Properties

Label 520.2.ca.a.101.10
Level $520$
Weight $2$
Character 520.101
Analytic conductor $4.152$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(101,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.ca (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.10
Character \(\chi\) \(=\) 520.101
Dual form 520.2.ca.a.381.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.683296 + 1.23819i) q^{2} +(-2.80828 + 1.62136i) q^{3} +(-1.06621 - 1.69210i) q^{4} -1.00000 q^{5} +(-0.0886625 - 4.58505i) q^{6} +(3.76770 + 2.17528i) q^{7} +(2.82367 - 0.163970i) q^{8} +(3.75763 - 6.50841i) q^{9} +O(q^{10})\) \(q+(-0.683296 + 1.23819i) q^{2} +(-2.80828 + 1.62136i) q^{3} +(-1.06621 - 1.69210i) q^{4} -1.00000 q^{5} +(-0.0886625 - 4.58505i) q^{6} +(3.76770 + 2.17528i) q^{7} +(2.82367 - 0.163970i) q^{8} +(3.75763 - 6.50841i) q^{9} +(0.683296 - 1.23819i) q^{10} +(1.73976 + 3.01336i) q^{11} +(5.73773 + 3.02316i) q^{12} +(3.51068 + 0.821651i) q^{13} +(-5.26786 + 3.17876i) q^{14} +(2.80828 - 1.62136i) q^{15} +(-1.72638 + 3.60827i) q^{16} +(-0.0871303 + 0.150914i) q^{17} +(5.49106 + 9.09982i) q^{18} +(3.52537 - 6.10612i) q^{19} +(1.06621 + 1.69210i) q^{20} -14.1077 q^{21} +(-4.91988 + 0.0951372i) q^{22} +(0.971921 + 1.68342i) q^{23} +(-7.66381 + 5.03867i) q^{24} +1.00000 q^{25} +(-3.41619 + 3.78545i) q^{26} +14.6418i q^{27} +(-0.336387 - 8.69463i) q^{28} +(2.50740 - 1.44765i) q^{29} +(0.0886625 + 4.58505i) q^{30} +4.00389i q^{31} +(-3.28809 - 4.60309i) q^{32} +(-9.77150 - 5.64158i) q^{33} +(-0.127324 - 0.211002i) q^{34} +(-3.76770 - 2.17528i) q^{35} +(-15.0193 + 0.581083i) q^{36} +(-3.07858 - 5.33225i) q^{37} +(5.15165 + 8.53736i) q^{38} +(-11.1912 + 3.38466i) q^{39} +(-2.82367 + 0.163970i) q^{40} +(-3.76751 + 2.17517i) q^{41} +(9.63973 - 17.4680i) q^{42} +(7.49255 + 4.32582i) q^{43} +(3.24393 - 6.15673i) q^{44} +(-3.75763 + 6.50841i) q^{45} +(-2.74849 + 0.0531485i) q^{46} -3.80183i q^{47} +(-1.00216 - 12.9321i) q^{48} +(5.96372 + 10.3295i) q^{49} +(-0.683296 + 1.23819i) q^{50} -0.565079i q^{51} +(-2.35283 - 6.81647i) q^{52} +6.77726i q^{53} +(-18.1292 - 10.0047i) q^{54} +(-1.73976 - 3.01336i) q^{55} +(10.9954 + 5.52449i) q^{56} +22.8636i q^{57} +(0.0791630 + 4.09380i) q^{58} +(-0.345814 + 0.598967i) q^{59} +(-5.73773 - 3.02316i) q^{60} +(-3.53499 - 2.04093i) q^{61} +(-4.95757 - 2.73584i) q^{62} +(28.3153 - 16.3478i) q^{63} +(7.94623 - 0.925995i) q^{64} +(-3.51068 - 0.821651i) q^{65} +(13.6622 - 8.24408i) q^{66} +(3.84011 + 6.65126i) q^{67} +(0.348260 - 0.0134739i) q^{68} +(-5.45886 - 3.15167i) q^{69} +(5.26786 - 3.17876i) q^{70} +(5.70744 + 3.29519i) q^{71} +(9.54313 - 18.9937i) q^{72} -5.78564i q^{73} +(8.70590 - 0.168349i) q^{74} +(-2.80828 + 1.62136i) q^{75} +(-14.0909 + 0.545166i) q^{76} +15.1379i q^{77} +(3.45604 - 16.1695i) q^{78} -4.84812 q^{79} +(1.72638 - 3.60827i) q^{80} +(-12.4667 - 21.5930i) q^{81} +(-0.118947 - 6.15117i) q^{82} -10.7720 q^{83} +(15.0418 + 23.8716i) q^{84} +(0.0871303 - 0.150914i) q^{85} +(-10.4758 + 6.32136i) q^{86} +(-4.69432 + 8.13080i) q^{87} +(5.40662 + 8.22347i) q^{88} +(-7.02896 + 4.05817i) q^{89} +(-5.49106 - 9.09982i) q^{90} +(11.4399 + 10.7325i) q^{91} +(1.81223 - 3.43946i) q^{92} +(-6.49176 - 11.2441i) q^{93} +(4.70738 + 2.59777i) q^{94} +(-3.52537 + 6.10612i) q^{95} +(16.6972 + 7.59560i) q^{96} +(4.51069 + 2.60425i) q^{97} +(-16.8648 + 0.326120i) q^{98} +26.1496 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 6 q^{4} - 56 q^{5} - 5 q^{6} + 28 q^{9} + 8 q^{11} + 6 q^{12} - 4 q^{14} - 10 q^{16} - 18 q^{18} + 16 q^{19} + 6 q^{20} - 6 q^{22} + 12 q^{23} + 2 q^{24} + 56 q^{25} + 11 q^{26} + 6 q^{28} + 5 q^{30} + 16 q^{34} - 21 q^{36} - 4 q^{37} - 24 q^{39} + 29 q^{42} - 24 q^{44} - 28 q^{45} - 11 q^{46} + 3 q^{48} + 20 q^{49} + 18 q^{52} - 49 q^{54} - 8 q^{55} + 61 q^{56} - 47 q^{58} + 16 q^{59} - 6 q^{60} - 2 q^{62} - 30 q^{64} + 14 q^{66} + 36 q^{67} + 33 q^{68} + 4 q^{70} - 51 q^{72} - 2 q^{74} - 48 q^{76} - 35 q^{78} + 10 q^{80} - 28 q^{81} - 21 q^{82} - 40 q^{83} - 61 q^{84} + 28 q^{86} - 36 q^{87} + 41 q^{88} + 18 q^{90} - 16 q^{91} - 18 q^{92} - 41 q^{94} - 16 q^{95} + 48 q^{96} + 24 q^{97} + 28 q^{98} + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/520\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(261\) \(391\) \(417\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.683296 + 1.23819i −0.483163 + 0.875530i
