Properties

Label 520.2.ca.a.101.17
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.17
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.a.381.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.237097 - 1.39420i) q^{2} +(-0.158158 + 0.0913126i) q^{3} +(-1.88757 - 0.661121i) q^{4} -1.00000 q^{5} +(0.0898089 + 0.242153i) q^{6} +(2.61251 + 1.50833i) q^{7} +(-1.36927 + 2.47489i) q^{8} +(-1.48332 + 2.56919i) q^{9} +O(q^{10})\) \(q+(0.237097 - 1.39420i) q^{2} +(-0.158158 + 0.0913126i) q^{3} +(-1.88757 - 0.661121i) q^{4} -1.00000 q^{5} +(0.0898089 + 0.242153i) q^{6} +(2.61251 + 1.50833i) q^{7} +(-1.36927 + 2.47489i) q^{8} +(-1.48332 + 2.56919i) q^{9} +(-0.237097 + 1.39420i) q^{10} +(1.37951 + 2.38937i) q^{11} +(0.358903 - 0.0677973i) q^{12} +(2.87612 + 2.17438i) q^{13} +(2.72233 - 3.28473i) q^{14} +(0.158158 - 0.0913126i) q^{15} +(3.12584 + 2.49582i) q^{16} +(1.19349 - 2.06718i) q^{17} +(3.23027 + 2.67719i) q^{18} +(0.343257 - 0.594539i) q^{19} +(1.88757 + 0.661121i) q^{20} -0.550919 q^{21} +(3.65833 - 1.35679i) q^{22} +(-1.16108 - 2.01104i) q^{23} +(-0.00942771 - 0.516456i) q^{24} +1.00000 q^{25} +(3.71343 - 3.49434i) q^{26} -1.08966i q^{27} +(-3.93410 - 4.57427i) q^{28} +(-2.86720 + 1.65538i) q^{29} +(-0.0898089 - 0.242153i) q^{30} +2.49707i q^{31} +(4.22080 - 3.76628i) q^{32} +(-0.436360 - 0.251932i) q^{33} +(-2.59909 - 2.15408i) q^{34} +(-2.61251 - 1.50833i) q^{35} +(4.49842 - 3.86887i) q^{36} +(3.59508 + 6.22686i) q^{37} +(-0.747519 - 0.619532i) q^{38} +(-0.653430 - 0.0812692i) q^{39} +(1.36927 - 2.47489i) q^{40} +(8.68199 - 5.01255i) q^{41} +(-0.130622 + 0.768090i) q^{42} +(-1.97971 - 1.14299i) q^{43} +(-1.02425 - 5.42213i) q^{44} +(1.48332 - 2.56919i) q^{45} +(-3.07908 + 1.14196i) q^{46} +8.99189i q^{47} +(-0.722277 - 0.109306i) q^{48} +(1.05014 + 1.81889i) q^{49} +(0.237097 - 1.39420i) q^{50} +0.435922i q^{51} +(-3.99135 - 6.00575i) q^{52} +6.03671i q^{53} +(-1.51920 - 0.258356i) q^{54} +(-1.37951 - 2.38937i) q^{55} +(-7.31020 + 4.40037i) q^{56} +0.125375i q^{57} +(1.62812 + 4.38992i) q^{58} +(0.982788 - 1.70224i) q^{59} +(-0.358903 + 0.0677973i) q^{60} +(12.4956 + 7.21434i) q^{61} +(3.48140 + 0.592048i) q^{62} +(-7.75040 + 4.47469i) q^{63} +(-4.25019 - 6.77760i) q^{64} +(-2.87612 - 2.17438i) q^{65} +(-0.454703 + 0.548639i) q^{66} +(-0.739960 - 1.28165i) q^{67} +(-3.61945 + 3.11291i) q^{68} +(0.367267 + 0.212042i) q^{69} +(-2.72233 + 3.28473i) q^{70} +(-13.5810 - 7.84102i) q^{71} +(-4.32741 - 7.18899i) q^{72} +4.24432i q^{73} +(9.53386 - 3.53588i) q^{74} +(-0.158158 + 0.0913126i) q^{75} +(-1.04098 + 0.895299i) q^{76} +8.32301i q^{77} +(-0.268232 + 0.891741i) q^{78} -5.23394 q^{79} +(-3.12584 - 2.49582i) q^{80} +(-4.35047 - 7.53524i) q^{81} +(-4.93000 - 13.2929i) q^{82} -14.6966 q^{83} +(1.03990 + 0.364224i) q^{84} +(-1.19349 + 2.06718i) q^{85} +(-2.06293 + 2.48911i) q^{86} +(0.302314 - 0.523623i) q^{87} +(-7.80236 + 0.142429i) q^{88} +(10.0722 - 5.81518i) q^{89} +(-3.23027 - 2.67719i) q^{90} +(4.23421 + 10.0187i) q^{91} +(0.862070 + 4.56360i) q^{92} +(-0.228014 - 0.394931i) q^{93} +(12.5365 + 2.13195i) q^{94} +(-0.343257 + 0.594539i) q^{95} +(-0.323645 + 0.981080i) q^{96} +(-6.21257 - 3.58683i) q^{97} +(2.78488 - 1.03284i) q^{98} -8.18501 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9} + 8 q^{11} + 6 q^{12} - 4 q^{14} - 10 q^{16} - 18 q^{18} + 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 2 q^{24} + 56 q^{25} + 11 q^{26} + 6 q^{28} + 5 q^{30} + 16 q^{34} - 21 q^{36} - 4 q^{37} - 24 q^{39} + 29 q^{42} - 24 q^{44} - 28 q^{45} - 11 q^{46} + 3 q^{48} + 20 q^{49} + 18 q^{52} - 49 q^{54} - 8 q^{55} + 61 q^{56} - 47 q^{58} + 16 q^{59} - 6 q^{60} - 2 q^{62} - 30 q^{64} + 14 q^{66} + 36 q^{67} + 33 q^{68} + 4 q^{70} - 51 q^{72} - 2 q^{74} - 48 q^{76} - 35 q^{78} + 10 q^{80} - 28 q^{81} - 21 q^{82} - 40 q^{83} - 61 q^{84} + 28 q^{86} - 36 q^{87} + 41 q^{88} + 18 q^{90} - 16 q^{91} - 18 q^{92} - 41 q^{94} - 16 q^{95} + 48 q^{96} + 24 q^{97} + 28 q^{98} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.237097 1.39420i 0.167653 0.985846i
\(3\) −0.158158 + 0.0913126i −0.0913126 + 0.0527194i −0.544961 0.838461i \(-0.683456\pi\)
0.453648 + 0.891181i \(0.350122\pi\)
\(4\) −1.88757 0.661121i −0.943785 0.330561i
\(5\) −1.00000 −0.447214
\(6\) 0.0898089 + 0.242153i 0.0366643 + 0.0988587i
\(7\) 2.61251 + 1.50833i 0.987436 + 0.570096i 0.904507 0.426459i \(-0.140239\pi\)
0.0829290 + 0.996555i \(0.473573\pi\)
\(8\) −1.36927 + 2.47489i −0.484110 + 0.875007i
\(9\) −1.48332 + 2.56919i −0.494441 + 0.856398i
\(10\) −0.237097 + 1.39420i −0.0749768 + 0.440884i
\(11\) 1.37951 + 2.38937i 0.415936 + 0.720423i 0.995526 0.0944853i \(-0.0301205\pi\)
−0.579590 + 0.814908i \(0.696787\pi\)
\(12\) 0.358903 0.0677973i 0.103606 0.0195714i
\(13\) 2.87612 + 2.17438i 0.797693 + 0.603064i
\(14\) 2.72233 3.28473i 0.727574 0.877881i
\(15\) 0.158158 0.0913126i 0.0408362 0.0235768i
\(16\) 3.12584 + 2.49582i 0.781459 + 0.623956i
\(17\) 1.19349 2.06718i 0.289463 0.501365i −0.684218 0.729277i \(-0.739857\pi\)
0.973682 + 0.227912i \(0.0731898\pi\)
\(18\) 3.23027 + 2.67719i 0.761381 + 0.631021i
\(19\) 0.343257 0.594539i 0.0787486 0.136397i −0.823962 0.566646i \(-0.808241\pi\)
0.902710 + 0.430249i \(0.141574\pi\)
\(20\) 1.88757 + 0.661121i 0.422073 + 0.147831i
\(21\) −0.550919 −0.120220
\(22\) 3.65833 1.35679i 0.779959 0.289268i
\(23\) −1.16108 2.01104i −0.242101 0.419332i 0.719211 0.694791i \(-0.244503\pi\)
−0.961313 + 0.275460i \(0.911170\pi\)
\(24\) −0.00942771 0.516456i −0.00192442 0.105421i
\(25\) 1.00000 0.200000
\(26\) 3.71343 3.49434i 0.728264 0.685297i
\(27\) 1.08966i 0.209705i
\(28\) −3.93410 4.57427i −0.743476 0.864456i
\(29\) −2.86720 + 1.65538i −0.532425 + 0.307396i −0.742004 0.670396i \(-0.766124\pi\)
0.209578 + 0.977792i \(0.432791\pi\)
\(30\) −0.0898089 0.242153i −0.0163968 0.0442110i
\(31\) 2.49707i 0.448486i 0.974533 + 0.224243i \(0.0719910\pi\)
−0.974533 + 0.224243i \(0.928009\pi\)
\(32\) 4.22080 3.76628i 0.746139 0.665790i
\(33\) −0.436360 0.251932i −0.0759605 0.0438558i
