i −0.0363850 + 0.999338i $$0.511584\pi$$
−0.847259 + 0.531179i $$0.821749\pi$$
$$200$$ −2.21384 1.76037i −0.156542 0.124477i
$$201$$ 3.34664 + 1.93218i 0.236054 + 0.136286i
$$202$$ 7.15846 2.21178i 0.503668 0.155620i
$$203$$ 5.82481 0.408821
$$204$$ 0.742203 1.54492i 0.0519646 0.108166i
$$205$$ −0.165016 + 0.0952718i −0.0115252 + 0.00665407i
$$206$$ 9.74286 + 2.21892i 0.678817 + 0.154600i
$$207$$ −9.53944 −0.663037
$$208$$ −9.47447 10.8736i −0.656937 0.753946i
$$209$$ −21.2887 −1.47257
$$210$$ −5.06866 1.15438i −0.349771 0.0796599i
$$211$$ 7.96783 4.60023i 0.548528 0.316693i −0.200000 0.979796i $$-0.564094\pi$$
0.748528 + 0.663103i $$0.230761\pi$$
$$212$$ −3.62503 + 7.54560i −0.248968 + 0.518234i
$$213$$ −4.35071 −0.298106
$$214$$ −15.9653 + 4.93287i −1.09137 + 0.337204i
$$215$$ 7.43510 + 4.29266i 0.507070 + 0.292757i
$$216$$ 9.50615 11.9549i 0.646812 0.813429i
$$217$$ −14.3469 + 24.8495i −0.973929 + 1.68689i
$$218$$ 4.31532 + 0.982807i 0.292270 + 0.0665641i
$$219$$ −0.599347 1.03810i −0.0405001 0.0701483i
$$220$$ −0.373106 4.91667i −0.0251548 0.331482i
$$221$$ −1.23406 + 2.35928i −0.0830121 + 0.158702i
$$222$$ 3.26898 + 3.03031i 0.219400 + 0.203381i
$$223$$ 3.64597 2.10500i 0.244152 0.140961i −0.372932 0.927859i $$-0.621647\pi$$
0.617084 + 0.786898i $$0.288314\pi$$
$$224$$ −1.29698 + 17.8710i −0.0866582 + 1.19406i
$$225$$ −0.826622 + 1.43175i −0.0551081 + 0.0954501i
$$226$$ −18.6975 + 20.1701i −1.24374 + 1.34169i
$$227$$ −4.37813 + 7.58314i −0.290587 + 0.503311i −0.973949 0.226769i $$-0.927184\pi$$
0.683362 + 0.730080i $$0.260517\pi$$
$$228$$ −8.67879 + 18.0652i −0.574767 + 1.19639i
$$229$$ 22.6655 1.49778 0.748889 0.662696i $$-0.230588\pi$$
0.748889 + 0.662696i $$0.230588\pi$$
$$230$$ 2.40893 + 7.79654i 0.158840 + 0.514088i
$$231$$ −4.53125 7.84835i −0.298134 0.516383i
$$232$$ 5.14429 + 0.767953i 0.337739 + 0.0504186i
$$233$$ −16.3316 −1.06992 −0.534960 0.844877i $$-0.679673\pi$$
−0.534960 + 0.844877i $$0.679673\pi$$
$$234$$ −5.46839 + 6.41563i −0.357480 + 0.419403i
$$235$$ 8.23945i 0.537482i
$$236$$ −18.9091 + 12.9181i −1.23088 + 0.840897i
$$237$$ −9.23284 + 5.33059i −0.599738 + 0.346259i
$$238$$ 3.16050 0.976512i 0.204865 0.0632979i
$$239$$ 6.36009i 0.411400i −0.978615 0.205700i $$-0.934053\pi$$
0.978615 0.205700i $$-0.0659471\pi$$
$$240$$ −4.32429 1.68778i −0.279132 0.108945i
$$241$$ 10.6580 + 6.15341i 0.686543 + 0.396376i 0.802316 0.596900i $$-0.203601\pi$$
−0.115772 + 0.993276i $$0.536934\pi$$
$$242$$ −4.73191 + 5.10460i −0.304178 + 0.328136i
$$243$$ −12.7162 7.34171i −0.815745 0.470971i
$$244$$ 5.25051 + 7.68554i 0.336130 + 0.492016i
$$245$$ −1.51649 2.62664i −0.0968850 0.167810i
$$246$$ −0.212595 + 0.229339i −0.0135545 + 0.0146221i
$$247$$ 14.4303 27.5878i 0.918175 1.75537i
$$248$$ −15.9469 + 20.0548i −1.01263 + 1.27348i
$$249$$ −1.80320 + 1.04108i −0.114273 + 0.0659758i
$$250$$ 1.37890 + 0.314043i 0.0872096 + 0.0198619i
$$251$$ −6.06987 3.50444i −0.383127 0.221198i 0.296051 0.955172i $$-0.404330\pi$$
−0.679178 + 0.733974i $$0.737663\pi$$
$$252$$ 10.4432 0.792495i 0.657862 0.0499225i
$$253$$ −7.11286 + 12.3198i −0.447182 + 0.774541i
$$254$$ 1.64410 + 5.32116i 0.103160 + 0.333879i
$$255$$ 0.856977i 0.0536660i
$$256$$ −3.50160 + 15.6121i −0.218850 + 0.975759i
$$257$$ 9.24502 + 16.0128i 0.576688 + 0.998854i 0.995856 + 0.0909446i $$0.0289886\pi$$
−0.419168 + 0.907909i $$0.637678\pi$$
$$258$$ 13.7384 + 3.12889i 0.855313 + 0.194796i
$$259$$ 8.60288i 0.534557i
$$260$$ 6.62436 + 2.84919i 0.410825 + 0.176700i
$$261$$ 3.04021i 0.188184i
$$262$$ 3.03854 13.3416i 0.187722 0.824249i
$$263$$ 13.1616 + 22.7966i 0.811581 + 1.40570i 0.911757 + 0.410730i $$0.134726\pi$$
−0.100176 + 0.994970i $$0.531941\pi$$
$$264$$ −2.96712 7.52883i −0.182613 0.463367i
$$265$$ 4.18560i 0.257119i
$$266$$ −36.9566 + 11.4186i −2.26595 + 0.700122i
$$267$$ 8.17036 14.1515i 0.500018 0.866057i
$$268$$ 0.503939 + 6.64074i 0.0307830 + 0.405648i
$$269$$ −4.45389 2.57145i −0.271558 0.156784i 0.358037 0.933707i $$-0.383446\pi$$
