Properties

Label 520.2.ca.a.101.20
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.20
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.a.381.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.795042 + 1.16958i) q^{2} +(0.127180 - 0.0734274i) q^{3} +(-0.735818 + 1.85972i) q^{4} -1.00000 q^{5} +(0.186992 + 0.0903689i) q^{6} +(-2.93738 - 1.69590i) q^{7} +(-2.76009 + 0.617962i) q^{8} +(-1.48922 + 2.57940i) q^{9} +O(q^{10})\) \(q+(0.795042 + 1.16958i) q^{2} +(0.127180 - 0.0734274i) q^{3} +(-0.735818 + 1.85972i) q^{4} -1.00000 q^{5} +(0.186992 + 0.0903689i) q^{6} +(-2.93738 - 1.69590i) q^{7} +(-2.76009 + 0.617962i) q^{8} +(-1.48922 + 2.57940i) q^{9} +(-0.795042 - 1.16958i) q^{10} +(-2.72562 - 4.72092i) q^{11} +(0.0429734 + 0.290549i) q^{12} +(-1.96972 + 3.01997i) q^{13} +(-0.351858 - 4.78380i) q^{14} +(-0.127180 + 0.0734274i) q^{15} +(-2.91714 - 2.73684i) q^{16} +(-0.605480 + 1.04872i) q^{17} +(-4.20079 + 0.308977i) q^{18} +(1.73602 - 3.00687i) q^{19} +(0.735818 - 1.85972i) q^{20} -0.498102 q^{21} +(3.35449 - 6.94115i) q^{22} +(3.76612 + 6.52310i) q^{23} +(-0.305653 + 0.281259i) q^{24} +1.00000 q^{25} +(-5.09809 + 0.0972636i) q^{26} +0.877962i q^{27} +(5.31528 - 4.21485i) q^{28} +(-6.10639 + 3.52552i) q^{29} +(-0.186992 - 0.0903689i) q^{30} +7.60991i q^{31} +(0.881688 - 5.58772i) q^{32} +(-0.693289 - 0.400271i) q^{33} +(-1.70794 + 0.125623i) q^{34} +(2.93738 + 1.69590i) q^{35} +(-3.70118 - 4.66750i) q^{36} +(-3.82539 - 6.62576i) q^{37} +(4.89697 - 0.360182i) q^{38} +(-0.0287604 + 0.528711i) q^{39} +(2.76009 - 0.617962i) q^{40} +(3.47189 - 2.00449i) q^{41} +(-0.396012 - 0.582568i) q^{42} +(1.45778 + 0.841651i) q^{43} +(10.7852 - 1.59517i) q^{44} +(1.48922 - 2.57940i) q^{45} +(-4.63505 + 9.59090i) q^{46} -0.231346i q^{47} +(-0.571961 - 0.133872i) q^{48} +(2.25215 + 3.90083i) q^{49} +(0.795042 + 1.16958i) q^{50} +0.177835i q^{51} +(-4.16695 - 5.88528i) q^{52} +5.16695i q^{53} +(-1.02684 + 0.698016i) q^{54} +(2.72562 + 4.72092i) q^{55} +(9.15546 + 2.86565i) q^{56} -0.509884i q^{57} +(-8.97820 - 4.33895i) q^{58} +(1.57758 - 2.73245i) q^{59} +(-0.0429734 - 0.290549i) q^{60} +(-7.73090 - 4.46344i) q^{61} +(-8.90037 + 6.05019i) q^{62} +(8.74880 - 5.05112i) q^{63} +(7.23624 - 3.41127i) q^{64} +(1.96972 - 3.01997i) q^{65} +(-0.0830466 - 1.12909i) q^{66} +(4.31199 + 7.46859i) q^{67} +(-1.50481 - 1.89769i) q^{68} +(0.957949 + 0.553072i) q^{69} +(0.351858 + 4.78380i) q^{70} +(-13.9514 - 8.05487i) q^{71} +(2.51641 - 8.03967i) q^{72} +10.1566i q^{73} +(4.70800 - 9.74184i) q^{74} +(0.127180 - 0.0734274i) q^{75} +(4.31455 + 5.44102i) q^{76} +18.4895i q^{77} +(-0.641233 + 0.386710i) q^{78} +6.72360 q^{79} +(2.91714 + 2.73684i) q^{80} +(-4.40318 - 7.62654i) q^{81} +(5.10470 + 2.46698i) q^{82} -5.31813 q^{83} +(0.366512 - 0.926332i) q^{84} +(0.605480 - 1.04872i) q^{85} +(0.174622 + 2.37414i) q^{86} +(-0.517740 + 0.896752i) q^{87} +(10.4403 + 11.3458i) q^{88} +(-8.75982 + 5.05748i) q^{89} +(4.20079 - 0.308977i) q^{90} +(10.9074 - 5.53036i) q^{91} +(-14.9023 + 2.20412i) q^{92} +(0.558775 + 0.967828i) q^{93} +(0.270576 - 0.183929i) q^{94} +(-1.73602 + 3.00687i) q^{95} +(-0.298159 - 0.775386i) q^{96} +(7.23275 + 4.17583i) q^{97} +(-2.77177 + 5.73538i) q^{98} +16.2362 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9} + 8 q^{11} + 6 q^{12} - 4 q^{14} - 10 q^{16} - 18 q^{18} + 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 2 q^{24} + 56 q^{25} + 11 q^{26} + 6 q^{28} + 5 q^{30} + 16 q^{34} - 21 q^{36} - 4 q^{37} - 24 q^{39} + 29 q^{42} - 24 q^{44} - 28 q^{45} - 11 q^{46} + 3 q^{48} + 20 q^{49} + 18 q^{52} - 49 q^{54} - 8 q^{55} + 61 q^{56} - 47 q^{58} + 16 q^{59} - 6 q^{60} - 2 q^{62} - 30 q^{64} + 14 q^{66} + 36 q^{67} + 33 q^{68} + 4 q^{70} - 51 q^{72} - 2 q^{74} - 48 q^{76} - 35 q^{78} + 10 q^{80} - 28 q^{81} - 21 q^{82} - 40 q^{83} - 61 q^{84} + 28 q^{86} - 36 q^{87} + 41 q^{88} + 18 q^{90} - 16 q^{91} - 18 q^{92} - 41 q^{94} - 16 q^{95} + 48 q^{96} + 24 q^{97} + 28 q^{98} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.795042 + 1.16958i 0.562179 + 0.827015i
\(3\) 0.127180 0.0734274i 0.0734274 0.0423933i −0.462837 0.886444i \(-0.653168\pi\)
0.536264 + 0.844050i \(0.319835\pi\)
\(4\) −0.735818 + 1.85972i −0.367909 + 0.929862i
\(5\) −1.00000 −0.447214
\(6\) 0.186992 + 0.0903689i 0.0763393 + 0.0368929i
\(7\) −2.93738 1.69590i −1.11023 0.640989i −0.171338 0.985212i \(-0.554809\pi\)
−0.938888 + 0.344223i \(0.888142\pi\)
\(8\) −2.76009 + 0.617962i −0.975841 + 0.218483i
\(9\) −1.48922 + 2.57940i −0.496406 + 0.859800i
\(10\) −0.795042 1.16958i −0.251414 0.369853i
\(11\) −2.72562 4.72092i −0.821806 1.42341i −0.904336 0.426821i \(-0.859633\pi\)
0.0825299 0.996589i \(-0.473700\pi\)
\(12\) 0.0429734 + 0.290549i 0.0124053 + 0.0838742i
\(13\) −1.96972 + 3.01997i −0.546302 + 0.837588i
\(14\) −0.351858 4.78380i −0.0940381 1.27853i
\(15\) −0.127180 + 0.0734274i −0.0328377 + 0.0189589i
\(16\) −2.91714 2.73684i −0.729286 0.684209i
\(17\) −0.605480 + 1.04872i −0.146850 + 0.254352i −0.930062 0.367403i \(-0.880247\pi\)
0.783211 + 0.621756i \(0.213580\pi\)
\(18\) −4.20079 + 0.308977i −0.990137 + 0.0728265i
\(19\) 1.73602 3.00687i 0.398269 0.689823i −0.595243 0.803546i \(-0.702944\pi\)
0.993513 + 0.113723i \(0.0362776\pi\)
\(20\) 0.735818 1.85972i 0.164534 0.415847i
\(21\) −0.498102 −0.108695
\(22\) 3.35449 6.94115i 0.715180 1.47986i
\(23\) 3.76612 + 6.52310i 0.785289 + 1.36016i 0.928826 + 0.370516i \(0.120819\pi\)
−0.143537 + 0.989645i \(0.545847\pi\)
\(24\) −0.305653 + 0.281259i −0.0623912 + 0.0574118i
\(25\) 1.00000 0.200000
\(26\) −5.09809 + 0.0972636i −0.999818 + 0.0190750i
\(27\) 0.877962i 0.168964i
\(28\) 5.31528 4.21485i 1.00449 0.796531i
\(29\) −6.10639 + 3.52552i −1.13393 + 0.654673i −0.944920 0.327302i \(-0.893860\pi\)
−0.189008 + 0.981976i \(0.560527\pi\)
\(30\) −0.186992 0.0903689i −0.0341400 0.0164990i
\(31\) 7.60991i 1.36678i 0.730054 + 0.683390i \(0.239495\pi\)
−0.730054 + 0.683390i \(0.760505\pi\)
\(32\) 0.881688 5.58772i 0.155862 0.987779i
\(33\) −0.693289 0.400271i −0.120686 0.0696782i