\(34\) −2.59909 2.15408i −0.445739 0.369422i
\(35\) −2.61251 1.50833i −0.441595 0.254955i
\(36\) 4.49842 3.86887i 0.749737 0.644812i
\(37\) 3.59508 + 6.22686i 0.591028 + 1.02369i 0.994094 + 0.108519i \(0.0346109\pi\)
−0.403067 + 0.915171i \(0.632056\pi\)
\(38\) −0.747519 0.619532i −0.121264 0.100501i
\(39\) −0.653430 0.0812692i −0.104633 0.0130135i
\(40\) 1.36927 2.47489i 0.216501 0.391315i
\(41\) 8.68199 5.01255i 1.35590 0.782828i 0.366830 0.930288i \(-0.380443\pi\)
0.989068 + 0.147459i \(0.0471096\pi\)
\(42\) −0.130622 + 0.768090i −0.0201553 + 0.118519i
\(43\) −1.97971 1.14299i −0.301903 0.174304i 0.341394 0.939920i \(-0.389101\pi\)
−0.643298 + 0.765616i \(0.722434\pi\)
\(44\) −1.02425 5.42213i −0.154411 0.817417i
\(45\) 1.48332 2.56919i 0.221121 0.382993i
\(46\) −3.07908 + 1.14196i −0.453986 + 0.168372i
\(47\) 8.99189i 1.31160i 0.754934 + 0.655801i \(0.227669\pi\)
−0.754934 + 0.655801i \(0.772331\pi\)
\(48\) −0.722277 0.109306i −0.104252 0.0157770i
\(49\) 1.05014 + 1.81889i 0.150020 + 0.259842i
\(50\) 0.237097 1.39420i 0.0335306 0.197169i
\(51\) 0.435922i 0.0610413i
\(52\) −3.99135 6.00575i −0.553501 0.832848i
\(53\) 6.03671i 0.829206i 0.910002 + 0.414603i \(0.136080\pi\)
−0.910002 + 0.414603i \(0.863920\pi\)
\(54\) −1.51920 0.258356i −0.206737 0.0351578i
\(55\) −1.37951 2.38937i −0.186012 0.322183i
\(56\) −7.31020 + 4.40037i −0.976866 + 0.588024i
\(57\) 0.125375i 0.0166063i
\(58\) 1.62812 + 4.38992i 0.213782 + 0.576425i
\(59\) 0.982788 1.70224i 0.127948 0.221613i −0.794933 0.606697i \(-0.792494\pi\)
0.922881 + 0.385084i \(0.125828\pi\)
\(60\) −0.358903 + 0.0677973i −0.0463342 + 0.00875259i
\(61\) 12.4956 + 7.21434i 1.59990 + 0.923701i 0.991506 + 0.130065i \(0.0415185\pi\)
0.608392 + 0.793637i \(0.291815\pi\)
\(62\) 3.48140 + 0.592048i 0.442139 + 0.0751902i
\(63\) −7.75040 + 4.47469i −0.976458 + 0.563758i
\(64\) −4.25019 6.77760i −0.531274 0.847200i
\(65\) −2.87612 2.17438i −0.356739 0.269698i
\(66\) −0.454703 + 0.548639i −0.0559701 + 0.0675328i
\(67\) −0.739960 1.28165i −0.0904005 0.156578i 0.817279 0.576242i \(-0.195481\pi\)
−0.907680 + 0.419664i \(0.862148\pi\)
\(68\) −3.61945 + 3.11291i −0.438923 + 0.377496i
\(69\) 0.367267 + 0.212042i 0.0442138 + 0.0255269i
\(70\) −2.72233 + 3.28473i −0.325381 + 0.392600i
\(71\) −13.5810 7.84102i −1.61177 0.930558i −0.988959 0.148188i \(-0.952656\pi\)
−0.622814 0.782370i \(-0.714011\pi\)
\(72\) −4.32741 7.18899i −0.509990 0.847231i
\(73\) 4.24432i 0.496760i 0.968663 + 0.248380i \(0.0798982\pi\)
−0.968663 + 0.248380i \(0.920102\pi\)
\(74\) 9.53386 3.53588i 1.10829 0.411037i
\(75\) −0.158158 + 0.0913126i −0.0182625 + 0.0105439i
\(76\) −1.04098 + 0.895299i −0.119409 + 0.102698i
\(77\) 8.32301i 0.948495i
\(78\) −0.268232 + 0.891741i −0.0303713 + 0.100970i
\(79\) −5.23394 −0.588865 −0.294432 0.955672i \(-0.595131\pi\)
−0.294432 + 0.955672i \(0.595131\pi\)
\(80\) −3.12584 2.49582i −0.349479 0.279042i
\(81\) −4.35047 7.53524i −0.483386 0.837249i
\(82\) −4.93000 13.2929i −0.544427 1.46795i
\(83\) −14.6966 −1.61316 −0.806578 0.591127i \(-0.798683\pi\)
−0.806578 + 0.591127i \(0.798683\pi\)
\(84\) 1.03990 + 0.364224i 0.113462 + 0.0397401i
\(85\) −1.19349 + 2.06718i −0.129452 + 0.224217i
\(86\) −2.06293 + 2.48911i −0.222452 + 0.268408i
\(87\) 0.302314 0.523623i 0.0324114 0.0561382i
\(88\) −7.80236 + 0.142429i −0.831734 + 0.0151830i
\(89\) 10.0722 5.81518i 1.06765 0.616408i 0.140112 0.990136i \(-0.455254\pi\)
0.927539 + 0.373728i \(0.121920\pi\)
\(90\) −3.23027 2.67719i −0.340500 0.282201i
\(91\) 4.23421 + 10.0187i 0.443866 + 1.05025i
\(92\) 0.862070 + 4.56360i 0.0898770 + 0.475788i
\(93\) −0.228014 0.394931i −0.0236439 0.0409525i
\(94\) 12.5365 + 2.13195i 1.29304 + 0.219894i
\(95\) −0.343257 + 0.594539i −0.0352175 + 0.0609984i
\(96\) −0.323645 + 0.981080i −0.0330318 + 0.100131i
\(97\) −6.21257 3.58683i −0.630791 0.364188i 0.150267 0.988645i \(-0.451987\pi\)
−0.781059 + 0.624458i \(0.785320\pi\)
\(98\) 2.78488 1.03284i 0.281315 0.104333i
\(99\) −8.18501 −0.822625
\(100\) −1.88757 0.661121i −0.188757 0.0661121i
\(101\) 3.89828 2.25068i 0.387894 0.223951i −0.293353 0.956004i \(-0.594771\pi\)
0.681247 + 0.732054i \(0.261438\pi\)
\(102\) 0.607761 + 0.103356i 0.0601773 + 0.0102338i
\(103\) 2.65866 0.261966 0.130983 0.991385i \(-0.458187\pi\)
0.130983 + 0.991385i \(0.458187\pi\)
\(104\) −9.31954 + 4.14078i −0.913857 + 0.406037i
\(105\) 0.550919 0.0537642
\(106\) 8.41636 + 1.43129i 0.817469 + 0.139019i
\(107\) 5.45713 3.15068i 0.527561 0.304587i −0.212462 0.977169i \(-0.568148\pi\)
0.740023 + 0.672582i \(0.234815\pi\)
\(108\) −0.720397 + 2.05681i −0.0693203 + 0.197917i
\(109\) 6.90407 0.661290 0.330645 0.943755i \(-0.392734\pi\)
0.330645 + 0.943755i \(0.392734\pi\)
\(110\) −3.65833 + 1.35679i −0.348808 + 0.129365i
\(111\) −1.13718 0.656552i −0.107937 0.0623172i
\(112\) 4.40175 + 11.2352i 0.415926 + 1.06162i
\(113\) −4.48541 + 7.76896i −0.421952 + 0.730842i −0.996130 0.0878878i \(-0.971988\pi\)
0.574178 + 0.818730i \(0.305322\pi\)
\(114\) 0.174797 + 0.0297261i 0.0163713 + 0.00278410i
\(115\) 1.16108 + 2.01104i 0.108271 + 0.187531i
\(116\) 6.50644 1.22908i 0.604108 0.114117i
\(117\) −9.85262 + 4.16401i −0.910875 + 0.384962i
\(118\) −2.14024 1.77380i −0.197025 0.163291i
\(119\) 6.23600 3.60035i 0.571653 0.330044i
\(120\) 0.00942771 + 0.516456i 0.000860628 + 0.0471458i
\(121\) 1.69393 2.93397i 0.153994 0.266725i
\(122\) 13.0209 15.7108i 1.17886 1.42239i
\(123\) −0.915418 + 1.58555i −0.0825404 + 0.142964i
\(124\) 1.65086 4.71339i 0.148252 0.423275i
\(125\) −1.00000 −0.0894427
\(126\) 4.40100 + 11.8665i 0.392073 + 1.05715i
\(127\) 7.65597 + 13.2605i 0.679357 + 1.17668i 0.975175 + 0.221437i \(0.0710747\pi\)
−0.295817 + 0.955245i \(0.595592\pi\)
\(128\) −10.4570 + 4.31866i −0.924278 + 0.381719i
\(129\) 0.417477 0.0367568
\(130\) −3.71343 + 3.49434i −0.325690 + 0.306474i
\(131\) 9.90697i 0.865576i −0.901496 0.432788i \(-0.857530\pi\)
0.901496 0.432788i \(-0.142470\pi\)
\(132\) 0.657102 + 0.764027i 0.0571933 + 0.0665000i
\(133\) 1.79353 1.03549i 0.155518 0.0897886i