−0.629596 + 0.776923i $$0.716779\pi$$
$$270$$ −1.69586 + 7.44619i −0.103207 + 0.453161i
$$271$$ 19.4600 11.2352i 1.18211 0.682493i 0.225610 0.974218i $$-0.427563\pi$$
0.956502 + 0.291725i $$0.0942293\pi$$
$$272$$ 2.92000 0.445740i 0.177051 0.0270270i
$$273$$ 13.2420 0.552089i 0.801443 0.0334139i
$$274$$ −15.8701 14.7114i −0.958750 0.888751i
$$275$$ 1.23270 + 2.13510i 0.0743348 + 0.128752i
$$276$$ 7.55465 + 11.0583i 0.454737 + 0.665630i
$$277$$ −4.75235 2.74377i −0.285541 0.164857i 0.350388 0.936605i $$-0.386050\pi$$
−0.635929 + 0.771747i $$0.719383\pi$$
$$278$$ 9.15587 + 8.48739i 0.549133 + 0.509040i
$$279$$ 12.9700 + 7.48823i 0.776493 + 0.448308i
$$280$$ −3.28486 8.33508i −0.196308 0.498116i
$$281$$ 6.19365i 0.369482i 0.982787 + 0.184741i $$0.0591447\pi$$
−0.982787 + 0.184741i $$0.940855\pi$$
$$282$$ −3.99191 12.9199i −0.237715 0.769367i
$$283$$ 16.8496 9.72811i 1.00160 0.578276i 0.0928810 0.995677i $$-0.470392\pi$$
0.908722 + 0.417401i $$0.137059\pi$$
$$284$$ −4.22960 6.19116i −0.250981 0.367378i
$$285$$ 10.0209i 0.593585i
$$286$$ 4.20817 + 11.8459i 0.248834 + 0.700462i
$$287$$ −0.603545 −0.0356261
$$288$$ 9.32763 + 0.676948i 0.549636 + 0.0398896i
$$289$$ 8.22734 + 14.2502i 0.483961 + 0.838245i
$$290$$ −2.48475 + 0.767724i −0.145909 + 0.0450823i
$$291$$ −19.8882 −1.16587
$$292$$ 0.894577 1.86209i 0.0523512 0.108970i
$$293$$ −16.3593 + 28.3351i −0.955721 + 1.65536i −0.223011 + 0.974816i $$0.571588\pi$$
−0.732710 + 0.680541i $$0.761745\pi$$
$$294$$ −3.65051 3.38398i −0.212902 0.197358i
$$295$$ 5.72512 9.91620i 0.333329 0.577343i
$$296$$ −1.13422 + 7.59780i −0.0659252 + 0.441613i
$$297$$ −11.5297 + 6.65669i −0.669023 + 0.386260i
$$298$$ −12.6543 + 13.6510i −0.733046 + 0.790782i
$$299$$ −11.1438 17.5683i −0.644460 1.01600i
$$300$$ 2.31434 0.175626i 0.133619 0.0101398i
$$301$$ 13.5969 + 23.5506i 0.783715 + 1.35743i
$$302$$ 5.43038 23.8437i 0.312483 1.37205i
$$303$$ −3.07410 + 5.32450i −0.176603 + 0.305885i
$$304$$ −34.1444 + 5.21217i −1.95831 + 0.298938i
$$305$$ −4.03040 2.32695i −0.230780 0.133241i
$$306$$ −0.509683 1.64959i −0.0291366 0.0943011i
$$307$$ 21.1733 1.20842 0.604212 0.796824i $$-0.293488\pi$$
0.604212 + 0.796824i $$0.293488\pi$$
$$308$$ 6.76327 14.0780i 0.385373 0.802166i
$$309$$ −7.10113 + 4.09984i −0.403969 + 0.233232i
$$310$$ 2.84487 12.4913i 0.161577 0.709456i
$$311$$ 17.0756 0.968271 0.484136 0.874993i $$-0.339134\pi$$
0.484136 + 0.874993i $$0.339134\pi$$
$$312$$ 11.7677 + 1.25826i 0.666216 + 0.0712351i
$$313$$ −25.0633 −1.41666 −0.708330 0.705881i $$-0.750551\pi$$
−0.708330 + 0.705881i $$0.750551\pi$$
$$314$$ 7.49087 32.8910i 0.422734 1.85614i
$$315$$ −4.53506 + 2.61832i −0.255521 + 0.147525i
$$316$$ −16.5614 7.95636i −0.931651 0.447580i
$$317$$ −18.2387 −1.02439 −0.512195 0.858869i $$-0.671167\pi$$
−0.512195 + 0.858869i $$0.671167\pi$$
$$318$$ −2.02787 6.56323i −0.113717 0.368048i
$$319$$ −3.92632 2.26686i −0.219832 0.126920i
$$320$$ −1.80218 7.79437i −0.100745 0.435718i
$$321$$ 6.85608 11.8751i 0.382669 0.662802i
$$322$$ −5.73972 + 25.2020i −0.319862 + 1.40445i
$$323$$ 3.18827 + 5.52225i 0.177400 + 0.307266i
$$324$$ 0.197805 + 2.60661i 0.0109892 + 0.144811i
$$325$$ −3.60242 + 0.150193i −0.199826 + 0.00833121i
$$326$$ 2.00492 2.16282i 0.111042 0.119788i
$$327$$ −3.14524 + 1.81590i −0.173932 + 0.100420i
$$328$$ −0.533032 0.0795724i −0.0294318 0.00439365i
$$329$$ 13.0492 22.6018i 0.719424 1.24608i
$$330$$ 2.96737 + 2.75072i 0.163348 + 0.151422i
$$331$$ −13.4517 + 23.2990i −0.739371 + 1.28063i 0.213409 + 0.976963i $$0.431543\pi$$
−0.952779 + 0.303664i $$0.901790\pi$$
$$332$$ −3.23449 1.55390i −0.177516 0.0852814i
$$333$$ 4.49020 0.246062
$$334$$ 21.3651 6.60126i 1.16904 0.361205i
$$335$$ −1.66496 2.88379i −0.0909664 0.157558i
$$336$$ −9.18907 11.4784i −0.501305 0.626195i
$$337$$ 3.00972 0.163950 0.0819750 0.996634i $$-0.473877\pi$$
0.0819750 + 0.996634i $$0.473877\pi$$
$$338$$ −18.2034 2.57626i −0.990133 0.140130i
$$339$$ 22.5690i 1.22578i
$$340$$ −1.21950 + 0.833122i −0.0661366 + 0.0451824i