\(34\) −1.70794 + 0.125623i −0.292910 + 0.0215441i
\(35\) 2.93738 + 1.69590i 0.496508 + 0.286659i
\(36\) −3.70118 4.66750i −0.616863 0.777917i
\(37\) −3.82539 6.62576i −0.628890 1.08927i −0.987775 0.155887i \(-0.950176\pi\)
0.358885 0.933382i \(-0.383157\pi\)
\(38\) 4.89697 0.360182i 0.794393 0.0584292i
\(39\) −0.0287604 + 0.528711i −0.00460535 + 0.0846615i
\(40\) 2.76009 0.617962i 0.436409 0.0977084i
\(41\) 3.47189 2.00449i 0.542218 0.313049i −0.203760 0.979021i \(-0.565316\pi\)
0.745977 + 0.665971i \(0.231983\pi\)
\(42\) −0.396012 0.582568i −0.0611059 0.0898922i
\(43\) 1.45778 + 0.841651i 0.222310 + 0.128351i 0.607019 0.794687i \(-0.292365\pi\)
−0.384710 + 0.923038i \(0.625698\pi\)
\(44\) 10.7852 1.59517i 1.62592 0.240481i
\(45\) 1.48922 2.57940i 0.221999 0.384514i
\(46\) −4.63505 + 9.59090i −0.683401 + 1.41410i
\(47\) 0.231346i 0.0337452i −0.999858 0.0168726i \(-0.994629\pi\)
0.999858 0.0168726i \(-0.00537097\pi\)
\(48\) −0.571961 0.133872i −0.0825555 0.0193228i
\(49\) 2.25215 + 3.90083i 0.321735 + 0.557261i
\(50\) 0.795042 + 1.16958i 0.112436 + 0.165403i
\(51\) 0.177835i 0.0249019i
\(52\) −4.16695 5.88528i −0.577852 0.816141i
\(53\) 5.16695i 0.709735i 0.934917 + 0.354867i \(0.115474\pi\)
−0.934917 + 0.354867i \(0.884526\pi\)
\(54\) −1.02684 + 0.698016i −0.139736 + 0.0949879i
\(55\) 2.72562 + 4.72092i 0.367523 + 0.636568i
\(56\) 9.15546 + 2.86565i 1.22345 + 0.382938i
\(57\) 0.509884i 0.0675358i
\(58\) −8.97820 4.33895i −1.17890 0.569732i
\(59\) 1.57758 2.73245i 0.205383 0.355734i −0.744872 0.667208i \(-0.767489\pi\)
0.950255 + 0.311474i \(0.100823\pi\)
\(60\) −0.0429734 0.290549i −0.00554784 0.0375097i
\(61\) −7.73090 4.46344i −0.989841 0.571485i −0.0846140 0.996414i \(-0.526966\pi\)
−0.905227 + 0.424929i \(0.860299\pi\)
\(62\) −8.90037 + 6.05019i −1.13035 + 0.768375i
\(63\) 8.74880 5.05112i 1.10225 0.636382i
\(64\) 7.23624 3.41127i 0.904531 0.426409i
\(65\) 1.96972 3.01997i 0.244314 0.374581i
\(66\) −0.0830466 1.12909i −0.0102223 0.138981i
\(67\) 4.31199 + 7.46859i 0.526794 + 0.912434i 0.999513 + 0.0312204i \(0.00993937\pi\)
−0.472719 + 0.881213i \(0.656727\pi\)
\(68\) −1.50481 1.89769i −0.182485 0.230129i
\(69\) 0.957949 + 0.553072i 0.115324 + 0.0665821i
\(70\) 0.351858 + 4.78380i 0.0420551 + 0.571774i
\(71\) −13.9514 8.05487i −1.65573 0.955937i −0.974652 0.223727i \(-0.928178\pi\)
−0.681079 0.732210i \(-0.738489\pi\)
\(72\) 2.51641 8.03967i 0.296561 0.947484i
\(73\) 10.1566i 1.18874i 0.804193 + 0.594368i \(0.202598\pi\)
−0.804193 + 0.594368i \(0.797402\pi\)
\(74\) 4.70800 9.74184i 0.547293 1.13247i
\(75\) 0.127180 0.0734274i 0.0146855 0.00847866i
\(76\) 4.31455 + 5.44102i 0.494913 + 0.624127i
\(77\) 18.4895i 2.10708i
\(78\) −0.641233 + 0.386710i −0.0726054 + 0.0437862i
\(79\) 6.72360 0.756464 0.378232 0.925711i \(-0.376532\pi\)
0.378232 + 0.925711i \(0.376532\pi\)
\(80\) 2.91714 + 2.73684i 0.326147 + 0.305988i
\(81\) −4.40318 7.62654i −0.489243 0.847393i
\(82\) 5.10470 + 2.46698i 0.563720 + 0.272432i
\(83\) −5.31813 −0.583741 −0.291870 0.956458i \(-0.594278\pi\)
−0.291870 + 0.956458i \(0.594278\pi\)
\(84\) 0.366512 0.926332i 0.0399898 0.101071i
\(85\) 0.605480 1.04872i 0.0656735 0.113750i
\(86\) 0.174622 + 2.37414i 0.0188300 + 0.256010i
\(87\) −0.517740 + 0.896752i −0.0555075 + 0.0961419i
\(88\) 10.4403 + 11.3458i 1.11294 + 1.20947i
\(89\) −8.75982 + 5.05748i −0.928539 + 0.536092i −0.886349 0.463017i \(-0.846767\pi\)
−0.0421898 + 0.999110i \(0.513433\pi\)
\(90\) 4.20079 0.308977i 0.442803 0.0325690i
\(91\) 10.9074 5.53036i 1.14340 0.579739i
\(92\) −14.9023 + 2.20412i −1.55368 + 0.229795i
\(93\) 0.558775 + 0.967828i 0.0579423 + 0.100359i
\(94\) 0.270576 0.183929i 0.0279078 0.0189709i
\(95\) −1.73602 + 3.00687i −0.178111 + 0.308498i
\(96\) −0.298159 0.775386i −0.0304307 0.0791375i
\(97\) 7.23275 + 4.17583i 0.734375 + 0.423991i 0.820020 0.572334i \(-0.193962\pi\)
−0.0856459 + 0.996326i \(0.527295\pi\)
\(98\) −2.77177 + 5.73538i −0.279991 + 0.579361i
\(99\) 16.2362 1.63180
\(100\) −0.735818 + 1.85972i −0.0735818 + 0.185972i
\(101\) 2.63177 1.51945i 0.261871 0.151191i −0.363317 0.931666i \(-0.618356\pi\)
0.625188 + 0.780475i \(0.285022\pi\)
\(102\) −0.207992 + 0.141386i −0.0205943 + 0.0139993i
\(103\) −8.79232 −0.866333 −0.433166 0.901314i \(-0.642604\pi\)
−0.433166 + 0.901314i \(0.642604\pi\)
\(104\) 3.57038 9.55261i 0.350105 0.936710i
\(105\) 0.498102 0.0486097
\(106\) −6.04314 + 4.10794i −0.586962 + 0.398998i
\(107\) 2.50912 1.44864i 0.242566 0.140045i −0.373790 0.927513i \(-0.621942\pi\)
0.616355 + 0.787468i \(0.288609\pi\)
\(108\) −1.63277 0.646020i −0.157113 0.0621633i
\(109\) 10.1110 0.968455 0.484228 0.874942i \(-0.339101\pi\)
0.484228 + 0.874942i \(0.339101\pi\)
\(110\) −3.35449 + 6.94115i −0.319838 + 0.661813i
\(111\) −0.973025 0.561776i −0.0923555 0.0533214i
\(112\) 3.92737 + 12.9863i 0.371102 + 1.22709i
\(113\) −1.24836 + 2.16222i −0.117436 + 0.203405i −0.918751 0.394838i \(-0.870801\pi\)
0.801315 + 0.598243i \(0.204134\pi\)
\(114\) 0.596349 0.405379i 0.0558532 0.0379673i
\(115\) −3.76612 6.52310i −0.351192 0.608283i
\(116\) −2.06331 13.9503i −0.191574 1.29526i
\(117\) −4.85637 9.57808i −0.448971 0.885494i
\(118\) 4.45004 0.327310i 0.409660 0.0301313i
\(119\) 3.55705 2.05367i 0.326075 0.188259i
\(120\) 0.305653 0.281259i 0.0279022 0.0256753i
\(121\) −9.35803 + 16.2086i −0.850730 + 1.47351i
\(122\) −0.926056 12.5905i −0.0838412 1.13989i
\(123\) 0.294370 0.509863i 0.0265424 0.0459728i
\(124\) −14.1523 5.59950i −1.27092 0.502850i
\(125\) −1.00000 −0.0894427
\(126\) 12.8633 + 6.21654i 1.14596 + 0.553813i
\(127\) 0.459689 + 0.796205i 0.0407908 + 0.0706517i 0.885700 0.464258i \(-0.153679\pi\)
−0.844909 + 0.534910i \(0.820346\pi\)
\(128\) 9.74286 + 5.75124i 0.861155 + 0.508343i
\(129\) 0.247201 0.0217648
\(130\) 5.09809 0.0972636i 0.447132 0.00853058i
\(131\) 17.0025i 1.48552i −0.669559 0.742759i \(-0.733517\pi\)
0.669559 0.742759i \(-0.266483\pi\)
\(132\) 1.25453 0.994800i 0.109193 0.0865862i
\(133\) −10.1987 + 5.88821i −0.884338 + 0.510573i
\(134\) −5.30688 + 10.9810i −0.458444 + 0.948618i