\(134\) −1.96231 + 0.727774i −0.169518 + 0.0628701i
\(135\) 1.08966i 0.0937830i
\(136\) 3.48185 + 5.78429i 0.298566 + 0.495999i
\(137\) −4.31063 2.48875i −0.368282 0.212628i 0.304425 0.952536i \(-0.401536\pi\)
−0.672708 + 0.739908i \(0.734869\pi\)
\(138\) 0.382706 0.461769i 0.0325781 0.0393083i
\(139\) −6.80566 3.92925i −0.577249 0.333275i 0.182790 0.983152i \(-0.441487\pi\)
−0.760039 + 0.649877i \(0.774820\pi\)
\(140\) 3.93410 + 4.57427i 0.332492 + 0.386596i
\(141\) −0.821073 1.42214i −0.0691468 0.119766i
\(142\) −14.1520 + 17.0756i −1.18761 + 1.43295i
\(143\) −1.22777 + 9.87169i −0.102672 + 0.825513i
\(144\) −11.0489 + 4.32876i −0.920740 + 0.360730i
\(145\) 2.86720 1.65538i 0.238108 0.137472i
\(146\) 5.91742 + 1.00632i 0.489729 + 0.0832834i
\(147\) −0.332176 0.191782i −0.0273974 0.0158179i
\(148\) −2.66925 14.1304i −0.219411 1.16151i
\(149\) 4.00913 6.94401i 0.328440 0.568875i −0.653762 0.756700i \(-0.726810\pi\)
0.982203 + 0.187825i \(0.0601437\pi\)
\(150\) 0.0898089 + 0.242153i 0.00733286 + 0.0197717i
\(151\) 18.3109i 1.49012i −0.666996 0.745061i \(-0.732420\pi\)
0.666996 0.745061i \(-0.267580\pi\)
\(152\) 1.00141 + 1.66361i 0.0812250 + 0.134937i
\(153\) 3.54066 + 6.13260i 0.286245 + 0.495791i
\(154\) 11.6039 + 1.97337i 0.935070 + 0.159018i
\(155\) 2.49707i 0.200569i
\(156\) 1.17967 + 0.585398i 0.0944489 + 0.0468693i
\(157\) 2.83853i 0.226539i 0.993564 + 0.113269i \(0.0361323\pi\)
−0.993564 + 0.113269i \(0.963868\pi\)
\(158\) −1.24095 + 7.29715i −0.0987251 + 0.580530i
\(159\) −0.551228 0.954755i −0.0437152 0.0757170i
\(160\) −4.22080 + 3.76628i −0.333683 + 0.297751i
\(161\) 7.00517i 0.552084i
\(162\) −11.5371 + 4.27883i −0.906440 + 0.336177i
\(163\) 7.68284 13.3071i 0.601766 1.04229i −0.390787 0.920481i \(-0.627797\pi\)
0.992554 0.121809i \(-0.0388695\pi\)
\(164\) −19.7018 + 3.72169i −1.53845 + 0.290615i
\(165\) 0.436360 + 0.251932i 0.0339706 + 0.0196129i
\(166\) −3.48452 + 20.4899i −0.270451 + 1.59032i
\(167\) −15.5996 + 9.00642i −1.20713 + 0.696938i −0.962132 0.272585i \(-0.912121\pi\)
−0.245000 + 0.969523i \(0.578788\pi\)
\(168\) 0.754358 1.36347i 0.0582000 0.105194i
\(169\) 3.54416 + 12.5076i 0.272628 + 0.962120i
\(170\) 2.59909 + 2.15408i 0.199341 + 0.165210i
\(171\) 1.01832 + 1.76379i 0.0778732 + 0.134880i
\(172\) 2.98119 + 3.46630i 0.227314 + 0.264303i
\(173\) −20.5307 11.8534i −1.56092 0.901199i −0.997164 0.0752598i \(-0.976021\pi\)
−0.563759 0.825939i \(-0.690645\pi\)
\(174\) −0.658355 0.545634i −0.0499098 0.0413644i
\(175\) 2.61251 + 1.50833i 0.197487 + 0.114019i
\(176\) −1.65135 + 10.9118i −0.124475 + 0.822507i
\(177\) 0.358964i 0.0269814i
\(178\) −5.71942 15.4214i −0.428689 1.15588i
\(179\) −6.15302 + 3.55245i −0.459898 + 0.265522i −0.712001 0.702178i \(-0.752211\pi\)
0.252103 + 0.967700i \(0.418878\pi\)
\(180\) −4.49842 + 3.86887i −0.335293 + 0.288369i
\(181\) 5.97715i 0.444278i 0.975015 + 0.222139i \(0.0713039\pi\)
−0.975015 + 0.222139i \(0.928696\pi\)
\(182\) 14.9720 3.52791i 1.10980 0.261506i
\(183\) −2.63504 −0.194788
\(184\) 6.56695 0.119877i 0.484122 0.00883747i
\(185\) −3.59508 6.22686i −0.264316 0.457808i
\(186\) −0.604673 + 0.224259i −0.0443368 + 0.0164434i
\(187\) 6.58569 0.481593
\(188\) 5.94473 16.9728i 0.433564 1.23787i
\(189\) 1.64357 2.84675i 0.119552 0.207070i
\(190\) 0.747519 + 0.619532i 0.0542307 + 0.0449456i
\(191\) 9.57885 16.5911i 0.693101 1.20049i −0.277715 0.960663i \(-0.589577\pi\)
0.970817 0.239823i \(-0.0770895\pi\)
\(192\) 1.29108 + 0.683836i 0.0931759 + 0.0493516i
\(193\) 9.75992 5.63489i 0.702534 0.405608i −0.105756 0.994392i \(-0.533726\pi\)
0.808291 + 0.588784i \(0.200393\pi\)
\(194\) −6.47374 + 7.81112i −0.464787 + 0.560806i
\(195\) 0.653430 + 0.0812692i 0.0467931 + 0.00581981i
\(196\) −0.779700 4.12755i −0.0556929 0.294825i
\(197\) −5.09423 8.82346i −0.362949 0.628645i 0.625496 0.780227i \(-0.284897\pi\)
−0.988445 + 0.151582i \(0.951563\pi\)
\(198\) −1.94065 + 11.4115i −0.137916 + 0.810981i
\(199\) −7.73321 + 13.3943i −0.548193 + 0.949497i 0.450206 + 0.892925i \(0.351351\pi\)
−0.998398 + 0.0565726i \(0.981983\pi\)
\(200\) −1.36927 + 2.47489i −0.0968221 + 0.175001i
\(201\) 0.234061 + 0.135135i 0.0165094 + 0.00953171i
\(202\) −2.21361 5.96860i −0.155749 0.419950i
\(203\) −9.98745 −0.700981
\(204\) 0.288197 0.822833i 0.0201778 0.0576098i
\(205\) −8.68199 + 5.01255i −0.606376 + 0.350091i
\(206\) 0.630362 3.70670i 0.0439194 0.258258i
\(207\) 6.88902 0.478820
\(208\) 3.56343 + 13.9750i 0.247079 + 0.968995i
\(209\) 1.89410 0.131018
\(210\) 0.130622 0.768090i 0.00901375 0.0530032i
\(211\) 14.9430 8.62737i 1.02872 0.593932i 0.112103 0.993697i \(-0.464241\pi\)
0.916618 + 0.399764i \(0.130908\pi\)
\(212\) 3.99100 11.3947i 0.274103 0.782592i
\(213\) 2.86394 0.196234
\(214\) −3.09879 8.35533i −0.211829 0.571159i
\(215\) 1.97971 + 1.14299i 0.135015 + 0.0779511i
\(216\) 2.69679 + 1.49204i 0.183494 + 0.101520i
\(217\) −3.76641 + 6.52361i −0.255680 + 0.442852i
\(218\) 1.63694 9.62563i 0.110867 0.651930i
\(219\) −0.387560 0.671273i −0.0261889 0.0453604i
\(220\) 1.02425 + 5.42213i 0.0690547 + 0.365560i
\(221\) 7.92745 3.35037i 0.533258 0.225371i
\(222\) −1.18499 + 1.42979i −0.0795311 + 0.0959611i
\(223\) 2.51774 1.45362i 0.168600 0.0973415i −0.413325 0.910583i \(-0.635633\pi\)
0.581926 + 0.813242i \(0.302299\pi\)
\(224\) 16.7077 3.47307i 1.11633 0.232054i
\(225\) −1.48332 + 2.56919i −0.0988883 + 0.171280i
\(226\) 9.76798 + 8.09555i 0.649756 + 0.538508i
\(227\) 12.7908 22.1543i 0.848955 1.47043i −0.0331859 0.999449i \(-0.510565\pi\)
0.882141 0.470985i \(-0.156101\pi\)
\(228\) 0.0828880 0.236654i 0.00548939 0.0156728i
\(229\) 12.8262 0.847580 0.423790 0.905760i \(-0.360699\pi\)
0.423790 + 0.905760i \(0.360699\pi\)
\(230\) 3.07908 1.14196i 0.203029 0.0752984i
\(231\) −0.759996 1.31635i −0.0500041 0.0866096i
\(232\) −0.170912 9.36267i −0.0112209 0.614689i
\(233\) 22.9064 1.50065 0.750323 0.661071i \(-0.229898\pi\)
0.750323 + 0.661071i \(0.229898\pi\)
\(234\) 3.46941 + 14.7238i 0.226803 + 0.962522i
\(235\) 8.99189i 0.586566i
\(236\) −2.98047 + 2.56335i −0.194012 + 0.166860i