$$341$$ 19.3415 11.1668i 1.04740 0.604718i
$$342$$ 5.95986 + 19.2892i 0.322273 + 1.04304i
$$343$$ 12.5655i 0.678472i
$$344$$ 8.90345 + 22.5918i 0.480042 + 1.21807i
$$345$$ −5.79911 3.34812i −0.312213 0.180256i
$$346$$ 9.39478 + 8.70886i 0.505066 + 0.468191i
$$347$$ 2.24508 + 1.29620i 0.120522 + 0.0695836i 0.559049 0.829134i $$-0.311166\pi$$
−0.438527 + 0.898718i $$0.644500\pi$$
$$348$$ −3.52426 + 2.40766i −0.188920 + 0.129064i
$$349$$ 9.78948 + 16.9559i 0.524019 + 0.907627i 0.999609 + 0.0279603i $$0.00890119\pi$$
−0.475590 + 0.879667i $$0.657765\pi$$
$$350$$ 3.28514 + 3.04529i 0.175598 + 0.162778i
$$351$$ −0.811054 19.4534i −0.0432909 1.03834i
$$352$$ 7.82918 11.5415i 0.417297 0.615166i
$$353$$ −4.69869 + 2.71279i −0.250086 + 0.144387i −0.619804 0.784757i $$-0.712788\pi$$
0.369718 + 0.929144i $$0.379454\pi$$
$$354$$ 4.17300 18.3229i 0.221793 0.973849i
$$355$$ 3.24673 + 1.87450i 0.172319 + 0.0994881i
$$356$$ 28.0808 2.13094i 1.48828 0.112940i
$$357$$ −1.35723 + 2.35079i −0.0718323 + 0.124417i
$$358$$ −15.3682 + 4.74838i −0.812235 + 0.250960i
$$359$$ 24.1177i 1.27288i 0.771325 + 0.636442i $$0.219594\pi$$
−0.771325 + 0.636442i $$0.780406\pi$$
$$360$$ −4.35043 + 1.71451i −0.229288 + 0.0903624i
$$361$$ −27.7814 48.1188i −1.46218 2.53257i
$$362$$ −5.50676 + 24.1791i −0.289429 + 1.27083i
$$363$$ 5.71172i 0.299787i
$$364$$ 13.6590 + 18.3070i 0.715928 + 0.959547i
$$365$$ 1.03291i 0.0540652i
$$366$$ −7.44726 1.69610i −0.389274 0.0886567i
$$367$$ −1.11654 1.93390i −0.0582827 0.100949i 0.835412 0.549624i $$-0.185229\pi$$
−0.893695 + 0.448676i $$0.851896\pi$$
$$368$$ −8.39182 + 21.5009i −0.437454 + 1.12081i
$$369$$ 0.315015i 0.0163990i
$$370$$ −1.13388 3.66982i −0.0589476 0.190785i
$$371$$ 6.62892 11.4816i 0.344156 0.596096i
$$372$$ −1.59097 20.9652i −0.0824877 1.08700i
$$373$$ 11.6773 + 6.74188i 0.604627 + 0.349082i 0.770860 0.637005i $$-0.219827\pi$$
−0.166233 + 0.986087i $$0.553160\pi$$
$$374$$ −2.51042 0.571745i −0.129811 0.0295642i
$$375$$ −1.00502 + 0.580249i −0.0518991 + 0.0299639i
$$376$$ 14.5045 18.2408i 0.748012 0.940698i
$$377$$ 5.59900 3.55150i 0.288363 0.182912i
$$378$$ −16.4448 + 17.7400i −0.845830 + 0.912449i
$$379$$ −3.05975 5.29964i −0.157169 0.272224i 0.776678 0.629898i $$-0.216903\pi$$
−0.933847 + 0.357674i $$0.883570\pi$$
$$380$$ 14.2599 9.74193i 0.731520 0.499750i
$$381$$ −3.95791 2.28510i −0.202770 0.117069i
$$382$$ −0.664714 + 0.717068i −0.0340097 + 0.0366884i
$$383$$ 18.3627 + 10.6017i 0.938292 + 0.541723i 0.889424 0.457082i $$-0.151106\pi$$
0.0488673 + 0.998805i $$0.484439\pi$$
$$384$$ −6.60218 11.3488i −0.336916 0.579143i
$$385$$ 7.80914i 0.397991i
$$386$$ −7.38068 + 2.28044i −0.375667 + 0.116071i
$$387$$ 12.2920 7.09681i 0.624840 0.360751i
$$388$$ −19.3346 28.3014i −0.981565 1.43678i
$$389$$ 8.17552i 0.414515i −0.978286 0.207258i $$-0.933546\pi$$
0.978286 0.207258i $$-0.0664539\pi$$
$$390$$ −5.57601 + 1.98084i −0.282352 + 0.100304i
$$391$$ 4.26099 0.215488
$$392$$ 1.26660 8.48455i 0.0639727 0.428534i
$$393$$ 5.61422 + 9.72411i 0.283200 + 0.490517i
$$394$$ 5.82683 + 18.8586i 0.293552 + 0.950084i
$$395$$ 9.18672 0.462234
$$396$$ −7.34787 3.53004i −0.369244 0.177391i
$$397$$ −1.33438 + 2.31122i −0.0669707 + 0.115997i −0.897566 0.440879i $$-0.854667\pi$$
0.830596 + 0.556876i $$0.188000\pi$$
$$398$$ 23.9689 25.8567i 1.20145 1.29608i
$$399$$ 15.8705 27.4885i 0.794519 1.37615i
$$400$$ 2.49984 + 3.12263i 0.124992 + 0.156131i
$$401$$ 7.61683 4.39758i 0.380367 0.219605i −0.297611 0.954687i $$-0.596190\pi$$
0.677978 + 0.735082i $$0.262857\pi$$
$$402$$ −4.00790 3.71528i −0.199896 0.185301i
$$403$$ 1.36057 + 32.6337i 0.0677749 + 1.62560i
$$404$$ −10.5654 + 0.801767i −0.525650 + 0.0398894i
$$405$$ −0.653525 1.13194i −0.0324739 0.0562465i
$$406$$ −8.03185 1.82924i −0.398614 0.0907838i
$$407$$ 3.34801 5.79893i 0.165955 0.287442i
$$408$$ −1.50860 + 1.89721i −0.0746867 + 0.0939258i
$$409$$ 8.07460 + 4.66187i 0.399263 + 0.230515i 0.686166 0.727445i $$-0.259292\pi$$
−0.286903 + 0.957960i $$0.592626\pi$$
$$410$$ 0.257460 0.0795486i 0.0127151 0.00392863i