\(3\) −2.80828 + 1.62136i −1.62136 + 0.936094i −0.634807 + 0.772671i \(0.718920\pi\)
−0.986556 + 0.163423i \(0.947746\pi\)
\(4\) −1.06621 1.69210i −0.533107 0.846048i
\(5\) −1.00000 −0.447214
\(6\) −0.0886625 4.58505i −0.0361963 1.87184i
\(7\) 3.76770 + 2.17528i 1.42406 + 0.822180i 0.996643 0.0818753i \(-0.0260909\pi\)
0.427415 + 0.904055i \(0.359424\pi\)
\(8\) 2.82367 0.163970i 0.998318 0.0579722i
\(9\) 3.75763 6.50841i 1.25254 2.16947i
\(10\) 0.683296 1.23819i 0.216077 0.391549i
\(11\) 1.73976 + 3.01336i 0.524559 + 0.908562i 0.999591 + 0.0285940i \(0.00910298\pi\)
−0.475032 + 0.879968i \(0.657564\pi\)
\(12\) 5.73773 + 3.02316i 1.65634 + 0.872712i
\(13\) 3.51068 + 0.821651i 0.973688 + 0.227885i
\(14\) −5.26786 + 3.17876i −1.40790 + 0.849559i
\(15\) 2.80828 1.62136i 0.725095 0.418634i
\(16\) −1.72638 + 3.60827i −0.431594 + 0.902068i
\(17\) −0.0871303 + 0.150914i −0.0211322 + 0.0366020i −0.876398 0.481587i \(-0.840060\pi\)
0.855266 + 0.518189i \(0.173394\pi\)
\(18\) 5.49106 + 9.09982i 1.29425 + 2.14485i
\(19\) 3.52537 6.10612i 0.808776 1.40084i −0.104936 0.994479i \(-0.533464\pi\)
0.913712 0.406362i \(-0.133203\pi\)
\(20\) 1.06621 + 1.69210i 0.238413 + 0.378364i
\(21\) −14.1077 −3.07855
\(22\) −4.91988 + 0.0951372i −1.04892 + 0.0202833i
\(23\) 0.971921 + 1.68342i 0.202659 + 0.351017i 0.949384 0.314116i \(-0.101708\pi\)
−0.746725 + 0.665133i \(0.768375\pi\)
\(24\) −7.66381 + 5.03867i −1.56437 + 1.02851i
\(25\) 1.00000 0.200000
\(26\) −3.41619 + 3.78545i −0.669970 + 0.742388i
\(27\) 14.6418i 2.81781i
\(28\) −0.336387 8.69463i −0.0635712 1.64313i
\(29\) 2.50740 1.44765i 0.465612 0.268821i −0.248789 0.968558i \(-0.580033\pi\)
0.714401 + 0.699736i \(0.246699\pi\)
\(30\) 0.0886625 + 4.58505i 0.0161875 + 0.837112i
\(31\) 4.00389i 0.719121i 0.933122 + 0.359560i \(0.117073\pi\)
−0.933122 + 0.359560i \(0.882927\pi\)
\(32\) −3.28809 4.60309i −0.581258 0.813720i
\(33\) −9.77150 5.64158i −1.70100 0.982073i
\(34\) −0.127324 0.211002i −0.0218359 0.0361866i
\(35\) −3.76770 2.17528i −0.636858 0.367690i
\(36\) −15.0193 + 0.581083i −2.50322 + 0.0968471i
\(37\) −3.07858 5.33225i −0.506115 0.876616i −0.999975 0.00707510i \(-0.997748\pi\)
0.493860 0.869541i \(-0.335585\pi\)
\(38\) 5.15165 + 8.53736i 0.835708 + 1.38494i
\(39\) −11.1912 + 3.38466i −1.79202 + 0.541980i
\(40\) −2.82367 + 0.163970i −0.446461 + 0.0259259i
\(41\) −3.76751 + 2.17517i −0.588386 + 0.339705i −0.764459 0.644672i \(-0.776994\pi\)
0.176073 + 0.984377i \(0.443661\pi\)
\(42\) 9.63973 17.4680i 1.48744 2.69537i
\(43\) 7.49255 + 4.32582i 1.14260 + 0.659682i 0.947074 0.321016i \(-0.104024\pi\)
0.195529 + 0.980698i \(0.437358\pi\)
\(44\) 3.24393 6.15673i 0.489041 0.928163i
\(45\) −3.75763 + 6.50841i −0.560155 + 0.970217i
\(46\) −2.74849 + 0.0531485i −0.405243 + 0.00783631i
\(47\) 3.80183i 0.554554i −0.960790 0.277277i \(-0.910568\pi\)
0.960790 0.277277i \(-0.0894320\pi\)
\(48\) −1.00216 12.9321i −0.144650 1.86659i
\(49\) 5.96372 + 10.3295i 0.851960 + 1.47564i
\(50\) −0.683296 + 1.23819i −0.0966326 + 0.175106i
\(51\) 0.565079i 0.0791269i
\(52\) −2.35283 6.81647i −0.326278 0.945274i
\(53\) 6.77726i 0.930928i 0.885067 + 0.465464i \(0.154112\pi\)
−0.885067 + 0.465464i \(0.845888\pi\)
\(54\) −18.1292 10.0047i −2.46708 1.36146i
\(55\) −1.73976 3.01336i −0.234590 0.406321i
\(56\) 10.9954 + 5.52449i 1.46933 + 0.738242i
\(57\) 22.8636i 3.02836i
\(58\) 0.0791630 + 4.09380i 0.0103946 + 0.537542i
\(59\) −0.345814 + 0.598967i −0.0450211 + 0.0779789i −0.887658 0.460504i \(-0.847669\pi\)
0.842637 + 0.538482i \(0.181002\pi\)