\(237\) 0.827791 0.477925i 0.0537708 0.0310446i
\(238\) −3.54106 9.54784i −0.229533 0.618895i
\(239\) 4.63652i 0.299912i 0.988693 + 0.149956i \(0.0479132\pi\)
−0.988693 + 0.149956i \(0.952087\pi\)
\(240\) 0.722277 + 0.109306i 0.0466228 + 0.00705569i
\(241\) −12.7795 7.37824i −0.823199 0.475274i 0.0283193 0.999599i \(-0.490984\pi\)
−0.851518 + 0.524325i \(0.824318\pi\)
\(242\) −3.68891 3.05731i −0.237132 0.196531i
\(243\) 4.20715 + 2.42900i 0.269888 + 0.155820i
\(244\) −18.8168 21.8787i −1.20462 1.40064i
\(245\) −1.05014 1.81889i −0.0670908 0.116205i
\(246\) 1.99353 + 1.65220i 0.127103 + 0.105341i
\(247\) 2.28000 0.963596i 0.145073 0.0613122i
\(248\) −6.17997 3.41916i −0.392429 0.217117i
\(249\) 2.32438 1.34198i 0.147302 0.0850446i
\(250\) −0.237097 + 1.39420i −0.0149954 + 0.0881767i
\(251\) −23.1377 13.3586i −1.46044 0.843184i −0.461407 0.887189i \(-0.652655\pi\)
−0.999031 + 0.0440042i \(0.985989\pi\)
\(252\) 17.5877 3.32234i 1.10792 0.209288i
\(253\) 3.20342 5.54849i 0.201398 0.348831i
\(254\) 20.3030 7.52989i 1.27392 0.472467i
\(255\) 0.435922i 0.0272985i
\(256\) 3.54172 + 15.6031i 0.221358 + 0.975193i
\(257\) 7.84501 + 13.5880i 0.489359 + 0.847594i 0.999925 0.0122445i \(-0.00389763\pi\)
−0.510567 + 0.859838i \(0.670564\pi\)
\(258\) 0.0989826 0.582045i 0.00616239 0.0362365i
\(259\) 21.6903i 1.34777i
\(260\) 3.99135 + 6.00575i 0.247533 + 0.372461i
\(261\) 9.82185i 0.607957i
\(262\) −13.8123 2.34892i −0.853324 0.145117i
\(263\) 0.0113076 + 0.0195853i 0.000697255 + 0.00120768i 0.866374 0.499396i \(-0.166445\pi\)
−0.865677 + 0.500604i \(0.833111\pi\)
\(264\) 1.22100 0.734980i 0.0751474 0.0452349i
\(265\) 6.03671i 0.370832i
\(266\) −1.01844 2.74604i −0.0624446 0.168371i
\(267\) −1.06200 + 1.83944i −0.0649933 + 0.112572i
\(268\) 0.549401 + 2.90840i 0.0335600 + 0.177659i
\(269\) 15.0105 + 8.66631i 0.915205 + 0.528394i 0.882102 0.471058i \(-0.156128\pi\)
0.0331029 + 0.999452i \(0.489461\pi\)
\(270\) 1.51920 + 0.258356i 0.0924556 + 0.0157230i
\(271\) −3.75659 + 2.16887i −0.228197 + 0.131749i −0.609740 0.792602i \(-0.708726\pi\)
0.381543 + 0.924351i \(0.375393\pi\)
\(272\) 8.88997 3.48294i 0.539034 0.211184i
\(273\) −1.58451 1.19791i −0.0958990 0.0725006i
\(274\) −4.49184 + 5.41980i −0.271362 + 0.327422i
\(275\) 1.37951 + 2.38937i 0.0831873 + 0.144085i
\(276\) −0.553057 0.643052i −0.0332901 0.0387072i
\(277\) −15.5109 8.95522i −0.931959 0.538067i −0.0445287 0.999008i \(-0.514179\pi\)
−0.887431 + 0.460941i \(0.847512\pi\)
\(278\) −7.09176 + 8.55682i −0.425335 + 0.513204i
\(279\) −6.41545 3.70396i −0.384083 0.221750i
\(280\) 7.31020 4.40037i 0.436868 0.262972i
\(281\) 23.5494i 1.40484i −0.711762 0.702421i \(-0.752102\pi\)
0.711762 0.702421i \(-0.247898\pi\)
\(282\) −2.17742 + 0.807551i −0.129663 + 0.0480890i
\(283\) −1.10387 + 0.637319i −0.0656182 + 0.0378847i −0.532450 0.846461i \(-0.678729\pi\)
0.466832 + 0.884346i \(0.345395\pi\)
\(284\) 20.4513 + 23.7792i 1.21356 + 1.41103i
\(285\) 0.125375i 0.00742657i
\(286\) 13.4720 + 4.05231i 0.796615 + 0.239618i
\(287\) 30.2424 1.78515
\(288\) 3.41549 + 16.4307i 0.201259 + 0.968186i
\(289\) 5.65117 + 9.78812i 0.332422 + 0.575772i
\(290\) −1.62812 4.38992i −0.0956063 0.257785i
\(291\) 1.31009 0.0767989
\(292\) 2.80601 8.01145i 0.164209 0.468834i
\(293\) 12.6078 21.8373i 0.736553 1.27575i −0.217486 0.976063i \(-0.569786\pi\)
0.954039 0.299684i \(-0.0968811\pi\)
\(294\) −0.346139 + 0.417647i −0.0201873 + 0.0243577i
\(295\) −0.982788 + 1.70224i −0.0572201 + 0.0991082i
\(296\) −20.3335 + 0.371180i −1.18186 + 0.0215744i
\(297\) 2.60361 1.50319i 0.151076 0.0872240i
\(298\) −8.73076 7.23592i −0.505759 0.419165i
\(299\) 1.03337 8.30863i 0.0597614 0.480501i
\(300\) 0.358903 0.0677973i 0.0207213 0.00391428i
\(301\) −3.44801 5.97213i −0.198740 0.344228i
\(302\) −25.5290 4.34147i −1.46903 0.249824i
\(303\) −0.411030 + 0.711925i −0.0236131 + 0.0408990i
\(304\) 2.55683 1.00172i 0.146644 0.0574528i
\(305\) −12.4956 7.21434i −0.715496 0.413092i
\(306\) 9.38953 3.48235i 0.536764 0.199073i
\(307\) −9.29261 −0.530357 −0.265179 0.964199i \(-0.585431\pi\)
−0.265179 + 0.964199i \(0.585431\pi\)
\(308\) 5.50252 15.7103i 0.313535 0.895176i
\(309\) −0.420489 + 0.242769i −0.0239208 + 0.0138107i
\(310\) −3.48140 0.592048i −0.197730 0.0336261i
\(311\) 24.7618 1.40411 0.702057 0.712121i \(-0.252265\pi\)
0.702057 + 0.712121i \(0.252265\pi\)
\(312\) 1.09586 1.50589i 0.0620406 0.0852543i
\(313\) −30.8589 −1.74425 −0.872125 0.489284i \(-0.837258\pi\)
−0.872125 + 0.489284i \(0.837258\pi\)
\(314\) 3.95746 + 0.673007i 0.223333 + 0.0379800i
\(315\) 7.75040 4.47469i 0.436685 0.252120i
\(316\) 9.87943 + 3.46027i 0.555762 + 0.194655i
\(317\) 5.42116 0.304483 0.152241 0.988343i \(-0.451351\pi\)
0.152241 + 0.988343i \(0.451351\pi\)
\(318\) −1.46181 + 0.542150i −0.0819743 + 0.0304023i
\(319\) −7.91063 4.56720i −0.442910 0.255714i
\(320\) 4.25019 + 6.77760i 0.237593 + 0.378879i
\(321\) −0.575393 + 0.996610i −0.0321153 + 0.0556253i
\(322\) −9.76658 1.66091i −0.544270 0.0925587i
\(323\) −0.819347 1.41915i −0.0455897 0.0789637i
\(324\) 3.23011 + 17.0995i 0.179451 + 0.949971i
\(325\) 2.87612 + 2.17438i 0.159539 + 0.120613i
\(326\) −16.7311 13.8665i −0.926649 0.767992i
\(327\) −1.09193 + 0.630428i −0.0603841 + 0.0348628i
\(328\) 0.517528 + 28.3505i 0.0285757 + 1.56540i
\(329\) −13.5628 + 23.4914i −0.747739 + 1.29512i
\(330\) 0.454703 0.548639i 0.0250306 0.0302016i
\(331\) 5.51248 9.54789i 0.302993 0.524799i −0.673819 0.738896i \(-0.735347\pi\)
0.976812 + 0.214097i \(0.0686807\pi\)
\(332\) 27.7408 + 9.71621i 1.52247 + 0.533246i
\(333\) −21.3307 −1.16891
\(334\) 8.85810 + 23.8843i 0.484694 + 1.30689i
\(335\) 0.739960 + 1.28165i 0.0404283 + 0.0700239i
\(336\) −1.72208 1.37500i −0.0939474 0.0750123i
\(337\) 11.9950 0.653411 0.326705 0.945126i \(-0.394061\pi\)
0.326705 + 0.945126i \(0.394061\pi\)
\(338\) 18.2783 1.97575i 0.994209 0.107467i
\(339\) 1.63830i 0.0889802i
\(340\) 3.61945 3.11291i 0.196292 0.168821i
\(341\) −5.96642 + 3.44472i −0.323100 + 0.186542i
\(342\) 2.70051 1.00155i 0.146027 0.0541578i
\(343\) 14.7808i 0.798090i