$$411$$ 17.7577 0.875921
$$412$$ −12.7376 6.11936i −0.627538 0.301479i
$$413$$ 31.4094 18.1343i 1.54556 0.892328i
$$414$$ 13.1540 + 2.99580i 0.646483 + 0.147236i
$$415$$ 1.79420 0.0880736
$$416$$ 9.64962 + 17.9690i 0.473112 + 0.881002i
$$417$$ −10.2448 −0.501692
$$418$$ 29.3551 + 6.68558i 1.43580 + 0.327002i
$$419$$ −30.8485 + 17.8104i −1.50705 + 0.870094i −0.507081 + 0.861898i $$0.669276\pi$$
−0.999966 + 0.00819632i $$0.997391\pi$$
$$420$$ 6.62668 + 3.18356i 0.323349 + 0.155342i
$$421$$ 0.743378 0.0362300 0.0181150 0.999836i $$-0.494233\pi$$
0.0181150 + 0.999836i $$0.494233\pi$$
$$422$$ −12.4315 + 3.84103i −0.605158 + 0.186978i
$$423$$ −11.7968 6.81091i −0.573582 0.331158i
$$424$$ 7.36821 9.26625i 0.357832 0.450009i
$$425$$ 0.369228 0.639522i 0.0179102 0.0310214i
$$426$$ 5.99921 + 1.36631i 0.290663 + 0.0661980i
$$427$$ −7.37060 12.7663i −0.356688 0.617802i
$$428$$ 23.5638 1.78816i 1.13900 0.0864339i
$$429$$ −9.14088 4.78129i −0.441326 0.230843i
$$430$$ −8.90422 8.25411i −0.429399 0.398049i
$$431$$ 11.7483 6.78289i 0.565896 0.326720i −0.189612 0.981859i $$-0.560723\pi$$
0.755509 + 0.655139i $$0.227390\pi$$
$$432$$ −16.8624 + 13.4993i −0.811294 + 0.649487i
$$433$$ −12.9676 + 22.4605i −0.623182 + 1.07938i 0.365707 + 0.930730i $$0.380827\pi$$
−0.988889 + 0.148653i $$0.952506\pi$$
$$434$$ 27.5868 29.7595i 1.32421 1.42850i
$$435$$ 1.06704 1.84817i 0.0511607 0.0886129i
$$436$$ −5.64176 2.71039i −0.270191 0.129804i
$$437$$ −49.8250 −2.38345
$$438$$ 0.500434 + 1.61966i 0.0239117 + 0.0773904i
$$439$$ 1.85839 + 3.21883i 0.0886962 + 0.153626i 0.906960 0.421216i $$-0.138397\pi$$
−0.818264 + 0.574843i $$0.805063\pi$$
$$440$$ −1.02957 + 6.89679i −0.0490829 + 0.328792i
$$441$$ −5.01426 −0.238774
$$442$$ 2.44257 2.86567i 0.116181 0.136306i
$$443$$ 1.77030i 0.0841096i 0.999115 + 0.0420548i $$0.0133904\pi$$
−0.999115 + 0.0420548i $$0.986610\pi$$
$$444$$ −3.55596 5.20511i −0.168759 0.247024i
$$445$$ −12.1943 + 7.04039i −0.578066 + 0.333747i
$$446$$ −5.68850 + 1.75760i −0.269358 + 0.0832248i
$$447$$ 15.2746i 0.722464i
$$448$$ 7.40069 24.2351i 0.349650 1.14500i
$$449$$ −24.6942 14.2572i −1.16539 0.672838i −0.212800 0.977096i $$-0.568258\pi$$
−0.952590 + 0.304258i $$0.901592\pi$$
$$450$$ 1.58946 1.71465i 0.0749281 0.0808295i
$$451$$ 0.406830 + 0.234884i 0.0191569 + 0.0110602i
$$452$$ 32.1163 21.9408i 1.51062 1.03201i
$$453$$ 10.0336 + 17.3786i 0.471418 + 0.816519i
$$454$$ 8.41846 9.08151i 0.395098 0.426216i
$$455$$ −10.1198 5.29332i −0.474422 0.248154i
$$456$$ 17.6405 22.1846i 0.826091 1.03889i
$$457$$ −27.5901 + 15.9291i −1.29061 + 0.745133i −0.978762 0.204999i $$-0.934281\pi$$
−0.311846 + 0.950133i $$0.600947\pi$$
$$458$$ −31.2535 7.11795i −1.46038 0.332600i
$$459$$ 3.45347 + 1.99386i 0.161194 + 0.0930654i
$$460$$ −0.873233 11.5072i −0.0407147 0.536525i
$$461$$ 4.12121 7.13815i 0.191944 0.332457i −0.753950 0.656931i $$-0.771854\pi$$
0.945894 + 0.324474i $$0.105187\pi$$
$$462$$ 3.78343 + 12.2451i 0.176021 + 0.569695i
$$463$$ 13.2846i 0.617390i −0.951161 0.308695i $$-0.900108\pi$$
0.951161 0.308695i $$-0.0998922\pi$$
$$464$$ −6.85232 2.67447i −0.318111 0.124159i
$$465$$ 5.25638 + 9.10431i 0.243759 + 0.422202i
$$466$$ 22.5198 + 5.12884i 1.04321 + 0.237589i
$$467$$ 3.38808i 0.156782i −0.996923 0.0783909i $$-0.975022\pi$$
0.996923 0.0783909i $$-0.0249782\pi$$
$$468$$ 9.55518 7.12922i 0.441688 0.329549i
$$469$$ 10.5475i 0.487037i
$$470$$ −2.58754 + 11.3614i −0.119355 + 0.524063i
$$471$$ 13.8407 + 23.9727i 0.637744 + 1.10461i
$$472$$ 30.1307 11.8745i 1.38688 0.546570i
$$473$$ 21.1663i 0.973227i
$$474$$ 14.4052 4.45085i 0.661655 0.204434i
$$475$$ −4.31749 + 7.47811i −0.198100 + 0.343119i
$$476$$ −4.66469 + 0.353984i −0.213806 + 0.0162248i
$$477$$ −5.99274 3.45991i −0.274389 0.158418i
$$478$$ −1.99735 + 8.76996i −0.0913565 + 0.401129i
$$479$$ −29.5093 + 17.0372i −1.34832 + 0.778450i −0.988011 0.154385i $$-0.950660\pi$$
−0.360304 + 0.932835i $$0.617327\pi$$
$$480$$ 5.43275 + 3.68530i 0.247970 + 0.168210i