\(60\) −5.73773 3.02316i −0.740738 0.390289i
\(61\) −3.53499 2.04093i −0.452609 0.261314i 0.256322 0.966591i \(-0.417489\pi\)
−0.708932 + 0.705277i \(0.750822\pi\)
\(62\) −4.95757 2.73584i −0.629612 0.347452i
\(63\) 28.3153 16.3478i 3.56739 2.05963i
\(64\) 7.94623 0.925995i 0.993278 0.115749i
\(65\) −3.51068 0.821651i −0.435447 0.101913i
\(66\) 13.6622 8.24408i 1.68169 1.01478i
\(67\) 3.84011 + 6.65126i 0.469144 + 0.812580i 0.999378 0.0352707i \(-0.0112294\pi\)
−0.530234 + 0.847851i \(0.677896\pi\)
\(68\) 0.348260 0.0134739i 0.0422328 0.00163395i
\(69\) −5.45886 3.15167i −0.657169 0.379417i
\(70\) 5.26786 3.17876i 0.629630 0.379934i
\(71\) 5.70744 + 3.29519i 0.677349 + 0.391067i 0.798855 0.601523i \(-0.205439\pi\)
−0.121507 + 0.992591i \(0.538773\pi\)
\(72\) 9.54313 18.9937i 1.12467 2.23843i
\(73\) 5.78564i 0.677157i −0.940938 0.338579i \(-0.890054\pi\)
0.940938 0.338579i \(-0.109946\pi\)
\(74\) 8.70590 0.168349i 1.01204 0.0195701i
\(75\) −2.80828 + 1.62136i −0.324273 + 0.187219i
\(76\) −14.0909 + 0.545166i −1.61634 + 0.0625348i
\(77\) 15.1379i 1.72513i
\(78\) 3.45604 16.1695i 0.391320 1.83084i
\(79\) −4.84812 −0.545456 −0.272728 0.962091i \(-0.587926\pi\)
−0.272728 + 0.962091i \(0.587926\pi\)
\(80\) 1.72638 3.60827i 0.193015 0.403417i
\(81\) −12.4667 21.5930i −1.38519 2.39922i
\(82\) −0.118947 6.15117i −0.0131355 0.679283i
\(83\) −10.7720 −1.18238 −0.591189 0.806533i \(-0.701341\pi\)
−0.591189 + 0.806533i \(0.701341\pi\)
\(84\) 15.0418 + 23.8716i 1.64120 + 2.60460i
\(85\) 0.0871303 0.150914i 0.00945060 0.0163689i
\(86\) −10.4758 + 6.32136i −1.12963 + 0.681649i
\(87\) −4.69432 + 8.13080i −0.503284 + 0.871713i
\(88\) 5.40662 + 8.22347i 0.576348 + 0.876624i
\(89\) −7.02896 + 4.05817i −0.745068 + 0.430165i −0.823909 0.566722i \(-0.808211\pi\)
0.0788410 + 0.996887i \(0.474878\pi\)
\(90\) −5.49106 9.09982i −0.578808 0.959206i
\(91\) 11.4399 + 10.7325i 1.19923 + 1.12507i
\(92\) 1.81223 3.43946i 0.188938 0.358589i
\(93\) −6.49176 11.2441i −0.673165 1.16596i
\(94\) 4.70738 + 2.59777i 0.485529 + 0.267940i
\(95\) −3.52537 + 6.10612i −0.361696 + 0.626475i
\(96\) 16.6972 + 7.59560i 1.70415 + 0.775223i
\(97\) 4.51069 + 2.60425i 0.457991 + 0.264421i 0.711199 0.702991i \(-0.248152\pi\)
−0.253208 + 0.967412i \(0.581486\pi\)
\(98\) −16.8648 + 0.326120i −1.70360 + 0.0329431i
\(99\) 26.1496 2.62813
\(100\) −1.06621 1.69210i −0.106621 0.169210i
\(101\) 8.61732 4.97521i 0.857456 0.495052i −0.00570385 0.999984i \(-0.501816\pi\)
0.863159 + 0.504932i \(0.168482\pi\)
\(102\) 0.699673 + 0.386116i 0.0692780 + 0.0382312i
\(103\) 4.46886 0.440330 0.220165 0.975463i \(-0.429340\pi\)
0.220165 + 0.975463i \(0.429340\pi\)
\(104\) 10.0477 + 1.74442i 0.985261 + 0.171055i
\(105\) 14.1077 1.37677
\(106\) −8.39151 4.63087i −0.815055 0.449790i
\(107\) −8.53297 + 4.92651i −0.824914 + 0.476264i −0.852108 0.523366i \(-0.824676\pi\)
0.0271944 + 0.999630i \(0.491343\pi\)
\(108\) 24.7753 15.6113i 2.38400 1.50219i
\(109\) 9.16126 0.877490 0.438745 0.898612i \(-0.355423\pi\)
0.438745 + 0.898612i \(0.355423\pi\)
\(110\) 4.91988 0.0951372i 0.469092 0.00907097i
\(111\) 17.2910 + 9.98297i 1.64119 + 0.947542i
\(112\) −14.3535 + 9.83954i −1.35628 + 0.929749i
\(113\) −4.01133 + 6.94783i −0.377354 + 0.653597i −0.990676 0.136236i \(-0.956499\pi\)
0.613322 + 0.789833i \(0.289833\pi\)
\(114\) −28.3094 15.6226i −2.65142 1.46319i
\(115\) −0.971921 1.68342i −0.0906321 0.156979i
\(116\) −5.12298 2.69926i −0.475657 0.250620i
\(117\) 18.5395 19.7615i 1.71398 1.82695i
\(118\) −0.505340 0.837454i −0.0465203 0.0770939i
\(119\) −0.656562 + 0.379066i −0.0601869 + 0.0347489i
\(120\) 7.66381 5.03867i 0.699607 0.459965i
\(121\) −0.553559 + 0.958792i −0.0503235 + 0.0871629i
\(122\) 4.94249 2.98242i 0.447472 0.270016i
\(123\) 7.05349 12.2170i 0.635992 1.10157i
\(124\) 6.77497 4.26901i 0.608410 0.383368i
\(125\) −1.00000 −0.0894427
\(126\) 0.893964 + 46.2300i 0.0796407 + 4.11850i