\(135\) 0.877962i 0.0755629i
\(136\) 1.02311 3.26874i 0.0877311 0.280292i
\(137\) −4.21131 2.43140i −0.359796 0.207728i 0.309195 0.950999i \(-0.399940\pi\)
−0.668991 + 0.743270i \(0.733274\pi\)
\(138\) 0.114749 + 1.56011i 0.00976810 + 0.132805i
\(139\) 2.52352 + 1.45695i 0.214042 + 0.123577i 0.603188 0.797599i \(-0.293897\pi\)
−0.389147 + 0.921176i \(0.627230\pi\)
\(140\) −5.31528 + 4.21485i −0.449223 + 0.356220i
\(141\) −0.0169871 0.0294225i −0.00143057 0.00247782i
\(142\) −1.67119 22.7212i −0.140243 1.90672i
\(143\) 19.6257 + 1.06758i 1.64119 + 0.0892759i
\(144\) 11.4037 3.44874i 0.950304 0.287395i
\(145\) 6.10639 3.52552i 0.507108 0.292779i
\(146\) −11.8789 + 8.07489i −0.983102 + 0.668282i
\(147\) 0.572856 + 0.330738i 0.0472483 + 0.0272788i
\(148\) 15.1369 2.23881i 1.24424 0.184029i
\(149\) −4.82912 + 8.36428i −0.395617 + 0.685229i −0.993180 0.116593i \(-0.962803\pi\)
0.597563 + 0.801822i \(0.296136\pi\)
\(150\) 0.186992 + 0.0903689i 0.0152679 + 0.00737859i
\(151\) 8.82114i 0.717854i 0.933366 + 0.358927i \(0.116857\pi\)
−0.933366 + 0.358927i \(0.883143\pi\)
\(152\) −2.93344 + 9.37203i −0.237933 + 0.760172i
\(153\) −1.80338 3.12355i −0.145795 0.252524i
\(154\) −21.6249 + 14.6999i −1.74258 + 1.18455i
\(155\) 7.60991i 0.611242i
\(156\) −0.962094 0.442521i −0.0770291 0.0354301i
\(157\) 20.0331i 1.59882i 0.600787 + 0.799409i \(0.294854\pi\)
−0.600787 + 0.799409i \(0.705146\pi\)
\(158\) 5.34554 + 7.86377i 0.425269 + 0.625608i
\(159\) 0.379395 + 0.657132i 0.0300880 + 0.0521140i
\(160\) −0.881688 + 5.58772i −0.0697035 + 0.441748i
\(161\) 25.5478i 2.01345i
\(162\) 5.41911 11.2133i 0.425765 0.880998i
\(163\) −0.778008 + 1.34755i −0.0609383 + 0.105548i −0.894885 0.446297i \(-0.852743\pi\)
0.833947 + 0.551845i \(0.186076\pi\)
\(164\) 1.17313 + 7.93169i 0.0916061 + 0.619361i
\(165\) 0.693289 + 0.400271i 0.0539725 + 0.0311610i
\(166\) −4.22814 6.21996i −0.328167 0.482763i
\(167\) −13.8670 + 8.00610i −1.07306 + 0.619531i −0.929015 0.370041i \(-0.879344\pi\)
−0.144043 + 0.989571i \(0.546010\pi\)
\(168\) 1.37481 0.307808i 0.106069 0.0237479i
\(169\) −5.24042 11.8970i −0.403109 0.915152i
\(170\) 1.70794 0.125623i 0.130993 0.00963481i
\(171\) 5.17061 + 8.95576i 0.395406 + 0.684864i
\(172\) −2.63790 + 2.09177i −0.201138 + 0.159496i
\(173\) −9.59373 5.53894i −0.729398 0.421118i 0.0888039 0.996049i \(-0.471696\pi\)
−0.818202 + 0.574931i \(0.805029\pi\)
\(174\) −1.46044 + 0.107419i −0.110716 + 0.00814338i
\(175\) −2.93738 1.69590i −0.222045 0.128198i
\(176\) −4.96934 + 21.2312i −0.374578 + 1.60036i
\(177\) 0.463350i 0.0348275i
\(178\) −12.8795 6.22437i −0.965362 0.466536i
\(179\) −15.5388 + 8.97132i −1.16142 + 0.670548i −0.951645 0.307201i \(-0.900608\pi\)
−0.209779 + 0.977749i \(0.567274\pi\)
\(180\) 3.70118 + 4.66750i 0.275869 + 0.347895i
\(181\) 5.36242i 0.398585i −0.979940 0.199293i \(-0.936136\pi\)
0.979940 0.199293i \(-0.0638644\pi\)
\(182\) 15.1400 + 8.36015i 1.12225 + 0.619695i
\(183\) −1.31095 −0.0969086
\(184\) −14.4259 15.6771i −1.06349 1.15573i
\(185\) 3.82539 + 6.62576i 0.281248 + 0.487136i
\(186\) −0.687698 + 1.42299i −0.0504245 + 0.104339i
\(187\) 6.60124 0.482730
\(188\) 0.430239 + 0.170228i 0.0313784 + 0.0124152i
\(189\) 1.48893 2.57891i 0.108304 0.187588i
\(190\) −4.89697 + 0.360182i −0.355263 + 0.0261303i
\(191\) 9.01532 15.6150i 0.652325 1.12986i −0.330232 0.943900i \(-0.607127\pi\)
0.982557 0.185961i \(-0.0595397\pi\)
\(192\) 0.669825 0.965184i 0.0483404 0.0696561i
\(193\) 10.9903 6.34528i 0.791102 0.456743i −0.0492484 0.998787i \(-0.515683\pi\)
0.840350 + 0.542044i \(0.182349\pi\)
\(194\) 0.866384 + 11.7792i 0.0622028 + 0.845698i
\(195\) 0.0287604 0.528711i 0.00205957 0.0378618i
\(196\) −8.91164 + 1.31807i −0.636545 + 0.0941477i
\(197\) 11.6822 + 20.2341i 0.832321 + 1.44162i 0.896193 + 0.443664i \(0.146322\pi\)
−0.0638720 + 0.997958i \(0.520345\pi\)
\(198\) 12.9084 + 18.9894i 0.917362 + 1.34952i
\(199\) 4.95670 8.58525i 0.351371 0.608593i −0.635119 0.772414i \(-0.719049\pi\)
0.986490 + 0.163822i \(0.0523822\pi\)
\(200\) −2.76009 + 0.617962i −0.195168 + 0.0436965i
\(201\) 1.09680 + 0.633237i 0.0773622 + 0.0446651i
\(202\) 3.86948 + 1.87002i 0.272255 + 0.131574i
\(203\) 23.9157 1.67855
\(204\) −0.330724 0.130854i −0.0231553 0.00916164i
\(205\) −3.47189 + 2.00449i −0.242487 + 0.140000i
\(206\) −6.99026 10.2833i −0.487034 0.716470i
\(207\) −22.4343 −1.55929
\(208\) 14.0111 3.41889i 0.971496 0.237057i
\(209\) −18.9269 −1.30920
\(210\) 0.396012 + 0.582568i 0.0273274 + 0.0402010i
\(211\) 2.12986 1.22968i 0.146626 0.0846544i −0.424892 0.905244i \(-0.639688\pi\)
0.571518 + 0.820590i \(0.306355\pi\)
\(212\) −9.60909 3.80193i −0.659955 0.261118i
\(213\) −2.36579 −0.162101
\(214\) 3.68915 + 1.78288i 0.252185 + 0.121875i
\(215\) −1.45778 0.841651i −0.0994199 0.0574001i
\(216\) −0.542547 2.42326i −0.0369157 0.164882i
\(217\) 12.9056 22.3532i 0.876091 1.51743i
\(218\) 8.03864 + 11.8256i 0.544446 + 0.800928i
\(219\) 0.745770 + 1.29171i 0.0503944 + 0.0872857i
\(220\) −10.7852 + 1.59517i −0.727135 + 0.107546i
\(221\) −1.97448 3.89422i −0.132818 0.261953i
\(222\) −0.116555 1.58466i −0.00782267 0.106356i
\(223\) 1.94858 1.12501i 0.130487 0.0753365i −0.433336 0.901233i \(-0.642664\pi\)
0.563822 + 0.825896i \(0.309330\pi\)
\(224\) −12.0661 + 14.9180i −0.806198 + 0.996752i
\(225\) −1.48922 + 2.57940i −0.0992811 + 0.171960i
\(226\) −3.52138 + 0.259004i −0.234239 + 0.0172287i
\(227\) 0.362545 0.627947i 0.0240630 0.0416783i −0.853743 0.520694i \(-0.825673\pi\)
0.877806 + 0.479016i \(0.159006\pi\)
\(228\) 0.948244 + 0.375182i 0.0627990 + 0.0248470i
\(229\) −1.05863 −0.0699562 −0.0349781 0.999388i \(-0.511136\pi\)
−0.0349781 + 0.999388i \(0.511136\pi\)
\(230\) 4.63505 9.59090i 0.305626 0.632405i
\(231\) 1.35764 + 2.35150i 0.0893260 + 0.154717i
\(232\) 14.6756 13.5043i 0.963498 0.886600i
\(233\) 15.6477 1.02511 0.512557 0.858653i \(-0.328698\pi\)
0.512557 + 0.858653i \(0.328698\pi\)
\(234\) 7.34128 13.2949i 0.479915 0.869112i
\(235\) 0.231346i 0.0150913i
\(236\) 3.92078 + 4.94444i 0.255221 + 0.321856i
\(237\) 0.855108 0.493697i 0.0555452 0.0320690i