$$481$$ 5.24535 + 8.26937i 0.239168 + 0.377051i
$$482$$ −12.7639 11.8320i −0.581382 0.538935i
$$483$$ −10.6051 18.3686i −0.482550 0.835800i
$$484$$ 8.12791 5.55272i 0.369450 0.252397i
$$485$$ 14.8416 + 8.56882i 0.673924 + 0.389090i
$$486$$ 15.2288 + 14.1170i 0.690793 + 0.640358i
$$487$$ 8.92075 + 5.15040i 0.404238 + 0.233387i 0.688311 0.725416i $$-0.258352\pi$$
−0.284073 + 0.958803i $$0.591686\pi$$
$$488$$ −4.82636 12.2465i −0.218479 0.554374i
$$489$$ 2.42006i 0.109439i
$$490$$ 1.26622 + 4.09813i 0.0572018 + 0.185134i
$$491$$ 8.22556 4.74903i 0.371214 0.214321i −0.302774 0.953062i $$-0.597913\pi$$
0.673989 + 0.738742i $$0.264580\pi$$
$$492$$ 0.365170 0.249473i 0.0164631 0.0112471i
$$493$$ 1.35797i 0.0611600i
$$494$$ −28.5617 + 33.5091i −1.28505 + 1.50765i
$$495$$ 4.07592 0.183199
$$496$$ 28.2873 22.6456i 1.27014 1.01682i
$$497$$ 5.93746 + 10.2840i 0.266331 + 0.461299i
$$498$$ 2.81339 0.869265i 0.126071 0.0389527i
$$499$$ 23.3056 1.04330 0.521652 0.853158i $$-0.325316\pi$$
0.521652 + 0.853158i $$0.325316\pi$$
$$500$$ −1.80275 0.866072i −0.0806216 0.0387319i
$$501$$ −9.17493 + 15.8914i −0.409906 + 0.709978i
$$502$$ 7.26922 + 6.73849i 0.324441 + 0.300754i
$$503$$ −7.62610 + 13.2088i −0.340031 + 0.588951i −0.984438 0.175732i $$-0.943771\pi$$
0.644407 + 0.764682i $$0.277104\pi$$
$$504$$ −14.6491 2.18686i −0.652523 0.0974103i
$$505$$ 4.58812 2.64895i 0.204169 0.117877i
$$506$$ 13.6769 14.7541i 0.608013 0.655901i
$$507$$ 12.3920 8.60461i 0.550349 0.382144i
$$508$$ −0.595984 7.85368i −0.0264425 0.348451i
$$509$$ 9.44807 + 16.3645i 0.418778 + 0.725346i 0.995817 0.0913714i $$-0.0291251\pi$$
−0.577038 + 0.816717i $$0.695792\pi$$
$$510$$ 0.269128 1.18169i 0.0119172 0.0523261i
$$511$$ −1.63587 + 2.83341i −0.0723667 + 0.125343i
$$512$$ 9.73126 20.4280i 0.430065 0.902798i
$$513$$ −40.3824 23.3148i −1.78293 1.02937i
$$514$$ −7.71927 24.9835i −0.340482 1.10198i
$$515$$ 7.06565 0.311350
$$516$$ −17.9613 8.62888i −0.790701 0.379865i
$$517$$ −17.5921 + 10.1568i −0.773698 + 0.446695i
$$518$$ 2.70168 11.8626i 0.118705 0.521211i
$$519$$ −10.5122 −0.461432
$$520$$ −8.23958 6.00910i −0.361330 0.263517i
$$521$$ 4.53269 0.198581 0.0992904 0.995058i $$-0.468343\pi$$
0.0992904 + 0.995058i $$0.468343\pi$$
$$522$$ −0.954758 + 4.19216i −0.0417886 + 0.183486i
$$523$$ −23.1340 + 13.3564i −1.01158 + 0.584036i −0.911654 0.410959i $$-0.865194\pi$$
−0.0999260 + 0.994995i $$0.531861\pi$$
$$524$$ −8.37971 + 17.4426i −0.366069 + 0.761984i
$$525$$ −3.67586 −0.160428
$$526$$ −10.9895 35.5677i −0.479165 1.55082i
$$527$$ −5.79332 3.34477i −0.252361 0.145701i
$$528$$ 1.72699 + 11.3133i 0.0751576 + 0.492350i
$$529$$ −5.14723 + 8.91527i −0.223793 + 0.387620i
$$530$$ −1.31446 + 5.77154i −0.0570965 + 0.250700i
$$531$$ −9.46502 16.3939i −0.410747 0.711435i
$$532$$ 54.5455 4.13924i 2.36485 0.179459i
$$533$$ −0.580147 + 0.367993i −0.0251289 + 0.0159396i
$$534$$ −15.7103 + 16.9477i −0.679852 + 0.733398i
$$535$$ −10.2327 + 5.90788i −0.442400 + 0.255420i
$$536$$ 1.39060 9.31521i 0.0600647 0.402356i
$$537$$ 6.59967 11.4310i 0.284797 0.493282i
$$538$$ 5.33394 + 4.94450i 0.229962 + 0.213173i
$$539$$ −3.73876 + 6.47573i −0.161040 + 0.278929i
$$540$$ 4.67686 9.73501i 0.201260 0.418928i
$$541$$ −10.6452 −0.457674 −0.228837 0.973465i $$-0.573492\pi$$
−0.228837 + 0.973465i $$0.573492\pi$$
$$542$$ −30.3619 + 9.38104i −1.30415 + 0.402950i
$$543$$ −10.1747 17.6231i −0.436638 0.756279i
$$544$$ −4.16638 0.302373i −0.178632 0.0129641i
$$545$$ 3.12953 0.134054
$$546$$ −18.4328 3.39729i −0.788853 0.145391i
$$547$$ 18.7968i 0.803695i 0.915707 + 0.401847i $$0.131632\pi$$
−0.915707 + 0.401847i $$0.868368\pi$$
$$548$$ 17.2634 + 25.2696i 0.737454 + 1.07946i
$$549$$ −6.66324 + 3.84702i −0.284380 + 0.164187i
$$550$$ −1.02926 3.33122i −0.0438879 0.142044i
$$551$$ 15.8792i 0.676475i
$$552$$ −6.94436 17.6208i −0.295572 0.749990i
$$553$$ 25.2003 + 14.5494i 1.07163 + 0.618704i
$$554$$ 5.69137 + 5.27584i 0.241803 + 0.224149i
$$555$$ 2.72963 + 1.57595i 0.115866 + 0.0668955i
$$556$$ −9.95966 14.5786i −0.422383 0.618272i