\(127\) 1.31236 + 2.27308i 0.116453 + 0.201703i 0.918360 0.395747i \(-0.129514\pi\)
−0.801906 + 0.597450i \(0.796181\pi\)
\(128\) −4.28307 + 10.4716i −0.378573 + 0.925571i
\(129\) −28.0549 −2.47010
\(130\) 3.41619 3.78545i 0.299620 0.332006i
\(131\) 11.7817i 1.02937i 0.857380 + 0.514685i \(0.172091\pi\)
−0.857380 + 0.514685i \(0.827909\pi\)
\(132\) 0.872417 + 22.5494i 0.0759342 + 1.96268i
\(133\) 26.5651 15.3374i 2.30349 1.32992i
\(134\) −10.8594 + 0.209992i −0.938112 + 0.0181406i
\(135\) 14.6418i 1.26016i
\(136\) −0.221282 + 0.440418i −0.0189748 + 0.0377655i
\(137\) −7.08319 4.08948i −0.605158 0.349388i 0.165910 0.986141i \(-0.446944\pi\)
−0.771068 + 0.636753i \(0.780277\pi\)
\(138\) 7.63237 4.60556i 0.649711 0.392051i
\(139\) −17.7361 10.2400i −1.50436 0.868542i −0.999987 0.00505590i \(-0.998391\pi\)
−0.504372 0.863486i \(-0.668276\pi\)
\(140\) 0.336387 + 8.69463i 0.0284299 + 0.734831i
\(141\) 6.16415 + 10.6766i 0.519115 + 0.899133i
\(142\) −7.97993 + 4.81529i −0.669661 + 0.404090i
\(143\) 3.63183 + 12.0084i 0.303709 + 1.00420i
\(144\) 16.9970 + 24.7945i 1.41642 + 2.06621i
\(145\) −2.50740 + 1.44765i −0.208228 + 0.120221i
\(146\) 7.16370 + 3.95330i 0.592872 + 0.327177i
\(147\) −33.4956 19.3387i −2.76267 1.59503i
\(148\) −5.74026 + 10.8946i −0.471846 + 0.895528i
\(149\) 9.69588 16.7937i 0.794317 1.37580i −0.128955 0.991650i \(-0.541162\pi\)
0.923272 0.384147i \(-0.125504\pi\)
\(150\) −0.0886625 4.58505i −0.00723926 0.374368i
\(151\) 20.1283i 1.63802i −0.573783 0.819008i \(-0.694525\pi\)
0.573783 0.819008i \(-0.305475\pi\)
\(152\) 8.95327 17.8197i 0.726206 1.44537i
\(153\) 0.654807 + 1.13416i 0.0529380 + 0.0916913i
\(154\) −18.7436 10.3437i −1.51040 0.833518i
\(155\) 4.00389i 0.321600i
\(156\) 17.6594 + 15.3278i 1.41388 + 1.22720i
\(157\) 2.26965i 0.181138i 0.995890 + 0.0905691i \(0.0288686\pi\)
−0.995890 + 0.0905691i \(0.971131\pi\)
\(158\) 3.31270 6.00288i 0.263544 0.477563i
\(159\) −10.9884 19.0324i −0.871436 1.50937i
\(160\) 3.28809 + 4.60309i 0.259946 + 0.363906i
\(161\) 8.45682i 0.666490i
\(162\) 35.2546 0.681729i 2.76986 0.0535617i
\(163\) −8.50577 + 14.7324i −0.666223 + 1.15393i 0.312729 + 0.949842i \(0.398757\pi\)
−0.978952 + 0.204090i \(0.934577\pi\)
\(164\) 7.69757 + 4.05579i 0.601080 + 0.316704i
\(165\) 9.77150 + 5.64158i 0.760710 + 0.439196i
\(166\) 7.36045 13.3377i 0.571282 1.03521i
\(167\) −10.5757 + 6.10587i −0.818370 + 0.472486i −0.849854 0.527018i \(-0.823310\pi\)
0.0314839 + 0.999504i \(0.489977\pi\)
\(168\) −39.8355 + 2.31324i −3.07337 + 0.178470i
\(169\) 11.6498 + 5.76911i 0.896137 + 0.443778i
\(170\) 0.127324 + 0.211002i 0.00976531 + 0.0161831i
\(171\) −26.4941 45.8892i −2.02606 3.50923i
\(172\) −0.668948 17.2904i −0.0510068 1.31838i
\(173\) −6.51681 3.76248i −0.495464 0.286056i 0.231374 0.972865i \(-0.425678\pi\)
−0.726838 + 0.686809i \(0.759011\pi\)
\(174\) −6.85984 11.3682i −0.520043 0.861820i
\(175\) 3.76770 + 2.17528i 0.284812 + 0.164436i
\(176\) −13.8765 + 1.07535i −1.04598 + 0.0810574i
\(177\) 2.24276i 0.168576i
\(178\) −0.221917 11.4761i −0.0166334 0.860170i
\(179\) 8.81127 5.08719i 0.658585 0.380234i −0.133152 0.991096i \(-0.542510\pi\)
0.791738 + 0.610861i \(0.209177\pi\)
\(180\) 15.0193 0.581083i 1.11947 0.0433114i
\(181\) 22.5150i 1.67352i −0.547567 0.836762i \(-0.684446\pi\)
0.547567 0.836762i \(-0.315554\pi\)
\(182\) −21.1056 + 6.83126i −1.56445 + 0.506367i
\(183\) 13.2363 0.978458
\(184\) 3.02041 + 4.59405i 0.222668 + 0.338678i
\(185\) 3.07858 + 5.33225i 0.226341 + 0.392035i
\(186\) 18.3580 0.354995i 1.34608 0.0260295i
\(187\) −0.606344 −0.0443403
\(188\) −6.43306 + 4.05356i −0.469179 + 0.295637i
\(189\) −31.8500 + 55.1658i −2.31675 + 4.01272i
\(190\) −5.15165 8.53736i −0.373740 0.619365i
\(191\) 5.11767 8.86407i 0.370302 0.641382i −0.619310 0.785147i \(-0.712588\pi\)
0.989612 + 0.143765i \(0.0459209\pi\)
\(192\) −20.8139 + 15.4842i −1.50211 + 1.11747i
\(193\) 13.2572 7.65407i 0.954277 0.550952i 0.0598699 0.998206i \(-0.480931\pi\)