\(238\) 5.22992 + 2.52750i 0.339006 + 0.163833i
\(239\) 27.2609i 1.76336i −0.471846 0.881681i \(-0.656412\pi\)
0.471846 0.881681i \(-0.343588\pi\)
\(240\) 0.571961 + 0.133872i 0.0369199 + 0.00864143i
\(241\) −0.202491 0.116908i −0.0130436 0.00753071i 0.493464 0.869766i \(-0.335730\pi\)
−0.506508 + 0.862235i \(0.669064\pi\)
\(242\) −26.3972 + 1.94157i −1.69688 + 0.124809i
\(243\) −3.40100 1.96357i −0.218175 0.125963i
\(244\) 13.9893 11.0931i 0.895573 0.710161i
\(245\) −2.25215 3.90083i −0.143884 0.249215i
\(246\) 0.830360 0.0610746i 0.0529418 0.00389398i
\(247\) 5.66118 + 11.1654i 0.360212 + 0.710437i
\(248\) −4.70264 21.0041i −0.298618 1.33376i
\(249\) −0.676360 + 0.390497i −0.0428626 + 0.0247467i
\(250\) −0.795042 1.16958i −0.0502828 0.0739705i
\(251\) −21.0067 12.1283i −1.32593 0.765528i −0.341266 0.939967i \(-0.610856\pi\)
−0.984668 + 0.174438i \(0.944189\pi\)
\(252\) 2.95617 + 19.9871i 0.186221 + 1.25907i
\(253\) 20.5300 35.5590i 1.29071 2.23558i
\(254\) −0.565750 + 1.17066i −0.0354983 + 0.0734536i
\(255\) 0.177835i 0.0111365i
\(256\) 1.01946 + 15.9675i 0.0637163 + 0.997968i
\(257\) −11.3954 19.7373i −0.710823 1.23118i −0.964549 0.263905i \(-0.914990\pi\)
0.253726 0.967276i \(-0.418344\pi\)
\(258\) 0.196535 + 0.289120i 0.0122357 + 0.0179998i
\(259\) 25.9499i 1.61245i
\(260\) 4.16695 + 5.88528i 0.258423 + 0.364990i
\(261\) 21.0011i 1.29993i
\(262\) 19.8857 13.5177i 1.22855 0.835127i
\(263\) −9.80414 16.9813i −0.604549 1.04711i −0.992123 0.125271i \(-0.960020\pi\)
0.387573 0.921839i \(-0.373313\pi\)
\(264\) 2.16090 + 0.676358i 0.132994 + 0.0416270i
\(265\) 5.16695i 0.317403i
\(266\) −14.9951 7.24677i −0.919408 0.444328i
\(267\) −0.742716 + 1.28642i −0.0454535 + 0.0787277i
\(268\) −17.0624 + 2.52359i −1.04225 + 0.154153i
\(269\) −17.9620 10.3704i −1.09517 0.632294i −0.160218 0.987082i \(-0.551220\pi\)
−0.934947 + 0.354788i \(0.884553\pi\)
\(270\) 1.02684 0.698016i 0.0624917 0.0424799i
\(271\) 22.3436 12.9001i 1.35728 0.783624i 0.368020 0.929818i \(-0.380036\pi\)
0.989256 + 0.146194i \(0.0467024\pi\)
\(272\) 4.63645 1.40217i 0.281126 0.0850193i
\(273\) 0.981120 1.50425i 0.0593801 0.0910414i
\(274\) −0.504457 6.85851i −0.0304754 0.414338i
\(275\) −2.72562 4.72092i −0.164361 0.284682i
\(276\) −1.73344 + 1.37456i −0.104341 + 0.0827388i
\(277\) −1.31522 0.759340i −0.0790237 0.0456243i 0.459967 0.887936i \(-0.347861\pi\)
−0.538991 + 0.842311i \(0.681194\pi\)
\(278\) 0.302283 + 4.10978i 0.0181297 + 0.246488i
\(279\) −19.6290 11.3328i −1.17516 0.678477i
\(280\) −9.15546 2.86565i −0.547143 0.171255i
\(281\) 20.1172i 1.20009i 0.799967 + 0.600045i \(0.204851\pi\)
−0.799967 + 0.600045i \(0.795149\pi\)
\(282\) 0.0209064 0.0432598i 0.00124496 0.00257609i
\(283\) −7.96718 + 4.59985i −0.473599 + 0.273433i −0.717745 0.696306i \(-0.754826\pi\)
0.244146 + 0.969739i \(0.421492\pi\)
\(284\) 25.2455 20.0189i 1.49805 1.18790i
\(285\) 0.509884i 0.0302029i
\(286\) 14.3546 + 23.8026i 0.848808 + 1.40747i
\(287\) −13.5977 −0.802646
\(288\) 13.0999 + 10.5956i 0.771921 + 0.624349i
\(289\) 7.76679 + 13.4525i 0.456870 + 0.791322i
\(290\) 8.97820 + 4.33895i 0.527218 + 0.254792i
\(291\) 1.22648 0.0718976
\(292\) −18.8884 7.47338i −1.10536 0.437346i
\(293\) −8.01484 + 13.8821i −0.468232 + 0.811001i −0.999341 0.0363022i \(-0.988442\pi\)
0.531109 + 0.847303i \(0.321775\pi\)
\(294\) 0.0686203 + 0.932949i 0.00400201 + 0.0544107i
\(295\) −1.57758 + 2.73245i −0.0918501 + 0.159089i
\(296\) 14.6529 + 15.9238i 0.851683 + 0.925552i
\(297\) 4.14478 2.39299i 0.240505 0.138855i
\(298\) −13.6220 + 1.00193i −0.789102 + 0.0580400i
\(299\) −27.1178 1.47513i −1.56826 0.0853090i
\(300\) 0.0429734 + 0.290549i 0.00248107 + 0.0167748i
\(301\) −2.85471 4.94450i −0.164543 0.284996i
\(302\) −10.3170 + 7.01317i −0.593677 + 0.403563i
\(303\) 0.223139 0.386487i 0.0128190 0.0222031i
\(304\) −13.2935 + 4.02028i −0.762435 + 0.230579i
\(305\) 7.73090 + 4.46344i 0.442670 + 0.255576i
\(306\) 2.21947 4.59254i 0.126878 0.262538i
\(307\) −29.2653 −1.67026 −0.835130 0.550053i \(-0.814608\pi\)
−0.835130 + 0.550053i \(0.814608\pi\)
\(308\) −34.3854 13.6049i −1.95929 0.775212i
\(309\) −1.11821 + 0.645597i −0.0636125 + 0.0367267i
\(310\) 8.90037 6.05019i 0.505507 0.343628i
\(311\) 15.3665 0.871354 0.435677 0.900103i \(-0.356509\pi\)
0.435677 + 0.900103i \(0.356509\pi\)
\(312\) −0.247342 1.47706i −0.0140030 0.0836223i
\(313\) −8.88208 −0.502045 −0.251022 0.967981i \(-0.580767\pi\)
−0.251022 + 0.967981i \(0.580767\pi\)
\(314\) −23.4303 + 15.9272i −1.32225 + 0.898823i
\(315\) −8.74880 + 5.05112i −0.492939 + 0.284598i
\(316\) −4.94735 + 12.5040i −0.278310 + 0.703407i
\(317\) −3.82033 −0.214571 −0.107285 0.994228i \(-0.534216\pi\)
−0.107285 + 0.994228i \(0.534216\pi\)
\(318\) −0.466931 + 0.966179i −0.0261842 + 0.0541807i
\(319\) 33.2874 + 19.2185i 1.86374 + 1.07603i
\(320\) −7.23624 + 3.41127i −0.404518 + 0.190696i
\(321\) 0.212740 0.368476i 0.0118740 0.0205663i
\(322\) 29.8801 20.3116i 1.66515 1.13192i
\(323\) 2.10225 + 3.64120i 0.116972 + 0.202602i
\(324\) 17.4232 2.57696i 0.967955 0.143165i
\(325\) −1.96972 + 3.01997i −0.109260 + 0.167518i
\(326\) −2.19461 + 0.161418i −0.121548 + 0.00894011i
\(327\) 1.28591 0.742422i 0.0711112 0.0410560i
\(328\) −8.34403 + 7.67809i −0.460722 + 0.423952i
\(329\) −0.392339 + 0.679550i −0.0216303 + 0.0374648i
\(330\) 0.0830466 + 1.12909i 0.00457156 + 0.0621542i
\(331\) 3.28900 5.69671i 0.180780 0.313120i −0.761367 0.648322i \(-0.775471\pi\)
0.942146 + 0.335202i \(0.108805\pi\)
\(332\) 3.91318 9.89025i 0.214763 0.542798i
\(333\) 22.7873 1.24874
\(334\) −20.3886 9.85330i −1.11561 0.539149i
\(335\) −4.31199 7.46859i −0.235589 0.408053i
\(336\) 1.45303 + 1.36322i 0.0792695 + 0.0743699i
\(337\) 34.4718 1.87780 0.938898 0.344196i \(-0.111848\pi\)
0.938898 + 0.344196i \(0.111848\pi\)
\(338\) 9.74807 15.5877i 0.530225 0.847857i
\(339\) 0.366655i 0.0199140i
\(340\) 1.50481 + 1.89769i 0.0816098 + 0.102917i
\(341\) 35.9257 20.7417i 1.94549 1.12323i
\(342\) −6.36359 + 13.1676i −0.344104 + 0.712023i
\(343\) 8.46494i 0.457064i