$$557$$ 10.6352 + 18.4206i 0.450626 + 0.780508i 0.998425 0.0561026i $$-0.0178674\pi$$
−0.547799 + 0.836610i $$0.684534\pi$$
$$558$$ −15.5327 14.3987i −0.657554 0.609545i
$$559$$ 27.4291 + 14.3473i 1.16013 + 0.606825i
$$560$$ 1.91193 + 12.5249i 0.0807939 + 0.529272i
$$561$$ 1.82973 1.05640i 0.0772514 0.0446011i
$$562$$ 1.94508 8.54045i 0.0820481 0.360257i
$$563$$ −20.4572 11.8110i −0.862168 0.497773i 0.00256999 0.999997i $$-0.499182\pi$$
−0.864738 + 0.502224i $$0.832515\pi$$
$$564$$ 1.44706 + 19.0689i 0.0609322 + 0.802945i
$$565$$ −9.72386 + 16.8422i −0.409086 + 0.708557i
$$566$$ −26.2890 + 8.12263i −1.10501 + 0.341420i
$$567$$ 4.14007i 0.173866i
$$568$$ 3.88792 + 9.86530i 0.163134 + 0.413939i
$$569$$ −15.0749 26.1106i −0.631974 1.09461i −0.987148 0.159811i $$-0.948911\pi$$
0.355173 0.934800i $$-0.384422\pi$$
$$570$$ −3.14699 + 13.8178i −0.131813 + 0.578765i
$$571$$ 6.49912i 0.271980i −0.990710 0.135990i $$-0.956579\pi$$
0.990710 0.135990i $$-0.0434215\pi$$
$$572$$ −2.08254 17.6559i −0.0870752 0.738230i
$$573$$ 0.802353i 0.0335188i
$$574$$ 0.832230 + 0.189539i 0.0347366 + 0.00791121i
$$575$$ 2.88507 + 4.99708i 0.120316 + 0.208393i
$$576$$ −12.6493 3.86273i −0.527055 0.160947i
$$577$$ 4.08088i 0.169889i −0.996386 0.0849446i $$-0.972929\pi$$
0.996386 0.0849446i $$-0.0270713\pi$$
$$578$$ −6.86954 22.2334i −0.285735 0.924786i
$$579$$ 3.16953 5.48979i 0.131721 0.228148i
$$580$$ 3.66733 0.278299i 0.152278 0.0115557i
$$581$$ 4.92170 + 2.84155i 0.204187 + 0.117887i
$$582$$ 27.4239 + 6.24576i 1.13676 + 0.258895i
$$583$$ −8.93668 + 5.15960i −0.370120 + 0.213689i
$$584$$ −1.81831 + 2.28671i −0.0752423 + 0.0946245i
$$585$$ −2.76280 + 5.28193i −0.114228 + 0.218381i
$$586$$ 31.4564 33.9339i 1.29945 1.40180i
$$587$$ 7.83029 + 13.5625i 0.323191 + 0.559783i 0.981145 0.193275i $$-0.0619111\pi$$
−0.657954 + 0.753058i $$0.728578\pi$$
$$588$$ 3.97098 + 5.81260i 0.163761 + 0.239708i
$$589$$ 67.7429 + 39.1114i 2.79130 + 1.61156i
$$590$$ −11.0085 + 11.8756i −0.453213 + 0.488909i
$$591$$ −14.0271 8.09858i −0.577000 0.333131i
$$592$$ 3.95002 10.1204i 0.162345 0.415948i
$$593$$ 35.5283i 1.45897i 0.683996 + 0.729486i $$0.260241\pi$$
−0.683996 + 0.729486i $$0.739759\pi$$
$$594$$ 17.9889 5.55811i 0.738093 0.228052i
$$595$$ 2.02568 1.16953i 0.0830447 0.0479459i
$$596$$ 21.7361 14.8494i 0.890347 0.608256i
$$597$$ 28.9320i 1.18411i
$$598$$ 9.84897 + 27.7246i 0.402754 + 1.13374i
$$599$$ 15.0781 0.616075 0.308037 0.951374i $$-0.400328\pi$$
0.308037 + 0.951374i $$0.400328\pi$$
$$600$$ −3.24641 0.484633i −0.132534 0.0197850i
$$601$$ −9.78938 16.9557i −0.399317 0.691637i 0.594325 0.804225i $$-0.297419\pi$$
−0.993642 + 0.112588i $$0.964086\pi$$
$$602$$ −11.3530 36.7441i −0.462713 1.49758i
$$603$$ −5.50517 −0.224188
$$604$$ −14.9759 + 31.1729i −0.609363 + 1.26841i
$$605$$ −2.46089 + 4.26239i −0.100049 + 0.173291i
$$606$$ 5.91102 6.37658i 0.240119 0.259031i
$$607$$ 12.4880 21.6299i 0.506874 0.877932i −0.493094 0.869976i $$-0.664134\pi$$
0.999968 0.00795583i $$-0.00253244\pi$$
$$608$$ 48.7187 + 3.53573i 1.97580 + 0.143393i
$$609$$ 5.85405 3.37984i 0.237218 0.136958i
$$610$$ 4.82677 + 4.47437i 0.195430 + 0.181162i
$$611$$ −1.23751 29.6820i −0.0500642 1.20080i
$$612$$ 0.184759 + 2.43470i 0.00746844 + 0.0984167i
$$613$$ 5.34922 + 9.26513i 0.216053 + 0.374215i 0.953598 0.301083i $$-0.0973482\pi$$
−0.737545 + 0.675298i $$0.764015\pi$$
$$614$$ −29.1960 6.64934i −1.17825 0.268345i
$$615$$ −0.110563 + 0.191500i −0.00445832 + 0.00772204i
$$616$$ −13.7470 + 17.2882i −0.553882 + 0.696561i
$$617$$ 17.2769 + 9.97481i 0.695541 + 0.401571i 0.805685 0.592345i $$-0.201798\pi$$
−0.110143 + 0.993916i $$0.535131\pi$$
$$618$$ 11.0793 3.42322i 0.445675 0.137702i
$$619$$ −14.3270 −0.575850 −0.287925 0.957653i $$-0.592965\pi$$
−0.287925 + 0.957653i $$0.592965\pi$$
$$620$$ −7.84559 + 16.3308i −0.315087 + 0.655862i
$$621$$ −26.9847 + 15.5796i −1.08286 + 0.625188i
$$622$$ −23.5457 5.36249i −0.944096 0.215016i
$$623$$ −44.6007 −1.78689
$$624$$ −15.8314 5.43060i −0.633764 0.217398i