0.894407 + 0.447254i \(0.147598\pi\)
\(194\) −6.30668 + 3.80560i −0.452793 + 0.273226i
\(195\) 11.1912 3.38466i 0.801417 0.242381i
\(196\) 11.1199 21.1046i 0.794275 1.50747i
\(197\) 4.35638 + 7.54548i 0.310379 + 0.537593i 0.978445 0.206510i \(-0.0662106\pi\)
−0.668065 + 0.744103i \(0.732877\pi\)
\(198\) −17.8679 + 32.3781i −1.26982 + 2.30101i
\(199\) −5.74530 + 9.95116i −0.407274 + 0.705419i −0.994583 0.103944i \(-0.966854\pi\)
0.587309 + 0.809362i \(0.300187\pi\)
\(200\) 2.82367 0.163970i 0.199664 0.0115944i
\(201\) −21.5682 12.4524i −1.52130 0.878325i
\(202\) 0.272064 + 14.0694i 0.0191424 + 0.989919i
\(203\) 12.5962 0.884078
\(204\) −0.956168 + 0.602495i −0.0669451 + 0.0421831i
\(205\) 3.76751 2.17517i 0.263134 0.151921i
\(206\) −3.05355 + 5.53329i −0.212751 + 0.385522i
\(207\) 14.6085 1.01536
\(208\) −9.02550 + 11.2490i −0.625806 + 0.779979i
\(209\) 24.5333 1.69700
\(210\) −9.63973 + 17.4680i −0.665205 + 1.20540i
\(211\) −2.97267 + 1.71627i −0.204647 + 0.118153i −0.598821 0.800883i \(-0.704364\pi\)
0.394174 + 0.919036i \(0.371031\pi\)
\(212\) 11.4678 7.22600i 0.787609 0.496284i
\(213\) −21.3708 −1.46430
\(214\) −0.269401 13.9317i −0.0184159 0.952350i
\(215\) −7.49255 4.32582i −0.510987 0.295019i
\(216\) 2.40081 + 41.3435i 0.163355 + 2.81307i
\(217\) −8.70961 + 15.0855i −0.591247 + 1.02407i
\(218\) −6.25985 + 11.3434i −0.423971 + 0.768269i
\(219\) 9.38061 + 16.2477i 0.633883 + 1.09792i
\(220\) −3.24393 + 6.15673i −0.218706 + 0.415087i
\(221\) −0.429885 + 0.458221i −0.0289172 + 0.0308232i
\(222\) −24.1757 + 14.5882i −1.62256 + 0.979095i
\(223\) −21.3931 + 12.3513i −1.43259 + 0.827106i −0.997318 0.0731926i \(-0.976681\pi\)
−0.435272 + 0.900299i \(0.643348\pi\)
\(224\) −2.37551 24.4956i −0.158720 1.63668i
\(225\) 3.75763 6.50841i 0.250509 0.433894i
\(226\) −5.86179 9.71420i −0.389920 0.646179i
\(227\) −10.8312 + 18.7601i −0.718889 + 1.24515i 0.242551 + 0.970139i \(0.422016\pi\)
−0.961440 + 0.275014i \(0.911318\pi\)
\(228\) 38.6875 24.3775i 2.56214 1.61444i
\(229\) −9.85088 −0.650964 −0.325482 0.945548i \(-0.605527\pi\)
−0.325482 + 0.945548i \(0.605527\pi\)
\(230\) 2.74849 0.0531485i 0.181230 0.00350451i
\(231\) −24.5441 42.5116i −1.61488 2.79706i
\(232\) 6.84269 4.49881i 0.449245 0.295362i
\(233\) 1.91774 0.125636 0.0628178 0.998025i \(-0.479991\pi\)
0.0628178 + 0.998025i \(0.479991\pi\)
\(234\) 11.8005 + 36.4583i 0.771421 + 2.38335i
\(235\) 3.80183i 0.248004i
\(236\) 1.38222 0.0534769i 0.0899749 0.00348105i
\(237\) 13.6149 7.86056i 0.884382 0.510598i
\(238\) −0.0207288 1.07196i −0.00134365 0.0694849i
\(239\) 1.29795i 0.0839574i −0.999119 0.0419787i \(-0.986634\pi\)
0.999119 0.0419787i \(-0.0133662\pi\)
\(240\) 1.00216 + 12.9321i 0.0646894 + 0.834765i
\(241\) 13.7951 + 7.96463i 0.888623 + 0.513047i 0.873492 0.486839i \(-0.161850\pi\)
0.0151311 + 0.999886i \(0.495183\pi\)
\(242\) −0.808919 1.34055i −0.0519993 0.0861737i
\(243\) 31.9797 + 18.4635i 2.05150 + 1.18443i
\(244\) 0.315610 + 8.15761i 0.0202049 + 0.522237i
\(245\) −5.96372 10.3295i −0.381008 0.659926i
\(246\) 10.3073 + 17.0814i 0.657170 + 1.08907i
\(247\) 17.3936 18.5400i 1.10673 1.17967i
\(248\) 0.656519 + 11.3057i 0.0416890 + 0.717911i
\(249\) 30.2508 17.4653i 1.91706 1.10682i
\(250\) 0.683296 1.23819i 0.0432154 0.0783098i
\(251\) 4.91353 + 2.83683i 0.310140 + 0.179059i 0.646989 0.762499i \(-0.276028\pi\)
−0.336849 + 0.941559i \(0.609361\pi\)
\(252\) −57.8523 30.4819i −3.64435 1.92018i
\(253\) −3.38183 + 5.85749i −0.212614 + 0.368257i
\(254\) −3.71123 + 0.0717651i −0.232863 + 0.00450294i
\(255\) 0.565079i 0.0353866i
\(256\) −10.0392 12.4585i −0.627453 0.778654i
\(257\) −5.37143 9.30358i −0.335060 0.580342i 0.648436 0.761269i \(-0.275423\pi\)
−0.983496 + 0.180927i \(0.942090\pi\)
\(258\) 19.1698 34.7372i 1.19346 2.16265i
\(259\) 26.7871i 1.66447i
\(260\) 2.35283 + 6.81647i 0.145916 + 0.422739i
\(261\) 21.7589i 1.34684i
\(262\) −14.5879 8.05036i −0.901244 0.497353i