\(344\) −4.54373 1.42218i −0.244981 0.0766789i
\(345\) −0.957949 0.553072i −0.0515742 0.0297764i
\(346\) −1.14920 15.6243i −0.0617813 0.839967i
\(347\) 2.18837 + 1.26345i 0.117478 + 0.0678258i 0.557587 0.830118i \(-0.311727\pi\)
−0.440110 + 0.897944i \(0.645060\pi\)
\(348\) −1.28675 1.62270i −0.0689770 0.0869858i
\(349\) 1.81444 + 3.14271i 0.0971249 + 0.168225i 0.910493 0.413523i \(-0.135702\pi\)
−0.813369 + 0.581749i \(0.802369\pi\)
\(350\) −0.351858 4.78380i −0.0188076 0.255705i
\(351\) −2.65142 1.72934i −0.141522 0.0923052i
\(352\) −28.7823 + 11.0676i −1.53410 + 0.589907i
\(353\) −28.5797 + 16.5005i −1.52114 + 0.878232i −0.521454 + 0.853279i \(0.674610\pi\)
−0.999689 + 0.0249532i \(0.992056\pi\)
\(354\) 0.541923 0.368382i 0.0288029 0.0195793i
\(355\) 13.9514 + 8.05487i 0.740465 + 0.427508i
\(356\) −2.95989 20.0122i −0.156874 1.06065i
\(357\) 0.301591 0.522370i 0.0159619 0.0276468i
\(358\) −22.8466 11.0412i −1.20748 0.583547i
\(359\) 3.95113i 0.208533i 0.994549 + 0.104266i \(0.0332494\pi\)
−0.994549 + 0.104266i \(0.966751\pi\)
\(360\) −2.51641 + 8.03967i −0.132626 + 0.423728i
\(361\) 3.47250 + 6.01454i 0.182763 + 0.316555i
\(362\) 6.27176 4.26334i 0.329636 0.224076i
\(363\) 2.74854i 0.144261i
\(364\) 2.25910 + 24.3540i 0.118409 + 1.27650i
\(365\) 10.1566i 0.531619i
\(366\) −1.04226 1.53326i −0.0544800 0.0801449i
\(367\) 0.897482 + 1.55448i 0.0468482 + 0.0811434i 0.888499 0.458879i \(-0.151749\pi\)
−0.841650 + 0.540023i \(0.818416\pi\)
\(368\) 6.86636 29.3361i 0.357934 1.52925i
\(369\) 11.9405i 0.621598i
\(370\) −4.70800 + 9.74184i −0.244757 + 0.506454i
\(371\) 8.76262 15.1773i 0.454933 0.787966i
\(372\) −2.21105 + 0.327023i −0.114638 + 0.0169554i
\(373\) 26.1119 + 15.0757i 1.35202 + 0.780591i 0.988533 0.151006i \(-0.0482514\pi\)
0.363491 + 0.931598i \(0.381585\pi\)
\(374\) 5.24826 + 7.72065i 0.271381 + 0.399225i
\(375\) −0.127180 + 0.0734274i −0.00656755 + 0.00379177i
\(376\) 0.142963 + 0.638536i 0.00737275 + 0.0329300i
\(377\) 1.38089 25.3854i 0.0711197 1.30741i
\(378\) 4.20000 0.308918i 0.216024 0.0158890i
\(379\) 2.28113 + 3.95103i 0.117174 + 0.202951i 0.918647 0.395080i \(-0.129283\pi\)
−0.801473 + 0.598031i \(0.795950\pi\)
\(380\) −4.31455 5.44102i −0.221332 0.279118i
\(381\) 0.116926 + 0.0675075i 0.00599033 + 0.00345852i
\(382\) 25.4305 1.87046i 1.30114 0.0957011i
\(383\) −9.70267 5.60184i −0.495783 0.286241i 0.231187 0.972909i \(-0.425739\pi\)
−0.726970 + 0.686669i \(0.759072\pi\)
\(384\) 1.66139 + 0.0160501i 0.0847827 + 0.000819054i
\(385\) 18.4895i 0.942313i
\(386\) 16.1591 + 7.80928i 0.822475 + 0.397482i
\(387\) −4.34191 + 2.50680i −0.220712 + 0.127428i
\(388\) −13.0879 + 10.3783i −0.664436 + 0.526877i
\(389\) 34.4332i 1.74583i 0.487872 + 0.872915i \(0.337773\pi\)
−0.487872 + 0.872915i \(0.662227\pi\)
\(390\) 0.641233 0.386710i 0.0324701 0.0195818i
\(391\) −9.12123 −0.461280
\(392\) −8.62670 9.37492i −0.435714 0.473505i
\(393\) −1.24845 2.16238i −0.0629760 0.109078i
\(394\) −14.3775 + 29.7502i −0.724330 + 1.49879i
\(395\) −6.72360 −0.338301
\(396\) −11.9469 + 30.1948i −0.600353 + 1.51735i
\(397\) 11.9556 20.7078i 0.600037 1.03929i −0.392778 0.919633i \(-0.628486\pi\)
0.992815 0.119661i \(-0.0381807\pi\)
\(398\) 13.9819 1.02840i 0.700849 0.0515488i
\(399\) −0.864712 + 1.49773i −0.0432898 + 0.0749801i
\(400\) −2.91714 2.73684i −0.145857 0.136842i
\(401\) −33.1268 + 19.1258i −1.65427 + 0.955096i −0.678989 + 0.734148i \(0.737582\pi\)
−0.975286 + 0.220948i \(0.929085\pi\)
\(402\) 0.131381 + 1.78624i 0.00655271 + 0.0890895i
\(403\) −22.9817 14.9894i −1.14480 0.746674i
\(404\) 0.889258 + 6.01240i 0.0442422 + 0.299128i
\(405\) 4.40318 + 7.62654i 0.218796 + 0.378966i
\(406\) 19.0140 + 27.9713i 0.943649 + 1.38819i
\(407\) −20.8531 + 36.1187i −1.03365 + 1.79034i
\(408\) −0.109896 0.490842i −0.00544064 0.0243003i
\(409\) −26.6649 15.3950i −1.31850 0.761234i −0.335009 0.942215i \(-0.608739\pi\)
−0.983487 + 0.180981i \(0.942073\pi\)
\(410\) −5.10470 2.46698i −0.252103 0.121835i
\(411\) −0.714125 −0.0352252
\(412\) 6.46954 16.3513i 0.318732 0.805570i
\(413\) −9.26790 + 5.35083i −0.456044 + 0.263297i
\(414\) −17.8362 26.2386i −0.876600 1.28956i
\(415\) 5.31813 0.261057
\(416\) 15.1381 + 13.6689i 0.742205 + 0.670173i
\(417\) 0.427921 0.0209554
\(418\) −15.0477 22.1364i −0.736005 1.08273i
\(419\) 4.72278 2.72670i 0.230723 0.133208i −0.380183 0.924911i \(-0.624139\pi\)
0.610905 + 0.791704i \(0.290806\pi\)
\(420\) −0.366512 + 0.926332i −0.0178840 + 0.0452003i
\(421\) −27.2961 −1.33033 −0.665166 0.746696i \(-0.731639\pi\)
−0.665166 + 0.746696i \(0.731639\pi\)
\(422\) 3.13153 + 1.51339i 0.152440 + 0.0736707i
\(423\) 0.596732 + 0.344524i 0.0290141 + 0.0167513i
\(424\) −3.19298 14.2613i −0.155065 0.692588i
\(425\) −0.605480 + 1.04872i −0.0293701 + 0.0508705i
\(426\) −1.88090 2.76697i −0.0911300 0.134060i
\(427\) 15.1391 + 26.2217i 0.732632 + 1.26896i
\(428\) 0.847816 + 5.73220i 0.0409807 + 0.277076i
\(429\) 2.57439 1.30529i 0.124293 0.0630200i
\(430\) −0.174622 2.37414i −0.00842104 0.114491i
\(431\) −9.49630 + 5.48269i −0.457421 + 0.264092i −0.710959 0.703233i \(-0.751739\pi\)
0.253538 + 0.967325i \(0.418406\pi\)
\(432\) 2.40284 2.56114i 0.115607 0.123223i
\(433\) −18.5815 + 32.1841i −0.892969 + 1.54667i −0.0566711 + 0.998393i \(0.518049\pi\)
−0.836298 + 0.548275i \(0.815285\pi\)
\(434\) 36.4043 2.67761i 1.74746 0.128529i
\(435\) 0.517740 0.896752i 0.0248237 0.0429960i
\(436\) −7.43983 + 18.8036i −0.356303 + 0.900530i
\(437\) 26.1521 1.25103
\(438\) −0.917837 + 1.89920i −0.0438559 + 0.0907472i
\(439\) 14.1456 + 24.5009i 0.675134 + 1.16937i 0.976430 + 0.215835i \(0.0692474\pi\)
−0.301296 + 0.953531i \(0.597419\pi\)
\(440\) −10.4403 11.3458i −0.497723 0.540892i
\(441\) −13.4157 −0.638844
\(442\) 2.98479 5.40537i 0.141972 0.257107i
\(443\) 28.1253i 1.33627i 0.744039 + 0.668137i \(0.232908\pi\)
−0.744039 + 0.668137i \(0.767092\pi\)
\(444\) 1.76072 1.39619i 0.0835600 0.0662604i
\(445\) 8.75982 5.05748i 0.415255 0.239748i
\(446\) 2.86499 + 1.38458i 0.135661 + 0.0655618i
\(447\) 1.41836i 0.0670861i
\(448\) −27.0408 2.25173i −1.27756 0.106384i