\(344\) 5.53953 3.33452i 0.298672 0.179785i
\(345\) −0.367267 0.212042i −0.0197730 0.0114160i
\(346\) −21.3938 + 25.8135i −1.15014 + 1.38774i
\(347\) −7.81102 4.50970i −0.419318 0.242093i 0.275468 0.961310i \(-0.411167\pi\)
−0.694785 + 0.719217i \(0.744501\pi\)
\(348\) −0.916816 + 0.788508i −0.0491465 + 0.0422685i
\(349\) −14.3432 24.8431i −0.767771 1.32982i −0.938769 0.344548i \(-0.888032\pi\)
0.170997 0.985271i \(-0.445301\pi\)
\(350\) 2.72233 3.28473i 0.145515 0.175576i
\(351\) 2.36933 3.13400i 0.126466 0.167280i
\(352\) 14.8217 + 4.88946i 0.789997 + 0.260609i
\(353\) 20.1621 11.6406i 1.07312 0.619566i 0.144088 0.989565i \(-0.453975\pi\)
0.929032 + 0.369999i \(0.120642\pi\)
\(354\) 0.500466 + 0.0851094i 0.0265995 + 0.00452351i
\(355\) 13.5810 + 7.84102i 0.720807 + 0.416158i
\(356\) −22.8565 + 4.31762i −1.21139 + 0.228834i
\(357\) −0.657516 + 1.13885i −0.0347994 + 0.0602744i
\(358\) 3.49394 + 9.42079i 0.184661 + 0.497904i
\(359\) 24.7065i 1.30396i −0.758237 0.651979i \(-0.773939\pi\)
0.758237 0.651979i \(-0.226061\pi\)
\(360\) 4.32741 + 7.18899i 0.228074 + 0.378893i
\(361\) 9.26435 + 16.0463i 0.487597 + 0.844543i
\(362\) 8.33332 + 1.41717i 0.437990 + 0.0744847i
\(363\) 0.618709i 0.0324738i
\(364\) −1.36877 21.7104i −0.0717432 1.13793i
\(365\) 4.24432i 0.222158i
\(366\) −0.624761 + 3.67376i −0.0326568 + 0.192031i
\(367\) 18.1111 + 31.3693i 0.945389 + 1.63746i 0.754970 + 0.655759i \(0.227651\pi\)
0.190419 + 0.981703i \(0.439015\pi\)
\(368\) 1.38987 9.18404i 0.0724522 0.478751i
\(369\) 29.7409i 1.54825i
\(370\) −9.53386 + 3.53588i −0.495642 + 0.183821i
\(371\) −9.10537 + 15.7710i −0.472727 + 0.818788i
\(372\) 0.169294 + 0.896205i 0.00877750 + 0.0464661i
\(373\) 12.6773 + 7.31927i 0.656408 + 0.378977i 0.790907 0.611937i \(-0.209609\pi\)
−0.134499 + 0.990914i \(0.542943\pi\)
\(374\) 1.56145 9.18175i 0.0807407 0.474777i
\(375\) 0.158158 0.0913126i 0.00816725 0.00471536i
\(376\) −22.2540 12.3123i −1.14766 0.634960i
\(377\) −11.8458 1.47330i −0.610091 0.0758790i
\(378\) −3.57924 2.96642i −0.184096 0.152576i
\(379\) 16.4373 + 28.4702i 0.844326 + 1.46242i 0.886205 + 0.463293i \(0.153332\pi\)
−0.0418791 + 0.999123i \(0.513334\pi\)
\(380\) 1.04098 0.895299i 0.0534014 0.0459279i
\(381\) −2.42171 1.39817i −0.124068 0.0716306i
\(382\) −20.8601 17.2885i −1.06729 0.884557i
\(383\) 11.2143 + 6.47459i 0.573025 + 0.330836i 0.758357 0.651840i \(-0.226003\pi\)
−0.185332 + 0.982676i \(0.559336\pi\)
\(384\) 1.25951 1.63789i 0.0642743 0.0835831i
\(385\) 8.32301i 0.424180i
\(386\) −5.54210 14.9433i −0.282085 0.760592i
\(387\) 5.87311 3.39084i 0.298547 0.172366i
\(388\) 9.35534 + 10.8777i 0.474945 + 0.552229i
\(389\) 11.8371i 0.600165i −0.953913 0.300083i \(-0.902986\pi\)
0.953913 0.300083i \(-0.0970142\pi\)
\(390\) 0.268232 0.891741i 0.0135824 0.0451551i
\(391\) −5.54293 −0.280318
\(392\) −5.93949 + 0.108423i −0.299989 + 0.00547619i
\(393\) 0.904631 + 1.56687i 0.0456326 + 0.0790380i
\(394\) −13.5095 + 5.01033i −0.680597 + 0.252417i
\(395\) 5.23394 0.263348
\(396\) 15.4498 + 5.41128i 0.776381 + 0.271927i
\(397\) −7.59767 + 13.1595i −0.381316 + 0.660459i −0.991251 0.131993i \(-0.957862\pi\)
0.609935 + 0.792452i \(0.291196\pi\)
\(398\) 16.8408 + 13.9574i 0.844152 + 0.699620i
\(399\) −0.189107 + 0.327543i −0.00946720 + 0.0163977i
\(400\) 3.12584 + 2.49582i 0.156292 + 0.124791i
\(401\) −8.88365 + 5.12898i −0.443628 + 0.256129i −0.705136 0.709073i \(-0.749114\pi\)
0.261507 + 0.965202i \(0.415781\pi\)
\(402\) 0.243901 0.294287i 0.0121647 0.0146777i
\(403\) −5.42957 + 7.18187i −0.270466 + 0.357754i
\(404\) −8.84625 + 1.67107i −0.440117 + 0.0831388i
\(405\) 4.35047 + 7.53524i 0.216177 + 0.374429i
\(406\) −2.36800 + 13.9245i −0.117522 + 0.691060i
\(407\) −9.91886 + 17.1800i −0.491660 + 0.851580i
\(408\) −1.07886 0.596895i −0.0534115 0.0295507i
\(409\) −6.23811 3.60157i −0.308455 0.178086i 0.337780 0.941225i \(-0.390324\pi\)
−0.646235 + 0.763139i \(0.723657\pi\)
\(410\) 4.93000 + 13.2929i 0.243475 + 0.656488i
\(411\) 0.909015 0.0448384
\(412\) −5.01841 1.75770i −0.247239 0.0865955i
\(413\) 5.13509 2.96474i 0.252681 0.145886i
\(414\) 1.63337 9.60464i 0.0802757 0.472042i
\(415\) 14.6966 0.721426
\(416\) 20.3288 1.65467i 0.996704 0.0811269i
\(417\) 1.43516 0.0702801
\(418\) 0.449087 2.64075i 0.0219655 0.129163i
\(419\) −29.6861 + 17.1393i −1.45026 + 0.837307i −0.998496 0.0548305i \(-0.982538\pi\)
−0.451763 + 0.892138i \(0.649205\pi\)
\(420\) −1.03990 0.364224i −0.0507419 0.0177723i
\(421\) −17.5416 −0.854927 −0.427463 0.904033i \(-0.640593\pi\)
−0.427463 + 0.904033i \(0.640593\pi\)
\(422\) −8.48529 22.8791i −0.413057 1.11374i
\(423\) −23.1019 13.3379i −1.12325 0.648510i
\(424\) −14.9402 8.26589i −0.725561 0.401427i
\(425\) 1.19349 2.06718i 0.0578927 0.100273i
\(426\) 0.679032 3.99289i 0.0328992 0.193456i
\(427\) 21.7632 + 37.6951i 1.05320 + 1.82419i
\(428\) −12.3837 + 2.33930i −0.598588 + 0.113074i
\(429\) −0.707228 1.67340i −0.0341453 0.0807925i
\(430\) 2.06293 2.48911i 0.0994835 0.120035i
\(431\) 2.97455 1.71736i 0.143279 0.0827222i −0.426647 0.904418i \(-0.640305\pi\)
0.569926 + 0.821696i \(0.306972\pi\)
\(432\) 2.71960 3.40610i 0.130847 0.163876i
\(433\) −12.8277 + 22.2182i −0.616460 + 1.06774i 0.373667 + 0.927563i \(0.378100\pi\)
−0.990127 + 0.140176i \(0.955233\pi\)
\(434\) 8.20219 + 6.79785i 0.393718 + 0.326307i
\(435\) −0.302314 + 0.523623i −0.0144948 + 0.0251058i
\(436\) −13.0319 4.56442i −0.624115 0.218596i
\(437\) −1.59419 −0.0762606
\(438\) −1.02778 + 0.381177i −0.0491091 + 0.0182134i
\(439\) −13.6386 23.6228i −0.650935 1.12745i −0.982896 0.184160i \(-0.941044\pi\)
0.331961 0.943293i \(-0.392290\pi\)
\(440\) 7.80236 0.142429i 0.371963 0.00679004i
\(441\) −6.23078 −0.296704
\(442\) −2.79150 11.8468i −0.132778 0.563494i
\(443\) 37.0463i 1.76012i 0.474859 + 0.880062i \(0.342499\pi\)
−0.474859 + 0.880062i \(0.657501\pi\)
\(444\) 1.71245 + 1.99110i 0.0812693 + 0.0944936i
\(445\) −10.0722 + 5.81518i −0.477468 + 0.275666i
\(446\) −1.42968 3.85488i −0.0676973 0.182534i
\(447\) 1.46433i 0.0692607i