\(263\) −0.121811 0.210982i −0.00751117 0.0130097i 0.862245 0.506491i \(-0.169058\pi\)
−0.869757 + 0.493481i \(0.835724\pi\)
\(264\) −28.5165 14.3277i −1.75507 0.881810i
\(265\) 6.77726i 0.416323i
\(266\) 0.838708 + 43.3725i 0.0514245 + 2.65934i
\(267\) 13.1595 22.7930i 0.805350 1.39491i
\(268\) 7.16019 13.5895i 0.437378 0.830110i
\(269\) −11.6318 6.71561i −0.709202 0.409458i 0.101564 0.994829i \(-0.467615\pi\)
−0.810765 + 0.585371i \(0.800949\pi\)
\(270\) 18.1292 + 10.0047i 1.10331 + 0.608864i
\(271\) −8.02102 + 4.63094i −0.487242 + 0.281309i −0.723430 0.690398i \(-0.757435\pi\)
0.236187 + 0.971708i \(0.424102\pi\)
\(272\) −0.394119 0.574924i −0.0238970 0.0348599i
\(273\) −49.5276 11.5916i −2.99755 0.701556i
\(274\) 9.90346 5.97599i 0.598290 0.361023i
\(275\) 1.73976 + 3.01336i 0.104912 + 0.181712i
\(276\) 0.487377 + 12.5973i 0.0293366 + 0.758266i
\(277\) 7.82314 + 4.51669i 0.470047 + 0.271382i 0.716259 0.697834i \(-0.245853\pi\)
−0.246213 + 0.969216i \(0.579186\pi\)
\(278\) 24.7980 14.9637i 1.48729 0.897465i
\(279\) 26.0590 + 15.0452i 1.56011 + 0.900730i
\(280\) −10.9954 5.52449i −0.657103 0.330152i
\(281\) 26.5298i 1.58263i 0.611407 + 0.791316i \(0.290604\pi\)
−0.611407 + 0.791316i \(0.709396\pi\)
\(282\) −17.4316 + 0.337080i −1.03804 + 0.0200728i
\(283\) −7.95167 + 4.59090i −0.472678 + 0.272901i −0.717360 0.696703i \(-0.754650\pi\)
0.244682 + 0.969603i \(0.421316\pi\)
\(284\) −0.509571 13.1709i −0.0302375 0.781550i
\(285\) 22.8636i 1.35432i
\(286\) −17.3503 3.70842i −1.02594 0.219284i
\(287\) −18.9265 −1.11719
\(288\) −42.3143 + 4.10350i −2.49339 + 0.241801i
\(289\) 8.48482 + 14.6961i 0.499107 + 0.864478i
\(290\) −0.0791630 4.09380i −0.00464861 0.240396i
\(291\) −16.8897 −0.990092
\(292\) −9.78985 + 6.16872i −0.572908 + 0.360997i
\(293\) 9.79438 16.9644i 0.572194 0.991069i −0.424146 0.905594i \(-0.639426\pi\)
0.996340 0.0854753i \(-0.0272409\pi\)
\(294\) 46.8324 28.2598i 2.73132 1.64814i
\(295\) 0.345814 0.598967i 0.0201341 0.0348732i
\(296\) −9.56721 14.5517i −0.556083 0.845802i
\(297\) −44.1209 + 25.4732i −2.56016 + 1.47811i
\(298\) 14.1687 + 23.4804i 0.820768 + 1.36018i
\(299\) 2.02892 + 6.70852i 0.117336 + 0.387964i
\(300\) 5.73773 + 3.02316i 0.331268 + 0.174542i
\(301\) 18.8198 + 32.5968i 1.08475 + 1.87885i
\(302\) 24.9226 + 13.7536i 1.43413 + 0.791428i
\(303\) −16.1332 + 27.9436i −0.926831 + 1.60532i
\(304\) 15.9464 + 23.2620i 0.914591 + 1.33417i
\(305\) 3.53499 + 2.04093i 0.202413 + 0.116863i
\(306\) −1.85173 + 0.0358074i −0.105856 + 0.00204697i
\(307\) −4.40198 −0.251234 −0.125617 0.992079i \(-0.540091\pi\)
−0.125617 + 0.992079i \(0.540091\pi\)
\(308\) 25.6148 16.1403i 1.45954 0.919677i
\(309\) −12.5498 + 7.24565i −0.713935 + 0.412190i
\(310\) 4.95757 + 2.73584i 0.281571 + 0.155385i
\(311\) 18.3297 1.03938 0.519691 0.854354i \(-0.326047\pi\)
0.519691 + 0.854354i \(0.326047\pi\)
\(312\) −31.0452 + 11.3922i −1.75759 + 0.644956i
\(313\) 5.44772 0.307923 0.153962 0.988077i \(-0.450797\pi\)
0.153962 + 0.988077i \(0.450797\pi\)
\(314\) −2.81026 1.55085i −0.158592 0.0875193i
\(315\) −28.3153 + 16.3478i −1.59539 + 0.921097i
\(316\) 5.16913 + 8.20348i 0.290786 + 0.461482i
\(317\) 10.1490 0.570023 0.285011 0.958524i \(-0.408003\pi\)
0.285011 + 0.958524i \(0.408003\pi\)
\(318\) 31.0740 0.600888i 1.74255 0.0336961i
\(319\) 8.72456 + 5.03713i 0.488482 + 0.282025i
\(320\) −7.94623 + 0.925995i −0.444208 + 0.0517647i
\(321\) 15.9753 27.6701i 0.891656 1.54439i
\(322\) −10.4711 5.77851i −0.583533 0.322024i
\(323\) 0.614333 + 1.06406i 0.0341824 + 0.0592057i
\(324\) −23.2452 + 44.1176i −1.29140 + 2.45098i
\(325\) 3.51068 + 0.821651i 0.194738 + 0.0455770i
\(326\) −12.4295 20.5983i −0.688408 1.14084i
\(327\) −25.7274 + 14.8537i −1.42273 + 0.821413i
\(328\) −10.2815 + 6.75973i −0.567703 + 0.373244i
\(329\) 8.27006 14.3242i 0.455943 0.789717i
\(330\) −13.6622 + 8.24408i −0.752077 + 0.453821i
\(331\) −4.16389 + 7.21207i −0.228868 + 0.396411i −0.957473 0.288523i \(-0.906836\pi\)
0.728605 + 0.684934i \(0.240169\pi\)