\(449\) 1.91654 + 1.10651i 0.0904470 + 0.0522196i 0.544541 0.838734i \(-0.316704\pi\)
−0.454094 + 0.890954i \(0.650037\pi\)
\(450\) −4.20079 + 0.308977i −0.198027 + 0.0145653i
\(451\) −18.9261 10.9270i −0.891195 0.514532i
\(452\) −3.10257 3.91260i −0.145933 0.184033i
\(453\) 0.647713 + 1.12187i 0.0304322 + 0.0527102i
\(454\) 1.02267 0.0752195i 0.0479963 0.00353022i
\(455\) −10.9074 + 5.53036i −0.511346 + 0.259267i
\(456\) 0.315089 + 1.40733i 0.0147554 + 0.0659042i
\(457\) 28.0799 16.2119i 1.31352 0.758363i 0.330845 0.943685i \(-0.392666\pi\)
0.982678 + 0.185322i \(0.0593328\pi\)
\(458\) −0.841654 1.23815i −0.0393279 0.0578549i
\(459\) −0.920738 0.531588i −0.0429764 0.0248124i
\(460\) 14.9023 2.20412i 0.694825 0.102768i
\(461\) −8.62585 + 14.9404i −0.401746 + 0.695844i −0.993937 0.109954i \(-0.964930\pi\)
0.592191 + 0.805798i \(0.298263\pi\)
\(462\) −1.67088 + 3.45740i −0.0777362 + 0.160853i
\(463\) 7.21332i 0.335232i −0.985852 0.167616i \(-0.946393\pi\)
0.985852 0.167616i \(-0.0536068\pi\)
\(464\) 27.4620 + 6.42771i 1.27489 + 0.298399i
\(465\) −0.558775 0.967828i −0.0259126 0.0448819i
\(466\) 12.4406 + 18.3012i 0.576298 + 0.847785i
\(467\) 14.9377i 0.691234i 0.938376 + 0.345617i \(0.112330\pi\)
−0.938376 + 0.345617i \(0.887670\pi\)
\(468\) 21.3860 1.98378i 0.988567 0.0917001i
\(469\) 29.2508i 1.35068i
\(470\) −0.270576 + 0.183929i −0.0124808 + 0.00848403i
\(471\) 1.47098 + 2.54781i 0.0677792 + 0.117397i
\(472\) −2.66572 + 8.51669i −0.122700 + 0.392013i
\(473\) 9.17609i 0.421917i
\(474\) 1.25726 + 0.607604i 0.0577480 + 0.0279082i
\(475\) 1.73602 3.00687i 0.0796539 0.137965i
\(476\) 1.20191 + 8.12626i 0.0550893 + 0.372466i
\(477\) −13.3276 7.69471i −0.610230 0.352316i
\(478\) 31.8837 21.6736i 1.45833 0.991326i
\(479\) 25.2108 14.5554i 1.15191 0.665055i 0.202558 0.979270i \(-0.435075\pi\)
0.949352 + 0.314215i \(0.101741\pi\)
\(480\) 0.298159 + 0.775386i 0.0136090 + 0.0353914i
\(481\) 27.5445 + 1.49835i 1.25592 + 0.0683187i
\(482\) −0.0242556 0.329775i −0.00110481 0.0150208i
\(483\) −1.87591 3.24917i −0.0853568 0.147842i
\(484\) −23.2577 29.3299i −1.05717 1.33318i
\(485\) −7.23275 4.17583i −0.328422 0.189615i
\(486\) −0.407394 5.53886i −0.0184798 0.251248i
\(487\) −3.13837 1.81194i −0.142213 0.0821069i 0.427205 0.904155i \(-0.359498\pi\)
−0.569418 + 0.822048i \(0.692832\pi\)
\(488\) 24.0963 + 7.54211i 1.09079 + 0.341415i
\(489\) 0.228508i 0.0103335i
\(490\) 2.77177 5.73538i 0.125216 0.259098i
\(491\) −23.9285 + 13.8151i −1.07988 + 0.623468i −0.930863 0.365368i \(-0.880943\pi\)
−0.149014 + 0.988835i \(0.547610\pi\)
\(492\) 0.731602 + 0.922613i 0.0329832 + 0.0415946i
\(493\) 8.53853i 0.384556i
\(494\) −8.55791 + 15.4981i −0.385039 + 0.697294i
\(495\) −16.2362 −0.729762
\(496\) 20.8271 22.1992i 0.935163 0.996773i
\(497\) 27.3205 + 47.3204i 1.22549 + 2.12261i
\(498\) −0.994450 0.480594i −0.0445624 0.0215359i
\(499\) 12.0413 0.539043 0.269521 0.962994i \(-0.413134\pi\)
0.269521 + 0.962994i \(0.413134\pi\)
\(500\) 0.735818 1.85972i 0.0329068 0.0831694i
\(501\) −1.17573 + 2.03643i −0.0525279 + 0.0909810i
\(502\) −2.51632 34.2115i −0.112309 1.52693i
\(503\) −3.68212 + 6.37762i −0.164178 + 0.284364i −0.936363 0.351033i \(-0.885830\pi\)
0.772185 + 0.635397i \(0.219164\pi\)
\(504\) −21.0261 + 19.3480i −0.936578 + 0.861829i
\(505\) −2.63177 + 1.51945i −0.117112 + 0.0676147i
\(506\) 57.9112 4.25949i 2.57447 0.189357i
\(507\) −1.54004 1.12827i −0.0683956 0.0501081i
\(508\) −1.81897 + 0.269033i −0.0807037 + 0.0119364i
\(509\) 1.87496 + 3.24753i 0.0831063 + 0.143944i 0.904583 0.426298i \(-0.140183\pi\)
−0.821476 + 0.570243i \(0.806849\pi\)
\(510\) 0.207992 0.141386i 0.00921004 0.00626070i
\(511\) 17.2245 29.8337i 0.761967 1.31977i
\(512\) −17.8647 + 13.8872i −0.789515 + 0.613731i
\(513\) 2.63991 + 1.52416i 0.116555 + 0.0672931i
\(514\) 14.0245 29.0197i 0.618596 1.28001i
\(515\) 8.79232 0.387436
\(516\) −0.181895 + 0.459725i −0.00800747 + 0.0202383i
\(517\) −1.09216 + 0.630561i −0.0480333 + 0.0277320i
\(518\) −30.3504 + 20.6312i −1.33352 + 0.906484i
\(519\) −1.62684 −0.0714104
\(520\) −3.57038 + 9.55261i −0.156572 + 0.418910i
\(521\) 45.4889 1.99290 0.996452 0.0841592i \(-0.0268204\pi\)
0.996452 + 0.0841592i \(0.0268204\pi\)
\(522\) 24.5624 16.6967i 1.07507 0.730796i
\(523\) 29.8587 17.2390i 1.30563 0.753807i 0.324268 0.945965i \(-0.394882\pi\)
0.981364 + 0.192158i \(0.0615487\pi\)
\(524\) 31.6200 + 12.5108i 1.38133 + 0.546535i
\(525\) −0.498102 −0.0217389
\(526\) 12.0662 24.9675i 0.526111 1.08864i
\(527\) −7.98068 4.60765i −0.347644 0.200712i
\(528\) 0.926949 + 3.06507i 0.0403403 + 0.133390i
\(529\) −16.8673 + 29.2149i −0.733359 + 1.27021i
\(530\) 6.04314 4.10794i 0.262497 0.178437i
\(531\) 4.69871 + 8.13841i 0.203907 + 0.353177i
\(532\) −3.44608 23.2994i −0.149406 1.01016i
\(533\) −0.785130 + 14.4333i −0.0340078 + 0.625175i
\(534\) −2.09506 + 0.154096i −0.0906620 + 0.00666837i
\(535\) −2.50912 + 1.44864i −0.108479 + 0.0626302i
\(536\) −16.5168 17.9494i −0.713418 0.775295i
\(537\) −1.31748 + 2.28194i −0.0568535 + 0.0984732i
\(538\) −2.15161 29.2529i −0.0927624 1.26118i
\(539\) 12.2770 21.2644i 0.528808 0.915922i
\(540\) 1.63277 + 0.646020i 0.0702631 + 0.0278003i
\(541\) 24.6819 1.06116 0.530579 0.847635i \(-0.321974\pi\)
0.530579 + 0.847635i \(0.321974\pi\)
\(542\) 32.8517 + 15.8764i 1.41110 + 0.681951i
\(543\) −0.393748 0.681992i −0.0168974 0.0292671i
\(544\) 5.32612 + 4.30790i 0.228356 + 0.184700i
\(545\) −10.1110 −0.433106
\(546\) 2.53937 0.0484472i 0.108675 0.00207335i
\(547\) 28.3241i 1.21105i 0.795827 + 0.605525i \(0.207037\pi\)
−0.795827 + 0.605525i \(0.792963\pi\)
\(548\) 7.62049 6.04280i 0.325531 0.258136i
\(549\) 23.0260 13.2941i 0.982725 0.567377i
\(550\) 3.35449 6.94115i 0.143036 0.295972i
\(551\) 24.4815i 1.04295i
\(552\) −2.98581 0.934555i −0.127084 0.0397773i
\(553\) −19.7498 11.4025i −0.839847 0.484886i
\(554\) −0.157545 2.14195i −0.00669344 0.0910029i
\(555\) 0.973025 + 0.561776i 0.0413026 + 0.0238461i
\(556\) −4.56638 + 3.62099i −0.193658 + 0.153564i