\(448\) −0.880796 24.1173i −0.0416137 1.13943i
\(449\) 20.2515 + 11.6922i 0.955729 + 0.551790i 0.894856 0.446355i \(-0.147278\pi\)
0.0608731 + 0.998146i \(0.480612\pi\)
\(450\) 3.23027 + 2.67719i 0.152276 + 0.126204i
\(451\) 23.9537 + 13.8297i 1.12794 + 0.651214i
\(452\) 13.6028 11.6991i 0.639820 0.550277i
\(453\) 1.67202 + 2.89602i 0.0785583 + 0.136067i
\(454\) −27.8548 23.0856i −1.30729 1.08346i
\(455\) −4.23421 10.0187i −0.198503 0.469686i
\(456\) −0.310290 0.171672i −0.0145306 0.00803929i
\(457\) −21.0652 + 12.1620i −0.985386 + 0.568913i −0.903892 0.427761i \(-0.859303\pi\)
−0.0814943 + 0.996674i \(0.525969\pi\)
\(458\) 3.04106 17.8823i 0.142100 0.835584i
\(459\) −2.25253 1.30050i −0.105139 0.0607020i
\(460\) −0.862070 4.56360i −0.0401942 0.212779i
\(461\) −10.7228 + 18.5725i −0.499412 + 0.865008i −1.00000 0.000678318i \(-0.999784\pi\)
0.500587 + 0.865686i \(0.333117\pi\)
\(462\) −2.01545 + 0.747480i −0.0937671 + 0.0347759i
\(463\) 32.5598i 1.51318i −0.653888 0.756591i \(-0.726863\pi\)
0.653888 0.756591i \(-0.273137\pi\)
\(464\) −13.0939 1.98158i −0.607870 0.0919926i
\(465\) 0.228014 + 0.394931i 0.0105739 + 0.0183145i
\(466\) 5.43104 31.9360i 0.251588 1.47941i
\(467\) 3.66427i 0.169562i 0.996400 + 0.0847810i \(0.0270191\pi\)
−0.996400 + 0.0847810i \(0.972981\pi\)
\(468\) 21.3504 1.34608i 0.986923 0.0622225i
\(469\) 4.46442i 0.206148i
\(470\) −12.5365 2.13195i −0.578264 0.0983397i
\(471\) −0.259193 0.448936i −0.0119430 0.0206859i
\(472\) 2.86716 + 4.76312i 0.131972 + 0.219240i
\(473\) 6.30703i 0.289997i
\(474\) −0.470055 1.26742i −0.0215903 0.0582144i
\(475\) 0.343257 0.594539i 0.0157497 0.0272793i
\(476\) −14.1511 + 2.67317i −0.648617 + 0.122525i
\(477\) −15.5095 8.95440i −0.710130 0.409994i
\(478\) 6.46423 + 1.09931i 0.295667 + 0.0502812i
\(479\) −7.97967 + 4.60707i −0.364601 + 0.210502i −0.671097 0.741370i \(-0.734177\pi\)
0.306496 + 0.951872i \(0.400843\pi\)
\(480\) 0.323645 0.981080i 0.0147723 0.0447800i
\(481\) −3.19966 + 25.7263i −0.145892 + 1.17302i
\(482\) −13.3167 + 16.0678i −0.606559 + 0.731866i
\(483\) 0.639660 + 1.10792i 0.0291055 + 0.0504123i
\(484\) −5.13713 + 4.41819i −0.233506 + 0.200827i
\(485\) 6.21257 + 3.58683i 0.282098 + 0.162870i
\(486\) 4.38400 5.28968i 0.198862 0.239945i
\(487\) −7.20298 4.15865i −0.326398 0.188446i 0.327843 0.944732i \(-0.393678\pi\)
−0.654241 + 0.756286i \(0.727012\pi\)
\(488\) −34.9646 + 21.0469i −1.58277 + 0.952748i
\(489\) 2.80616i 0.126899i
\(490\) −2.78488 + 1.03284i −0.125808 + 0.0466591i
\(491\) −11.7583 + 6.78864i −0.530643 + 0.306367i −0.741278 0.671198i \(-0.765780\pi\)
0.210635 + 0.977565i \(0.432447\pi\)
\(492\) 2.77615 2.38763i 0.125159 0.107643i
\(493\) 7.90269i 0.355919i
\(494\) −0.802860 3.40724i −0.0361224 0.153299i
\(495\) 8.18501 0.367889
\(496\) −6.23224 + 7.80543i −0.279836 + 0.350474i
\(497\) −23.6537 40.9695i −1.06102 1.83773i
\(498\) −1.31988 3.55882i −0.0591453 0.159475i
\(499\) 26.9915 1.20831 0.604153 0.796869i \(-0.293512\pi\)
0.604153 + 0.796869i \(0.293512\pi\)
\(500\) 1.88757 + 0.661121i 0.0844147 + 0.0295662i
\(501\) 1.64480 2.84888i 0.0734842 0.127278i
\(502\) −24.1103 + 29.0912i −1.07610 + 1.29840i
\(503\) 4.78038 8.27985i 0.213146 0.369180i −0.739551 0.673100i \(-0.764962\pi\)
0.952698 + 0.303920i \(0.0982955\pi\)
\(504\) −0.461997 25.3085i −0.0205790 1.12733i
\(505\) −3.89828 + 2.25068i −0.173471 + 0.100154i
\(506\) −6.97617 5.78174i −0.310128 0.257030i
\(507\) −1.70264 1.65454i −0.0756167 0.0734809i
\(508\) −5.68436 30.0917i −0.252203 1.33510i
\(509\) 0.735494 + 1.27391i 0.0326002 + 0.0564652i 0.881865 0.471502i \(-0.156288\pi\)
−0.849265 + 0.527967i \(0.822955\pi\)
\(510\) −0.607761 0.103356i −0.0269121 0.00457668i
\(511\) −6.40185 + 11.0883i −0.283201 + 0.490519i
\(512\) 22.5935 1.23841i 0.998501 0.0547304i
\(513\) −0.647846 0.374034i −0.0286031 0.0165140i
\(514\) 20.8043 7.71582i 0.917640 0.340330i
\(515\) −2.65866 −0.117155
\(516\) −0.788016 0.276003i −0.0346905 0.0121503i
\(517\) −21.4850 + 12.4044i −0.944908 + 0.545543i
\(518\) 30.2406 + 5.14272i 1.32869 + 0.225958i
\(519\) 4.32947 0.190043
\(520\) 9.31954 4.14078i 0.408689 0.181585i
\(521\) −17.1591 −0.751752 −0.375876 0.926670i \(-0.622658\pi\)
−0.375876 + 0.926670i \(0.622658\pi\)
\(522\) −13.6936 2.32874i −0.599352 0.101926i
\(523\) 21.0272 12.1400i 0.919453 0.530847i 0.0359926 0.999352i \(-0.488541\pi\)
0.883461 + 0.468505i \(0.155207\pi\)
\(524\) −6.54970 + 18.7001i −0.286125 + 0.816917i
\(525\) −0.550919 −0.0240441
\(526\) 0.0299868 0.0111214i 0.00130748 0.000484914i
\(527\) 5.16189 + 2.98022i 0.224856 + 0.129820i
\(528\) −0.735211 1.87658i −0.0319959 0.0816675i
\(529\) 8.80380 15.2486i 0.382774 0.662984i
\(530\) −8.41636 1.43129i −0.365583 0.0621712i
\(531\) 2.91559 + 5.04994i 0.126526 + 0.219149i
\(532\) −4.06999 + 0.768827i −0.176457 + 0.0333329i
\(533\) 35.8696 + 4.46122i 1.55369 + 0.193237i
\(534\) 2.31274 + 1.91676i 0.100082 + 0.0829464i
\(535\) −5.45713 + 3.15068i −0.235932 + 0.136216i
\(536\) 4.18515 0.0763983i 0.180771 0.00329990i
\(537\) 0.648766 1.12370i 0.0279963 0.0484911i
\(538\) 15.6415 18.8728i 0.674352 0.813664i
\(539\) −2.89734 + 5.01834i −0.124797 + 0.216155i
\(540\) 0.720397 2.05681i 0.0310010 0.0885110i
\(541\) 39.2553 1.68772 0.843858 0.536566i \(-0.180279\pi\)
0.843858 + 0.536566i \(0.180279\pi\)
\(542\) 2.13315 + 5.75166i 0.0916267 + 0.247055i
\(543\) −0.545789 0.945335i −0.0234221 0.0405682i
\(544\) −2.74811 13.2202i −0.117824 0.566810i
\(545\) −6.90407 −0.295738
\(546\) −2.04580 + 1.92510i −0.0875522 + 0.0823867i
\(547\) 24.6557i 1.05420i −0.849803 0.527101i \(-0.823279\pi\)
0.849803 0.527101i \(-0.176721\pi\)
\(548\) 6.49126 + 7.54753i 0.277293 + 0.322415i
\(549\) −37.0700 + 21.4024i −1.58211 + 0.913432i
\(550\) 3.65833 1.35679i 0.155992 0.0578536i
\(551\) 2.27288i 0.0968281i
\(552\) −1.02767 + 0.618605i −0.0437405 + 0.0263296i
\(553\) −13.6737 7.89453i −0.581466 0.335710i
\(554\) −16.1629 + 19.5020i −0.686697 + 0.828560i
\(555\) 1.13718 + 0.656552i 0.0482707 + 0.0278691i
\(556\) 10.2485 + 11.9161i 0.434631 + 0.505355i