\(332\) 11.4852 + 18.2272i 0.630334 + 1.00035i
\(333\) −46.2726 −2.53572
\(334\) −0.333893 17.2668i −0.0182698 0.944796i
\(335\) −3.84011 6.65126i −0.209807 0.363397i
\(336\) 24.3552 50.9044i 1.32868 2.77706i
\(337\) −0.369183 −0.0201107 −0.0100553 0.999949i \(-0.503201\pi\)
−0.0100553 + 0.999949i \(0.503201\pi\)
\(338\) −15.1035 + 10.4826i −0.821521 + 0.570178i
\(339\) 26.0153i 1.41296i
\(340\) −0.348260 + 0.0134739i −0.0188871 + 0.000730724i
\(341\) −12.0652 + 6.96583i −0.653366 + 0.377221i
\(342\) 74.9227 1.44880i 4.05135 0.0783423i
\(343\) 21.4372i 1.15750i
\(344\) 21.8658 + 10.9861i 1.17892 + 0.592333i
\(345\) 5.45886 + 3.15167i 0.293895 + 0.169680i
\(346\) 9.11157 5.49814i 0.489841 0.295582i
\(347\) 27.7146 + 16.0010i 1.48780 + 0.858981i 0.999903 0.0139210i \(-0.00443134\pi\)
0.487896 + 0.872902i \(0.337765\pi\)
\(348\) 18.7632 0.725933i 1.00582 0.0389141i
\(349\) 11.0620 + 19.1600i 0.592138 + 1.02561i 0.993944 + 0.109888i \(0.0350493\pi\)
−0.401806 + 0.915725i \(0.631617\pi\)
\(350\) −5.26786 + 3.17876i −0.281579 + 0.169912i
\(351\) −12.0304 + 51.4026i −0.642137 + 2.74367i
\(352\) 8.15028 17.9165i 0.434411 0.954952i
\(353\) 6.93899 4.00623i 0.369325 0.213230i −0.303838 0.952724i \(-0.598268\pi\)
0.673164 + 0.739494i \(0.264935\pi\)
\(354\) 2.77695 + 1.53247i 0.147593 + 0.0814497i
\(355\) −5.70744 3.29519i −0.302920 0.174891i
\(356\) 14.3612 + 7.56679i 0.761141 + 0.401039i
\(357\) 1.22921 2.12905i 0.0650565 0.112681i
\(358\) 0.278188 + 14.3861i 0.0147027 + 0.760327i
\(359\) 18.2254i 0.961902i −0.876748 0.480951i \(-0.840292\pi\)
0.876748 0.480951i \(-0.159708\pi\)
\(360\) −9.54313 + 18.9937i −0.502967 + 1.00106i
\(361\) −15.3565 26.5982i −0.808237 1.39991i
\(362\) 27.8777 + 15.3844i 1.46522 + 0.808585i
\(363\) 3.59008i 0.188430i
\(364\) 5.96300 30.8005i 0.312546 1.61438i
\(365\) 5.78564i 0.302834i
\(366\) −9.04433 + 16.3891i −0.472755 + 0.856670i
\(367\) −8.30557 14.3857i −0.433547 0.750926i 0.563629 0.826028i \(-0.309405\pi\)
−0.997176 + 0.0751024i \(0.976072\pi\)
\(368\) −7.75212 + 0.600744i −0.404107 + 0.0313160i
\(369\) 32.6940i 1.70198i
\(370\) −8.70590 + 0.168349i −0.452598 + 0.00875203i
\(371\) −14.7425 + 25.5347i −0.765390 + 1.32569i
\(372\) −12.1044 + 22.9733i −0.627585 + 1.19111i
\(373\) −16.9366 9.77836i −0.876945 0.506304i −0.00729516 0.999973i \(-0.502322\pi\)
−0.869650 + 0.493669i \(0.835655\pi\)
\(374\) 0.414313 0.750768i 0.0214236 0.0388213i
\(375\) 2.80828 1.62136i 0.145019 0.0837268i
\(376\) −0.623386 10.7351i −0.0321487 0.553621i
\(377\) 9.99214 3.02202i 0.514621 0.155642i
\(378\) −46.5426 77.1309i −2.39390 3.96718i
\(379\) 17.7727 + 30.7833i 0.912923 + 1.58123i 0.809913 + 0.586550i \(0.199514\pi\)
0.103010 + 0.994680i \(0.467153\pi\)
\(380\) 14.0909 0.545166i 0.722850 0.0279664i
\(381\) −7.37097 4.25563i −0.377626 0.218023i
\(382\) 7.47849 + 12.3934i 0.382633 + 0.634102i
\(383\) −8.45235 4.87996i −0.431895 0.249355i 0.268259 0.963347i \(-0.413552\pi\)
−0.700153 + 0.713992i \(0.746885\pi\)
\(384\) −4.95026 36.3517i −0.252617 1.85507i
\(385\) 15.1379i 0.771500i
\(386\) 0.418555 + 21.6449i 0.0213039 + 1.10170i
\(387\) 56.3085 32.5097i 2.86232 1.65256i
\(388\) −0.402722 10.4092i −0.0204451 0.528447i
\(389\) 6.49427i 0.329273i −0.986354 0.164636i \(-0.947355\pi\)
0.986354 0.164636i \(-0.0526450\pi\)
\(390\) −3.45604 + 16.1695i −0.175004 + 0.818774i
\(391\) −0.338735 −0.0171306
\(392\) 18.5333 + 28.1891i 0.936074 + 1.42377i
\(393\) −19.1024 33.0862i −0.963586 1.66898i
\(394\) −12.3194 + 0.238224i −0.620643 + 0.0120016i
\(395\) 4.84812 0.243935
\(396\) −27.8810 44.2476i −1.40108 2.22353i
\(397\) 4.89890 8.48514i 0.245869 0.425857i −0.716507 0.697580i \(-0.754260\pi\)
0.962375 + 0.271723i \(0.0875935\pi\)
\(398\) −8.39565 13.9133i −0.420836 0.697413i
\(399\) −49.7349 + 86.1434i −2.48986 + 4.31256i
\(400\) −1.72638 + 3.60827i −0.0863188 + 0.180414i
\(401\) −29.1996 + 16.8584i −1.45816 + 0.841867i −0.998921 0.0464469i \(-0.985210\pi\)