\(557\) 3.35261 + 5.80689i 0.142055 + 0.246046i 0.928270 0.371906i \(-0.121296\pi\)
−0.786216 + 0.617952i \(0.787962\pi\)
\(558\) −2.35128 31.9676i −0.0995378 1.35330i
\(559\) −5.41318 + 2.74464i −0.228953 + 0.116086i
\(560\) −3.92737 12.9863i −0.165962 0.548772i
\(561\) 0.839545 0.484712i 0.0354456 0.0204645i
\(562\) −23.5286 + 15.9940i −0.992492 + 0.674665i
\(563\) −11.1526 6.43893i −0.470024 0.271369i 0.246226 0.969213i \(-0.420810\pi\)
−0.716250 + 0.697844i \(0.754143\pi\)
\(564\) 0.0672172 0.00994170i 0.00283035 0.000418621i
\(565\) 1.24836 2.16222i 0.0525189 0.0909653i
\(566\) −11.7141 5.66115i −0.492381 0.237956i
\(567\) 29.8694i 1.25440i
\(568\) 43.4849 + 13.6107i 1.82459 + 0.571093i
\(569\) 13.0771 + 22.6502i 0.548221 + 0.949547i 0.998397 + 0.0566071i \(0.0180282\pi\)
−0.450175 + 0.892940i \(0.648638\pi\)
\(570\) −0.596349 + 0.405379i −0.0249783 + 0.0169795i
\(571\) 30.8229i 1.28990i 0.764225 + 0.644950i \(0.223122\pi\)
−0.764225 + 0.644950i \(0.776878\pi\)
\(572\) −16.4264 + 35.7129i −0.686821 + 1.49323i
\(573\) 2.64788i 0.110617i
\(574\) −10.8107 15.9035i −0.451231 0.663800i
\(575\) 3.76612 + 6.52310i 0.157058 + 0.272032i
\(576\) −1.97731 + 23.7453i −0.0823880 + 0.989387i
\(577\) 29.0460i 1.20920i 0.796529 + 0.604600i \(0.206667\pi\)
−0.796529 + 0.604600i \(0.793333\pi\)
\(578\) −9.55877 + 19.7791i −0.397593 + 0.822703i
\(579\) 0.931834 1.61398i 0.0387257 0.0670749i
\(580\) 2.06331 + 13.9503i 0.0856743 + 0.579256i
\(581\) 15.6214 + 9.01901i 0.648084 + 0.374172i
\(582\) 0.975104 + 1.43446i 0.0404193 + 0.0594604i
\(583\) 24.3927 14.0831i 1.01024 0.583264i
\(584\) −6.27637 28.0331i −0.259718 1.16002i
\(585\) 4.85637 + 9.57808i 0.200786 + 0.396005i
\(586\) −22.6083 + 1.66289i −0.933941 + 0.0686932i
\(587\) −3.46758 6.00603i −0.143122 0.247895i 0.785548 0.618800i \(-0.212381\pi\)
−0.928671 + 0.370905i \(0.879048\pi\)
\(588\) −1.03660 + 0.821990i −0.0427486 + 0.0338983i
\(589\) 22.8820 + 13.2109i 0.942835 + 0.544346i
\(590\) −4.45004 + 0.327310i −0.183205 + 0.0134751i
\(591\) 2.97148 + 1.71558i 0.122230 + 0.0705697i
\(592\) −6.97442 + 29.7978i −0.286647 + 1.22468i
\(593\) 39.4077i 1.61828i −0.587616 0.809140i \(-0.699933\pi\)
0.587616 0.809140i \(-0.300067\pi\)
\(594\) 6.09406 + 2.94511i 0.250042 + 0.120839i
\(595\) −3.55705 + 2.05367i −0.145825 + 0.0841921i
\(596\) −12.0019 15.1354i −0.491617 0.619971i
\(597\) 1.45583i 0.0595832i
\(598\) −19.8345 32.8891i −0.811092 1.34493i
\(599\) −23.2940 −0.951765 −0.475883 0.879509i \(-0.657871\pi\)
−0.475883 + 0.879509i \(0.657871\pi\)
\(600\) −0.305653 + 0.281259i −0.0124782 + 0.0114824i
\(601\) 9.12710 + 15.8086i 0.372302 + 0.644846i 0.989919 0.141633i \(-0.0452351\pi\)
−0.617617 + 0.786479i \(0.711902\pi\)
\(602\) 3.51336 7.26989i 0.143194 0.296298i
\(603\) −25.6860 −1.04601
\(604\) −16.4049 6.49075i −0.667505 0.264105i
\(605\) 9.35803 16.2086i 0.380458 0.658973i
\(606\) 0.629431 0.0462959i 0.0255689 0.00188064i
\(607\) −2.91289 + 5.04527i −0.118230 + 0.204781i −0.919067 0.394102i \(-0.871056\pi\)
0.800836 + 0.598884i \(0.204389\pi\)
\(608\) −15.2709 12.3515i −0.619317 0.500919i
\(609\) 3.04160 1.75607i 0.123252 0.0711595i
\(610\) 0.926056 + 12.5905i 0.0374949 + 0.509775i
\(611\) 0.698656 + 0.455686i 0.0282646 + 0.0184351i
\(612\) 7.13590 1.05543i 0.288452 0.0426632i
\(613\) 1.76656 + 3.05977i 0.0713506 + 0.123583i 0.899493 0.436934i \(-0.143936\pi\)
−0.828143 + 0.560517i \(0.810602\pi\)
\(614\) −23.2671 34.2280i −0.938985 1.38133i
\(615\) −0.294370 + 0.509863i −0.0118701 + 0.0205597i
\(616\) −11.4258 51.0328i −0.460360 2.05617i
\(617\) 4.96703 + 2.86771i 0.199965 + 0.115450i 0.596639 0.802510i \(-0.296502\pi\)
−0.396674 + 0.917959i \(0.629836\pi\)
\(618\) −1.64410 0.794552i −0.0661352 0.0319616i
\(619\) −18.0996 −0.727484 −0.363742 0.931500i \(-0.618501\pi\)
−0.363742 + 0.931500i \(0.618501\pi\)
\(620\) 14.1523 + 5.59950i 0.568371 + 0.224881i
\(621\) −5.72703 + 3.30650i −0.229818 + 0.132685i
\(622\) 12.2170 + 17.9723i 0.489857 + 0.720623i
\(623\) 34.3079 1.37452
\(624\) 1.53089 1.46361i 0.0612848 0.0585914i
\(625\) 1.00000 0.0400000
\(626\) −7.06162 10.3883i −0.282239 0.415199i
\(627\) −2.40712 + 1.38975i −0.0961312 + 0.0555014i
\(628\) −37.2561 14.7407i −1.48668 0.588220i
\(629\) 9.26478 0.369411
\(630\) −12.8633 6.21654i −0.512487 0.247673i
\(631\) −5.34248 3.08448i −0.212681 0.122791i 0.389876 0.920867i \(-0.372518\pi\)
−0.602557 + 0.798076i \(0.705851\pi\)
\(632\) −18.5578 + 4.15493i −0.738189 + 0.165274i
\(633\) 0.180584 0.312780i 0.00717756 0.0124319i
\(634\) −3.03732 4.46817i −0.120627 0.177454i
\(635\) −0.459689 0.796205i −0.0182422 0.0315964i
\(636\) −1.50125 + 0.222041i −0.0595285 + 0.00880450i
\(637\) −16.2165 0.882131i −0.642520 0.0349513i
\(638\) 3.98737 + 54.2117i 0.157862 + 2.14626i
\(639\) 41.5534 23.9909i 1.64383 0.949065i
\(640\) −9.74286 5.75124i −0.385120 0.227338i
\(641\) 6.27291 10.8650i 0.247765 0.429142i −0.715140 0.698981i \(-0.753637\pi\)
0.962905 + 0.269839i \(0.0869705\pi\)
\(642\) 0.600098 0.0441384i 0.0236840 0.00174200i
\(643\) −13.8647 + 24.0143i −0.546769 + 0.947032i 0.451724 + 0.892158i \(0.350809\pi\)
−0.998493 + 0.0548745i \(0.982524\pi\)
\(644\) 47.5119 + 18.7985i 1.87223 + 0.740766i
\(645\) −0.247201 −0.00973353
\(646\) −2.58728 + 5.35364i −0.101795 + 0.210636i
\(647\) −0.0519060 0.0899038i −0.00204063 0.00353448i 0.865003 0.501766i \(-0.167316\pi\)
−0.867044 + 0.498232i \(0.833983\pi\)
\(648\) 16.8661 + 18.3290i 0.662564 + 0.720030i
\(649\) −17.1995 −0.675141
\(650\) −5.09809 + 0.0972636i −0.199964 + 0.00381499i
\(651\) 3.79051i 0.148562i
\(652\) −1.93360 2.43843i −0.0757255 0.0954963i
\(653\) 7.14976 4.12792i 0.279792 0.161538i −0.353537 0.935420i \(-0.615021\pi\)
0.633329 + 0.773882i \(0.281688\pi\)
\(654\) 1.89067 + 0.913717i 0.0739312 + 0.0357292i
\(655\) 17.0025i 0.664344i
\(656\) −15.6140 3.65458i −0.609623 0.142688i
\(657\) −26.1978 15.1253i −1.02207 0.590095i
\(658\) −1.10671 + 0.0814008i −0.0431441 + 0.00317333i
\(659\) 15.9831 + 9.22782i 0.622612 + 0.359465i 0.777885 0.628407i \(-0.216293\pi\)
−0.155273 + 0.987872i \(0.549626\pi\)