\(557\) −5.16907 8.95309i −0.219020 0.379355i 0.735488 0.677537i \(-0.236953\pi\)
−0.954509 + 0.298183i \(0.903619\pi\)
\(558\) −6.68513 + 8.06619i −0.283004 + 0.341469i
\(559\) −3.20861 7.59201i −0.135710 0.321108i
\(560\) −4.40175 11.2352i −0.186008 0.474773i
\(561\) −1.04158 + 0.601357i −0.0439755 + 0.0253893i
\(562\) −32.8326 5.58351i −1.38496 0.235526i
\(563\) 24.1304 + 13.9317i 1.01698 + 0.587151i 0.913226 0.407453i \(-0.133583\pi\)
0.103749 + 0.994604i \(0.466916\pi\)
\(564\) 0.609625 + 3.22722i 0.0256699 + 0.135890i
\(565\) 4.48541 7.76896i 0.188703 0.326843i
\(566\) 0.626824 + 1.69012i 0.0263474 + 0.0710409i
\(567\) 26.2478i 1.10231i
\(568\) 38.0018 22.8752i 1.59452 0.959820i
\(569\) −3.52255 6.10124i −0.147673 0.255777i 0.782694 0.622407i \(-0.213845\pi\)
−0.930367 + 0.366630i \(0.880512\pi\)
\(570\) −0.174797 0.0297261i −0.00732145 0.00124509i
\(571\) 13.1670i 0.551020i −0.961298 0.275510i \(-0.911153\pi\)
0.961298 0.275510i \(-0.0888467\pi\)
\(572\) 8.84389 17.8218i 0.369782 0.745167i
\(573\) 3.49868i 0.146159i
\(574\) 7.17039 42.1638i 0.299286 1.75988i
\(575\) −1.16108 2.01104i −0.0484203 0.0838664i
\(576\) 23.7174 0.866192i 0.988224 0.0360913i
\(577\) 6.18178i 0.257351i 0.991687 + 0.128675i \(0.0410725\pi\)
−0.991687 + 0.128675i \(0.958927\pi\)
\(578\) 14.9864 5.55811i 0.623354 0.231187i
\(579\) −1.02907 + 1.78241i −0.0427668 + 0.0740743i
\(580\) −6.50644 + 1.22908i −0.270165 + 0.0510346i
\(581\) −38.3949 22.1673i −1.59289 0.919655i
\(582\) 0.310619 1.82653i 0.0128756 0.0757119i
\(583\) −14.4240 + 8.32767i −0.597379 + 0.344897i
\(584\) −10.5042 5.81162i −0.434668 0.240487i
\(585\) 9.85262 4.16401i 0.407356 0.172160i
\(586\) −27.4562 22.7553i −1.13420 0.940011i
\(587\) 0.325591 + 0.563940i 0.0134386 + 0.0232763i 0.872666 0.488317i \(-0.162389\pi\)
−0.859228 + 0.511593i \(0.829056\pi\)
\(588\) 0.500214 + 0.581609i 0.0206285 + 0.0239852i
\(589\) 1.48460 + 0.857137i 0.0611721 + 0.0353177i
\(590\) 2.14024 + 1.77380i 0.0881123 + 0.0730261i
\(591\) 1.61139 + 0.930334i 0.0662836 + 0.0382688i
\(592\) −4.30351 + 28.4369i −0.176873 + 1.16875i
\(593\) 16.6654i 0.684365i 0.939634 + 0.342182i \(0.111166\pi\)
−0.939634 + 0.342182i \(0.888834\pi\)
\(594\) −1.47844 3.98634i −0.0606610 0.163562i
\(595\) −6.23600 + 3.60035i −0.255651 + 0.147600i
\(596\) −12.1583 + 10.4568i −0.498025 + 0.428326i
\(597\) 2.82456i 0.115601i
\(598\) −11.3389 3.41068i −0.463680 0.139473i
\(599\) 17.0368 0.696104 0.348052 0.937475i \(-0.386843\pi\)
0.348052 + 0.937475i \(0.386843\pi\)
\(600\) −0.00942771 0.516456i −0.000384885 0.0210842i
\(601\) −6.05576 10.4889i −0.247020 0.427850i 0.715678 0.698430i \(-0.246118\pi\)
−0.962697 + 0.270580i \(0.912785\pi\)
\(602\) −9.14384 + 3.39123i −0.372675 + 0.138216i
\(603\) 4.39040 0.178791
\(604\) −12.1057 + 34.5631i −0.492576 + 1.40635i
\(605\) −1.69393 + 2.93397i −0.0688681 + 0.119283i
\(606\) 0.895109 + 0.741852i 0.0363613 + 0.0301357i
\(607\) −16.1534 + 27.9785i −0.655645 + 1.13561i 0.326086 + 0.945340i \(0.394270\pi\)
−0.981732 + 0.190271i \(0.939063\pi\)
\(608\) −0.790381 3.80223i −0.0320542 0.154201i
\(609\) 1.57960 0.911980i 0.0640084 0.0369553i
\(610\) −13.0209 + 15.7108i −0.527200 + 0.636113i
\(611\) −19.5518 + 25.8618i −0.790980 + 1.04626i
\(612\) −2.62885 13.9165i −0.106265 0.562542i
\(613\) 20.0857 + 34.7895i 0.811255 + 1.40514i 0.911986 + 0.410221i \(0.134549\pi\)
−0.100731 + 0.994914i \(0.532118\pi\)
\(614\) −2.20325 + 12.9557i −0.0889161 + 0.522851i
\(615\) 0.915418 1.58555i 0.0369132 0.0639355i
\(616\) −20.5986 11.3965i −0.829940 0.459176i
\(617\) −30.4689 17.5912i −1.22663 0.708195i −0.260307 0.965526i \(-0.583824\pi\)
−0.966323 + 0.257331i \(0.917157\pi\)
\(618\) 0.238771 + 0.643804i 0.00960479 + 0.0258976i
\(619\) −6.18200 −0.248475 −0.124238 0.992252i \(-0.539649\pi\)
−0.124238 + 0.992252i \(0.539649\pi\)
\(620\) −1.65086 + 4.71339i −0.0663003 + 0.189294i
\(621\) −2.19136 + 1.26518i −0.0879361 + 0.0507699i
\(622\) 5.87096 34.5228i 0.235404 1.38424i
\(623\) 35.0849 1.40565
\(624\) −1.83968 1.88488i −0.0736463 0.0754556i
\(625\) 1.00000 0.0400000
\(626\) −7.31657 + 43.0234i −0.292429 + 1.71956i
\(627\) −0.299567 + 0.172955i −0.0119636 + 0.00690717i
\(628\) 1.87661 5.35791i 0.0748848 0.213804i
\(629\) 17.1627 0.684323
\(630\) −4.40100 11.8665i −0.175340 0.472773i
\(631\) −40.8056 23.5592i −1.62445 0.937875i −0.985710 0.168450i \(-0.946124\pi\)
−0.638737 0.769425i \(-0.720543\pi\)
\(632\) 7.16669 12.9535i 0.285076 0.515261i
\(633\) −1.57557 + 2.72897i −0.0626235 + 0.108467i
\(634\) 1.28534 7.55816i 0.0510475 0.300173i
\(635\) −7.65597 13.2605i −0.303818 0.526228i
\(636\) 0.409272 + 2.16659i 0.0162287 + 0.0859110i
\(637\) −0.934634 + 7.51475i −0.0370315 + 0.297745i
\(638\) −8.24317 + 9.94610i −0.326350 + 0.393770i
\(639\) 40.2902 23.2615i 1.59385 0.920212i
\(640\) 10.4570 4.31866i 0.413350 0.170710i
\(641\) 14.2517 24.6847i 0.562910 0.974989i −0.434331 0.900753i \(-0.643015\pi\)
0.997241 0.0742354i \(-0.0236516\pi\)
\(642\) 1.25305 + 1.03850i 0.0494538 + 0.0409865i
\(643\) 3.92131 6.79191i 0.154641 0.267847i −0.778287 0.627909i \(-0.783911\pi\)
0.932928 + 0.360062i \(0.117244\pi\)
\(644\) −4.63126 + 13.2227i −0.182497 + 0.521049i
\(645\) −0.417477 −0.0164381
\(646\) −2.17284 + 0.805854i −0.0854893 + 0.0317059i
\(647\) 16.1046 + 27.8939i 0.633136 + 1.09662i 0.986907 + 0.161292i \(0.0515661\pi\)
−0.353770 + 0.935332i \(0.615101\pi\)
\(648\) 24.6059 0.449171i 0.966611 0.0176451i
\(649\) 5.42305 0.212873
\(650\) 3.71343 3.49434i 0.145653 0.137059i
\(651\) 1.37568i 0.0539172i
\(652\) −23.2995 + 20.0387i −0.912478 + 0.784777i
\(653\) 12.3946 7.15601i 0.485037 0.280036i −0.237476 0.971393i \(-0.576320\pi\)
0.722513 + 0.691357i \(0.242987\pi\)
\(654\) 0.620046 + 1.67184i 0.0242457 + 0.0653743i
\(655\) 9.90697i 0.387097i
\(656\) 39.6489 + 6.00030i 1.54803 + 0.234272i
\(657\) −10.9045 6.29570i −0.425424 0.245619i
\(658\) 29.5359 + 24.4789i 1.15143 + 0.954288i
\(659\) −25.8144 14.9040i −1.00559 0.580576i −0.0956904 0.995411i \(-0.530506\pi\)
−0.909897 + 0.414835i \(0.863839\pi\)