$$625$$ 1.00000 0.0400000
$$626$$ 34.5599 + 7.87096i 1.38129 + 0.314587i
$$627$$ −21.3956 + 12.3528i −0.854458 + 0.493321i
$$628$$ −20.6584 + 43.0010i −0.824359 + 1.71593i
$$629$$ −2.00564 −0.0799702
$$630$$ 7.07567 2.18620i 0.281902 0.0871004i
$$631$$ 21.3141 + 12.3057i 0.848500 + 0.489882i 0.860145 0.510050i $$-0.170373\pi$$
−0.0116443 + 0.999932i $$0.503707\pi$$
$$632$$ 20.3379 + 16.1721i 0.808999 + 0.643290i
$$633$$ 5.33855 9.24665i 0.212188 0.367521i
$$634$$ 25.1495 + 5.72776i 0.998813 + 0.227478i
$$635$$ 1.96907 + 3.41052i 0.0781400 + 0.135342i
$$636$$ 0.735100 + 9.68691i 0.0291486 + 0.384111i
$$637$$ −5.85754 9.23449i −0.232084 0.365884i
$$638$$ 4.70212 + 4.35882i 0.186159 + 0.172567i
$$639$$ 5.36764 3.09901i 0.212340 0.122595i
$$640$$ 0.0372585 + 11.3136i 0.00147277 + 0.447211i
$$641$$ −10.8642 + 18.8174i −0.429112 + 0.743243i −0.996795 0.0800040i $$-0.974507\pi$$
0.567683 + 0.823247i $$0.307840\pi$$
$$642$$ −13.1832 + 14.2215i −0.520298 + 0.561278i
$$643$$ 8.88679 15.3924i 0.350461 0.607016i −0.635869 0.771797i $$-0.719358\pi$$
0.986330 + 0.164781i $$0.0526916\pi$$
$$644$$ 15.8290 32.9486i 0.623752 1.29836i
$$645$$ 9.96325 0.392302
$$646$$ −2.66210 8.61591i −0.104739 0.338989i
$$647$$ 19.8313 + 34.3488i 0.779649 + 1.35039i 0.932144 + 0.362088i $$0.117936\pi$$
−0.152495 + 0.988304i $$0.548731\pi$$
$$648$$ 0.545834 3.65638i 0.0214424 0.143636i
$$649$$ −28.2295 −1.10810
$$650$$ 5.01456 + 0.924215i 0.196687 + 0.0362507i
$$651$$ 33.2990i 1.30509i
$$652$$ −3.44381 + 2.35270i −0.134870 + 0.0921387i
$$653$$ 11.7391 6.77755i 0.459385 0.265226i −0.252401 0.967623i $$-0.581220\pi$$
0.711785 + 0.702397i $$0.247887\pi$$
$$654$$ 4.90725 1.51622i 0.191889 0.0592887i
$$655$$ 9.67553i 0.378054i
$$656$$ 0.710011 + 0.277118i 0.0277213 + 0.0108196i
$$657$$ 1.47888 + 0.853829i 0.0576964 + 0.0333111i
$$658$$ −25.0915 + 27.0678i −0.978169 + 1.05521i
$$659$$ −1.49368 0.862377i −0.0581856 0.0335934i 0.470625 0.882333i $$-0.344028\pi$$
−0.528811 + 0.848740i $$0.677362\pi$$
$$660$$ −3.22787 4.72486i −0.125645 0.183915i
$$661$$ −12.9412 22.4148i −0.503355 0.871836i −0.999992 0.00387783i $$-0.998766\pi$$
0.496638 0.867958i $$-0.334568\pi$$
$$662$$ 25.8655 27.9026i 1.00529 1.08447i
$$663$$ 0.128712 + 3.08719i 0.00499875 + 0.119897i
$$664$$ 3.97206 + 3.15845i 0.154146 + 0.122572i
$$665$$ −23.6868 + 13.6756i −0.918535 + 0.530317i
$$666$$ −6.19156 1.41012i −0.239918 0.0546410i
$$667$$ −9.18932 5.30546i −0.355812 0.205428i
$$668$$ −31.5335 + 2.39294i −1.22007 + 0.0925858i
$$669$$ 2.44285 4.23114i 0.0944460 0.163585i
$$670$$ 1.39018 + 4.49934i 0.0537074 + 0.173825i
$$671$$ 11.4738i 0.442940i
$$672$$ 9.06615 + 18.7133i 0.349734 + 0.721882i
$$673$$ −6.92986 12.0029i −0.267127 0.462677i 0.700992 0.713169i $$-0.252741\pi$$
−0.968119 + 0.250492i $$0.919408\pi$$
$$674$$ −4.15012 0.945183i −0.159857 0.0364071i
$$675$$ 5.40008i 0.207849i
$$676$$ 24.2917 + 9.26907i 0.934294 + 0.356503i
$$677$$ 32.0465i 1.23165i −0.787884 0.615823i $$-0.788824\pi$$
0.787884 0.615823i $$-0.211176\pi$$
$$678$$ −7.08766 + 31.1205i −0.272200 + 1.19518i
$$679$$ 27.1416 + 47.0107i 1.04160 + 1.80410i
$$680$$ 1.94321 0.765820i 0.0745186 0.0293678i
$$681$$ 10.1616i 0.389394i
$$682$$ −30.1770 + 9.32392i −1.15554 + 0.357031i
$$683$$ −4.02679 + 6.97461i −0.154081 + 0.266876i −0.932724 0.360591i $$-0.882575\pi$$
0.778643 + 0.627467i $$0.215908\pi$$
$$684$$ −2.16044 28.4696i −0.0826065 1.08856i
$$685$$ −13.2517 7.65088i −0.506322 0.292325i
$$686$$ 3.94611 17.3266i 0.150663 0.661533i
$$687$$ 22.7793 13.1516i 0.869084 0.501766i
$$688$$ −5.18220 33.9480i −0.197569 1.29426i
$$689$$ −0.628647 15.0783i −0.0239496 0.574437i
$$690$$ 6.94496 + 6.43790i 0.264390 + 0.245087i
$$691$$ −9.06234 15.6964i −0.344748 0.597121i 0.640560 0.767908i $$-0.278702\pi$$
−0.985308 + 0.170787i $$0.945369\pi$$
$$692$$ −10.2195 14.9590i −0.388489 0.568658i
$$693$$ 11.1807 + 6.45521i 0.424722 + 0.245213i
$$694$$ −2.68869 2.49239i −0.102061 0.0946097i
$$695$$ 7.64524 + 4.41398i 0.290000 + 0.167432i