\(660\) −1.25453 + 0.994800i −0.0488324 + 0.0387225i
\(661\) −15.8508 27.4545i −0.616526 1.06785i −0.990115 0.140260i \(-0.955206\pi\)
0.373589 0.927595i \(-0.378127\pi\)
\(662\) 9.27763 0.682388i 0.360585 0.0265218i
\(663\) −0.537057 0.350285i −0.0208576 0.0136040i
\(664\) 14.6785 3.28641i 0.569638 0.127537i
\(665\) 10.1987 5.88821i 0.395488 0.228335i
\(666\) 18.1169 + 26.6515i 0.702014 + 1.03273i
\(667\) −45.9947 26.5551i −1.78092 1.02822i
\(668\) −4.68557 31.6798i −0.181290 1.22573i
\(669\) 0.165214 0.286158i 0.00638753 0.0110635i
\(670\) 5.30688 10.9810i 0.205022 0.424235i
\(671\) 48.6626i 1.87860i
\(672\) −0.439170 + 2.78325i −0.0169414 + 0.107366i
\(673\) −6.91681 11.9803i −0.266624 0.461805i 0.701364 0.712803i \(-0.252575\pi\)
−0.967988 + 0.250998i \(0.919241\pi\)
\(674\) 27.4065 + 40.3173i 1.05566 + 1.55297i
\(675\) 0.877962i 0.0337928i
\(676\) 25.9811 0.991718i 0.999272 0.0381430i
\(677\) 17.0929i 0.656933i −0.944516 0.328467i \(-0.893468\pi\)
0.944516 0.328467i \(-0.106532\pi\)
\(678\) −0.428831 + 0.291506i −0.0164692 + 0.0111952i
\(679\) −14.1636 24.5320i −0.543548 0.941453i
\(680\) −1.02311 + 3.26874i −0.0392345 + 0.125350i
\(681\) 0.106483i 0.00408044i
\(682\) 52.8215 + 25.5273i 2.02264 + 0.977493i
\(683\) −4.19956 + 7.27386i −0.160692 + 0.278326i −0.935117 0.354339i \(-0.884706\pi\)
0.774425 + 0.632666i \(0.218039\pi\)
\(684\) −20.4599 + 3.02610i −0.782302 + 0.115706i
\(685\) 4.21131 + 2.43140i 0.160906 + 0.0928990i
\(686\) −9.90039 + 6.72998i −0.377999 + 0.256952i
\(687\) −0.134636 + 0.0777324i −0.00513670 + 0.00296568i
\(688\) −1.94910 6.44493i −0.0743088 0.245711i
\(689\) −15.6040 10.1774i −0.594466 0.387729i
\(690\) −0.114749 1.56011i −0.00436843 0.0593924i
\(691\) 23.9580 + 41.4965i 0.911406 + 1.57860i 0.812079 + 0.583547i \(0.198336\pi\)
0.0993267 + 0.995055i \(0.468331\pi\)
\(692\) 17.3601 13.7660i 0.659934 0.523306i
\(693\) −47.6919 27.5349i −1.81166 1.04596i
\(694\) 0.262136 + 3.56396i 0.00995056 + 0.135286i
\(695\) −2.52352 1.45695i −0.0957224 0.0552654i
\(696\) 0.874852 2.79506i 0.0331612 0.105947i
\(697\) 4.85473i 0.183886i
\(698\) −2.23308 + 4.62071i −0.0845233 + 0.174897i
\(699\) 1.99007 1.14897i 0.0752715 0.0434580i
\(700\) 5.31528 4.21485i 0.200899 0.159306i
\(701\) 13.8974i 0.524898i 0.964946 + 0.262449i \(0.0845301\pi\)
−0.964946 + 0.262449i \(0.915470\pi\)
\(702\) −0.0853937 4.47593i −0.00322298 0.168933i
\(703\) −26.5637 −1.00187
\(704\) −35.8276 24.8639i −1.35030 0.937093i
\(705\) 0.0169871 + 0.0294225i 0.000639771 + 0.00110812i
\(706\) −42.0206 20.3075i −1.58147 0.764285i
\(707\) −10.3073 −0.387647
\(708\) 0.861703 + 0.340941i 0.0323848 + 0.0128133i
\(709\) 14.0154 24.2754i 0.526360 0.911682i −0.473169 0.880972i \(-0.656890\pi\)
0.999528 0.0307098i \(-0.00977678\pi\)
\(710\) 1.67119 + 22.7212i 0.0627187 + 0.852712i
\(711\) −10.0129 + 17.3429i −0.375513 + 0.650408i
\(712\) 21.0526 19.3724i 0.788979 0.726010i
\(713\) −49.6402 + 28.6598i −1.85904 + 1.07332i
\(714\) 0.850729 0.0625728i 0.0318377 0.00234173i
\(715\) −19.6257 1.06758i −0.733961 0.0399254i
\(716\) −5.25046 35.4991i −0.196219 1.32666i
\(717\) −2.00170 3.46704i −0.0747548 0.129479i
\(718\) −4.62115 + 3.14131i −0.172460 + 0.117233i
\(719\) 15.6544 27.1142i 0.583810 1.01119i −0.411213 0.911539i \(-0.634895\pi\)
0.995023 0.0996491i \(-0.0317720\pi\)
\(720\) −11.4037 + 3.44874i −0.424989 + 0.128527i
\(721\) 25.8264 + 14.9109i 0.961825 + 0.555310i
\(722\) −4.27369 + 8.84317i −0.159050 + 0.329109i
\(723\) −0.0343370 −0.00127701
\(724\) 9.97261 + 3.94576i 0.370629 + 0.146643i
\(725\) −6.10639 + 3.52552i −0.226785 + 0.130935i
\(726\) −3.21463 + 2.18521i −0.119306 + 0.0811006i
\(727\) −37.8645 −1.40432 −0.702158 0.712022i \(-0.747780\pi\)
−0.702158 + 0.712022i \(0.747780\pi\)
\(728\) −26.6878 + 22.0047i −0.989117 + 0.815547i
\(729\) 25.8424 0.957125
\(730\) 11.8789 8.07489i 0.439657 0.298865i
\(731\) −1.76532 + 1.01921i −0.0652926 + 0.0376967i
\(732\) 0.964624 2.43801i 0.0356535 0.0901116i
\(733\) −21.9460 −0.810593 −0.405297 0.914185i \(-0.632832\pi\)
−0.405297 + 0.914185i \(0.632832\pi\)
\(734\) −1.10455 + 2.28555i −0.0407698 + 0.0843613i
\(735\) −0.572856 0.330738i −0.0211301 0.0121995i
\(736\) 39.7698 15.2927i 1.46594 0.563695i
\(737\) 23.5057 40.7131i 0.865845 1.49969i
\(738\) −13.9653 + 9.49320i −0.514071 + 0.349450i
\(739\) −18.5348 32.1031i −0.681812 1.18093i −0.974427 0.224703i \(-0.927859\pi\)
0.292615 0.956230i \(-0.405475\pi\)
\(740\) −15.1369 + 2.23881i −0.556443 + 0.0823002i
\(741\) 1.53983 + 1.00433i 0.0565672 + 0.0368949i
\(742\) 24.7177 1.81803i 0.907414 0.0667421i
\(743\) −37.2186 + 21.4881i −1.36542 + 0.788324i −0.990339 0.138670i \(-0.955717\pi\)
−0.375078 + 0.926993i \(0.622384\pi\)
\(744\) −2.14035 2.32599i −0.0784692 0.0852751i
\(745\) 4.82912 8.36428i 0.176925 0.306444i
\(746\) 3.12785 + 42.5257i 0.114519 + 1.55698i
\(747\) 7.91985 13.7176i 0.289772 0.501900i
\(748\) −4.85731 + 12.2765i −0.177601 + 0.448873i
\(749\) −9.82699 −0.359070
\(750\) −0.186992 0.0903689i −0.00682799 0.00329980i
\(751\) −1.53153 2.65268i −0.0558862 0.0967978i 0.836729 0.547617i \(-0.184465\pi\)
−0.892615 + 0.450820i \(0.851132\pi\)
\(752\) −0.633155 + 0.674868i −0.0230888 + 0.0246099i
\(753\) −3.56218 −0.129813
\(754\) 30.7880 18.5674i 1.12123 0.676184i
\(755\) 8.82114i 0.321034i
\(756\) 3.70047 + 4.66661i 0.134585 + 0.169723i
\(757\) 0.238409 0.137646i 0.00866512 0.00500281i −0.495661 0.868516i \(-0.665074\pi\)
0.504326 + 0.863513i \(0.331741\pi\)
\(758\) −2.80744 + 5.80919i −0.101971 + 0.210999i
\(759\) 6.02986i 0.218870i
\(760\) 2.93344 9.37203i 0.106407 0.339959i
\(761\) −28.4579 16.4302i −1.03160 0.595594i −0.114157 0.993463i \(-0.536417\pi\)
−0.917443 + 0.397868i \(0.869750\pi\)
\(762\) 0.0140062 + 0.190426i 0.000507391 + 0.00689840i
\(763\) −29.6998 17.1472i −1.07520 0.620770i
\(764\) 22.4059 + 28.2558i 0.810618 + 1.02226i
\(765\) 1.80338 + 3.12355i 0.0652014 + 0.112932i
\(766\) −1.16225 15.8017i −0.0419937 0.570939i
\(767\) 5.14451 + 10.1464i 0.185758 + 0.366365i
\(768\) 1.30211 + 1.95589i 0.0469857 + 0.0705770i