\(660\) −0.657102 0.764027i −0.0255776 0.0297397i
\(661\) −6.66973 11.5523i −0.259422 0.449333i 0.706665 0.707548i \(-0.250199\pi\)
−0.966087 + 0.258216i \(0.916866\pi\)
\(662\) −12.0046 9.94926i −0.466574 0.386689i
\(663\) −0.947859 + 1.25376i −0.0368118 + 0.0486922i
\(664\) 20.1236 36.3724i 0.780946 1.41152i
\(665\) −1.79353 + 1.03549i −0.0695500 + 0.0401547i
\(666\) −5.05745 + 29.7392i −0.195972 + 1.15237i
\(667\) 6.65808 + 3.84404i 0.257802 + 0.148842i
\(668\) 35.3996 6.68704i 1.36965 0.258729i
\(669\) −0.265467 + 0.459803i −0.0102636 + 0.0177770i
\(670\) 1.96231 0.727774i 0.0758107 0.0281164i
\(671\) 39.8089i 1.53680i
\(672\) −2.32532 + 2.07492i −0.0897011 + 0.0800416i
\(673\) 7.99575 + 13.8490i 0.308213 + 0.533841i 0.977972 0.208738i \(-0.0669356\pi\)
−0.669758 + 0.742579i \(0.733602\pi\)
\(674\) 2.84399 16.7234i 0.109546 0.644163i
\(675\) 1.08966i 0.0419410i
\(676\) 1.57916 25.9520i 0.0607368 0.998154i
\(677\) 34.6980i 1.33355i 0.745258 + 0.666777i \(0.232326\pi\)
−0.745258 + 0.666777i \(0.767674\pi\)
\(678\) −2.28411 0.388436i −0.0877207 0.0149178i
\(679\) −10.8203 18.7413i −0.415244 0.719224i
\(680\) −3.48185 5.78429i −0.133523 0.221817i
\(681\) 4.67185i 0.179026i
\(682\) 3.38799 + 9.13510i 0.129733 + 0.349801i
\(683\) −23.8298 + 41.2745i −0.911823 + 1.57932i −0.100335 + 0.994954i \(0.531992\pi\)
−0.811488 + 0.584370i \(0.801342\pi\)
\(684\) −0.756079 4.00251i −0.0289094 0.153040i
\(685\) 4.31063 + 2.48875i 0.164701 + 0.0950901i
\(686\) −20.6074 3.50450i −0.786794 0.133802i
\(687\) −2.02857 + 1.17120i −0.0773948 + 0.0446839i
\(688\) −3.33556 8.51381i −0.127167 0.324586i
\(689\) −13.1261 + 17.3623i −0.500064 + 0.661452i
\(690\) −0.382706 + 0.461769i −0.0145694 + 0.0175792i
\(691\) 6.05912 + 10.4947i 0.230500 + 0.399237i 0.957955 0.286917i \(-0.0926305\pi\)
−0.727455 + 0.686155i \(0.759297\pi\)
\(692\) 30.9166 + 35.9475i 1.17527 + 1.36652i
\(693\) −21.3834 12.3457i −0.812289 0.468975i
\(694\) −8.13938 + 9.82087i −0.308967 + 0.372795i
\(695\) 6.80566 + 3.92925i 0.258154 + 0.149045i
\(696\) 0.881961 + 1.46518i 0.0334306 + 0.0555373i
\(697\) 23.9297i 0.906400i
\(698\) −38.0369 + 14.1069i −1.43972 + 0.533956i
\(699\) −3.62283 + 2.09164i −0.137028 + 0.0791131i
\(700\) −3.93410 4.57427i −0.148695 0.172891i
\(701\) 17.3047i 0.653590i 0.945095 + 0.326795i \(0.105969\pi\)
−0.945095 + 0.326795i \(0.894031\pi\)
\(702\) −3.80765 4.04638i −0.143710 0.152721i
\(703\) 4.93615 0.186171
\(704\) 10.3310 19.5050i 0.389366 0.735124i
\(705\) 0.821073 + 1.42214i 0.0309234 + 0.0535609i
\(706\) −11.4489 30.8699i −0.430885 1.16180i
\(707\) 13.5791 0.510694
\(708\) 0.237319 0.677569i 0.00891898 0.0254646i
\(709\) 19.5172 33.8048i 0.732984 1.26956i −0.222619 0.974906i \(-0.571460\pi\)
0.955602 0.294659i \(-0.0952062\pi\)
\(710\) 14.1520 17.0756i 0.531113 0.640834i
\(711\) 7.76364 13.4470i 0.291159 0.504302i
\(712\) 0.600398 + 32.8902i 0.0225009 + 1.23261i
\(713\) 5.02171 2.89929i 0.188065 0.108579i
\(714\) 1.43189 + 1.18672i 0.0535870 + 0.0444121i
\(715\) 1.22777 9.87169i 0.0459161 0.369180i
\(716\) 13.9628 2.63760i 0.521816 0.0985717i
\(717\) −0.423373 0.733304i −0.0158112 0.0273857i
\(718\) −34.4457 5.85785i −1.28550 0.218613i
\(719\) −25.4352 + 44.0551i −0.948573 + 1.64298i −0.200140 + 0.979767i \(0.564140\pi\)
−0.748433 + 0.663210i \(0.769194\pi\)
\(720\) 11.0489 4.32876i 0.411768 0.161323i
\(721\) 6.94578 + 4.01015i 0.258674 + 0.149346i
\(722\) 24.5683 9.11178i 0.914337 0.339105i
\(723\) 2.69491 0.100225
\(724\) 3.95162 11.2823i 0.146861 0.419303i
\(725\) −2.86720 + 1.65538i −0.106485 + 0.0614792i
\(726\) 0.862602 + 0.146694i 0.0320142 + 0.00544434i
\(727\) 38.9624 1.44504 0.722518 0.691352i \(-0.242985\pi\)
0.722518 + 0.691352i \(0.242985\pi\)
\(728\) −30.5931 3.23914i −1.13386 0.120050i
\(729\) 25.2156 0.933913
\(730\) −5.91742 1.00632i −0.219013 0.0372455i
\(731\) −4.72552 + 2.72828i −0.174780 + 0.100909i
\(732\) 4.97382 + 1.74208i 0.183838 + 0.0643891i
\(733\) 4.59290 0.169643 0.0848213 0.996396i \(-0.472968\pi\)
0.0848213 + 0.996396i \(0.472968\pi\)
\(734\) 48.0290 17.8128i 1.77278 0.657482i
\(735\) 0.332176 + 0.191782i 0.0122525 + 0.00707397i
\(736\) −12.4748 4.11527i −0.459828 0.151691i
\(737\) 2.04156 3.53608i 0.0752017 0.130253i
\(738\) 41.4647 + 7.05150i 1.52634 + 0.259569i
\(739\) −0.0458654 0.0794413i −0.00168719 0.00292229i 0.865181 0.501460i \(-0.167204\pi\)
−0.866868 + 0.498538i \(0.833870\pi\)
\(740\) 2.66925 + 14.1304i 0.0981238 + 0.519445i
\(741\) −0.272612 + 0.360594i −0.0100147 + 0.0132467i
\(742\) 19.8290 + 16.4339i 0.727944 + 0.603309i
\(743\) −14.9877 + 8.65317i −0.549847 + 0.317454i −0.749060 0.662502i \(-0.769495\pi\)
0.199213 + 0.979956i \(0.436161\pi\)
\(744\) 1.28963 0.0235416i 0.0472800 0.000863078i
\(745\) −4.00913 + 6.94401i −0.146883 + 0.254409i
\(746\) 13.2103 15.9393i 0.483662 0.583580i
\(747\) 21.7998 37.7583i 0.797611 1.38150i
\(748\) −12.4309 4.35394i −0.454521 0.159196i
\(749\) 19.0091 0.694576
\(750\) −0.0898089 0.242153i −0.00327936 0.00884219i
\(751\) 4.95629 + 8.58454i 0.180857 + 0.313254i 0.942173 0.335128i \(-0.108779\pi\)
−0.761315 + 0.648382i \(0.775446\pi\)
\(752\) −22.4422 + 28.1072i −0.818382 + 1.02496i
\(753\) 4.87922 0.177809
\(754\) −4.86269 + 16.1661i −0.177089 + 0.588735i
\(755\) 18.3109i 0.666403i
\(756\) −4.98440 + 4.28684i −0.181281 + 0.155911i
\(757\) −8.66016 + 4.99995i −0.314759 + 0.181726i −0.649054 0.760742i \(-0.724835\pi\)
0.334295 + 0.942468i \(0.391502\pi\)
\(758\) 43.5903 16.1666i 1.58327 0.587197i
\(759\) 1.17005i 0.0424702i
\(760\) −1.00141 1.66361i −0.0363249 0.0603455i
\(761\) 43.2856 + 24.9909i 1.56910 + 0.905921i 0.996274 + 0.0862452i \(0.0274869\pi\)
0.572828 + 0.819676i \(0.305846\pi\)
\(762\) −2.52351 + 3.04483i −0.0914171 + 0.110303i
\(763\) 18.0369 + 10.4136i 0.652981 + 0.376999i
\(764\) −29.0494 + 24.9840i −1.05097 + 0.903889i
\(765\) −3.54066 6.13260i −0.128013 0.221725i
\(766\) 11.6857 14.0999i 0.422223 0.509449i
\(767\) 6.52793 2.75890i 0.235710 0.0996179i
\(768\) −1.98491 2.14435i −0.0716243 0.0773775i
\(769\)