$$696$$ 5.61572 2.21316i 0.212864 0.0838897i
$$697$$ 0.140708i 0.00532970i
$$698$$ −8.17387 26.4549i −0.309386 1.00133i
$$699$$ −16.4136 + 9.47641i −0.620820 + 0.358431i
$$700$$ −3.57354 5.23084i −0.135067 0.197707i
$$701$$ 0.168502i 0.00636422i 0.999995 + 0.00318211i $$0.00101290\pi$$
−0.999995 + 0.00318211i $$0.998987\pi$$
$$702$$ −4.99084 + 27.0790i −0.188367 + 1.02203i
$$703$$ 23.4526 0.884530
$$704$$ −14.4202 + 13.4560i −0.543483 + 0.507141i
$$705$$ −4.78093 8.28082i −0.180060 0.311874i
$$706$$ 7.33097 2.26508i 0.275905 0.0852475i
$$707$$ 16.7810 0.631116
$$708$$ −11.5083 + 23.9550i −0.432510 + 0.900282i
$$709$$ −13.2652 + 22.9759i −0.498184 + 0.862879i −0.999998 0.00209603i $$-0.999333\pi$$
0.501814 + 0.864975i $$0.332666\pi$$
$$710$$ −3.88825 3.60437i −0.145924 0.135270i
$$711$$ 7.59395 13.1531i 0.284795 0.493280i
$$712$$ −39.3900 5.88024i −1.47620 0.220371i
$$713$$ 45.2677 26.1353i 1.69529 0.978776i
$$714$$ 2.60974 2.81529i 0.0976672 0.105360i
$$715$$ 4.76139 + 7.50640i 0.178066 + 0.280723i
$$716$$ 22.6825 1.72128i 0.847684 0.0643273i
$$717$$ −3.69044 6.39203i −0.137822 0.238715i
$$718$$ 7.57400 33.2560i 0.282659 1.24110i
$$719$$ 19.5787 33.9113i 0.730163 1.26468i −0.226651 0.973976i $$-0.572778\pi$$
0.956813 0.290703i $$-0.0938890\pi$$
$$720$$ 6.53725 0.997917i 0.243629 0.0371902i
$$721$$ 19.3820 + 11.1902i 0.721822 + 0.416744i
$$722$$ 23.1965 + 75.0758i 0.863284 + 2.79403i
$$723$$ 14.2820 0.531155
$$724$$ 15.1866 31.6114i 0.564406 1.17483i
$$725$$ −1.59257 + 0.919468i −0.0591464 + 0.0341482i
$$726$$ −1.79373 + 7.87591i −0.0665714 + 0.292302i
$$727$$ −18.8156 −0.697832 −0.348916 0.937154i $$-0.613450\pi$$
−0.348916 + 0.937154i $$0.613450\pi$$
$$728$$ −13.0853 29.5331i −0.484974 1.09457i
$$729$$ −20.9612 −0.776342
$$730$$ 0.324380 1.42429i 0.0120058 0.0527153i
$$731$$ −5.49050 + 3.16994i −0.203073 + 0.117244i
$$732$$ 9.73640 + 4.67752i 0.359868 + 0.172886i
$$733$$ −19.8512 −0.733219 −0.366610 0.930375i $$-0.619482\pi$$
−0.366610 + 0.930375i $$0.619482\pi$$
$$734$$ 0.932268 + 3.01730i 0.0344106 + 0.111370i
$$735$$ −3.04821 1.75988i −0.112435 0.0649143i
$$736$$ 18.3237 27.0123i 0.675422 0.995686i
$$737$$ −4.10480 + 7.10972i −0.151202 + 0.261890i
$$738$$ 0.0989284 0.434376i 0.00364161 0.0159896i
$$739$$ −21.9843 38.0780i −0.808707 1.40072i −0.913760 0.406255i $$-0.866834\pi$$
0.105052 0.994467i $$-0.466499\pi$$
$$740$$ 0.411030 + 5.41642i 0.0151098 + 0.199111i
$$741$$ −1.50506 36.0994i −0.0552899 1.32614i
$$742$$ −12.7464 + 13.7503i −0.467934 + 0.504789i
$$743$$ −17.2021 + 9.93161i −0.631082 + 0.364356i −0.781171 0.624317i $$-0.785377\pi$$
0.150089 + 0.988673i $$0.452044\pi$$
$$744$$ −4.39020 + 29.4087i −0.160953 + 1.07817i
$$745$$ −6.58106 + 11.3987i −0.241111 + 0.417617i
$$746$$ −13.9846 12.9636i −0.512013 0.474631i
$$747$$ 1.48312 2.56884i 0.0542646 0.0939890i
$$748$$ 3.28208 + 1.57676i 0.120005 + 0.0576522i
$$749$$ −37.4263 −1.36753
$$750$$ 1.56805 0.484488i 0.0572571 0.0176910i
$$751$$ −9.68597 16.7766i −0.353446 0.612186i 0.633405 0.773821i $$-0.281657\pi$$
−0.986851 + 0.161634i $$0.948324\pi$$
$$752$$ −25.7287 + 20.5973i −0.938230 + 0.751106i
$$753$$ −8.13379 −0.296412
$$754$$ −8.83580 + 3.13886i −0.321781 + 0.114310i
$$755$$ 17.2918i 0.629313i
$$756$$ 28.2470 19.2974i 1.02733 0.701840i
$$757$$ 14.7095 8.49256i 0.534627 0.308667i −0.208271 0.978071i $$-0.566784\pi$$
0.742899 + 0.669404i $$0.233450\pi$$
$$758$$ 2.55478 + 8.26858i 0.0927938 + 0.300329i
$$759$$ 16.5089i 0.599236i
$$760$$ −22.7225 + 8.95495i −0.824231 + 0.324830i
$$761$$ 45.5367 + 26.2906i 1.65070 + 0.953035i 0.976783 + 0.214232i $$0.0687249\pi$$
0.673922 + 0.738803i $$0.264608\pi$$
$$762$$ 4.73995 + 4.39389i 0.171710 + 0.159174i
$$763$$ 8.58468 + 4.95637i 0.310786 + 0.179433i
$$764$$ 1.14177 0.780019i 0.0413077 0.0282201i
$$765$$ −0.610424 1.05729i −0.0220699 0.0382262i
$$766$$ −21.9910 20.3855i −0.794569 0.736557i
$$767$$ 19.1350 36.5822i 0.690923 1.32091i
$$768$$ 5.53975 + 17.7223i 0.199898 + 0.639499i
$$769$$ 42.8525 24.7409i