−0.459236 + 0.888314i \(0.651877\pi\)
\(402\) 30.1559 18.1968i 1.50404 0.907573i
\(403\) −3.28980 + 14.0564i −0.163877 + 0.700199i
\(404\) −17.6064 9.27669i −0.875953 0.461533i
\(405\) 12.4667 + 21.5930i 0.619476 + 1.07296i
\(406\) −8.60691 + 15.5964i −0.427154 + 0.774037i
\(407\) 10.7120 18.5537i 0.530974 0.919673i
\(408\) −0.0926560 1.59560i −0.00458716 0.0789938i
\(409\) −28.7701 16.6104i −1.42259 0.821332i −0.426070 0.904690i \(-0.640102\pi\)
−0.996520 + 0.0833579i \(0.973436\pi\)
\(410\) 0.118947 + 6.15117i 0.00587438 + 0.303785i
\(411\) 26.5221 1.30824
\(412\) −4.76476 7.56174i −0.234743 0.372540i
\(413\) −2.60585 + 1.50449i −0.128225 + 0.0740309i
\(414\) −9.98192 + 18.0880i −0.490584 + 0.888979i
\(415\) 10.7720 0.528776
\(416\) −7.76130 18.8617i −0.380529 0.924769i
\(417\) 66.4108 3.25215
\(418\) −16.7635 + 30.3768i −0.819929 + 1.48578i
\(419\) 27.1497 15.6749i 1.32635 0.765767i 0.341615 0.939840i \(-0.389026\pi\)
0.984733 + 0.174073i \(0.0556928\pi\)
\(420\) −15.0418 23.8716i −0.733966 1.16481i
\(421\) −13.4850 −0.657220 −0.328610 0.944466i \(-0.606580\pi\)
−0.328610 + 0.944466i \(0.606580\pi\)
\(422\) −0.0938524 4.85344i −0.00456866 0.236262i
\(423\) −24.7439 14.2859i −1.20309 0.694603i
\(424\) 1.11127 + 19.1367i 0.0539679 + 0.929362i
\(425\) −0.0871303 + 0.150914i −0.00422644 + 0.00732041i
\(426\) 14.6026 26.4611i 0.707497 1.28204i
\(427\) −8.87920 15.3792i −0.429694 0.744253i
\(428\) 17.4341 + 9.18589i 0.842709 + 0.444017i
\(429\) −29.6692 27.8345i −1.43244 1.34386i
\(430\) 10.4758 6.32136i 0.505188 0.304843i
\(431\) 8.88410 5.12924i 0.427932 0.247067i −0.270533 0.962711i \(-0.587200\pi\)
0.698465 + 0.715644i \(0.253867\pi\)
\(432\) −52.8315 25.2772i −2.54186 1.21615i
\(433\) 5.96184 10.3262i 0.286508 0.496246i −0.686466 0.727162i \(-0.740839\pi\)
0.972974 + 0.230916i \(0.0741723\pi\)
\(434\) −12.7274 21.0920i −0.610935 1.01245i
\(435\) 4.69432 8.13080i 0.225075 0.389842i
\(436\) −9.76787 15.5017i −0.467796 0.742399i
\(437\) 13.7055 0.655624
\(438\) −26.5274 + 0.512969i −1.26753 + 0.0245106i
\(439\) 0.238520 + 0.413129i 0.0113839 + 0.0197176i 0.871661 0.490109i \(-0.163043\pi\)
−0.860277 + 0.509826i \(0.829710\pi\)
\(440\) −5.40662 8.22347i −0.257751 0.392038i
\(441\) 89.6379 4.26847
\(442\) −0.273624 0.845378i −0.0130150 0.0402106i
\(443\) 34.3454i 1.63180i −0.578194 0.815900i \(-0.696242\pi\)
0.578194 0.815900i \(-0.303758\pi\)
\(444\) −1.54377 39.9020i −0.0732642 1.89367i
\(445\) 7.02896 4.05817i 0.333205 0.192376i
\(446\) −0.675419 34.9283i −0.0319820 1.65390i
\(447\) 62.8821i 2.97422i
\(448\) 31.9533 + 13.7964i 1.50965 + 0.651820i
\(449\) −10.3848 5.99567i −0.490089 0.282953i 0.234522 0.972111i \(-0.424647\pi\)
−0.724611 + 0.689158i \(0.757981\pi\)
\(450\) 5.49106 + 9.09982i 0.258851 + 0.428970i
\(451\) −13.1092 7.56858i −0.617286 0.356390i
\(452\) 16.0333 0.620315i 0.754144 0.0291772i
\(453\) 32.6352 + 56.5259i 1.53334 + 2.65582i
\(454\) −15.8276 26.2297i −0.742828 1.23102i
\(455\) −11.4399 10.7325i −0.536310 0.503146i
\(456\) 3.74895 + 64.5594i 0.175561 + 3.02327i
\(457\) 22.3688 12.9147i 1.04637 0.604122i 0.124740 0.992190i \(-0.460190\pi\)
0.921631 + 0.388067i \(0.126857\pi\)
\(458\) 6.73106 12.1972i 0.314522 0.569939i
\(459\) −2.20965 1.27574i −0.103138 0.0595465i
\(460\) −1.81223 + 3.43946i −0.0844955 + 0.160366i
\(461\) −11.1354 + 19.2872i −0.518629 + 0.898292i 0.481136 + 0.876646i \(0.340224\pi\)
−0.999766 + 0.0216466i \(0.993109\pi\)
\(462\) 69.4081 1.34217i 3.22916 0.0624432i
\(463\) 36.3456i 1.68912i −0.535457 0.844562i \(-0.679861\pi\)
0.535457 0.844562i \(-0.320139\pi\)
\(464\) 0.894790 + 11.5466i 0.0415396 + 0.536035i
\(465\) 6.49176 + 11.2441i 0.301048 + 0.521431i
\(466\) −1.31039 + 2.37453i −0.0607025 + 0.109998i
\(467\) 4.47887i 0.207258i −0.994616 0.103629i \(-0.966955\pi\)
0.994616 0.103629i \(-0.0330454\pi\)
\(468\) −53.2054 10.3006i −2.45942 0.476146i
\(469\) 33.4133i 1.54288i
\(470\) −4.70738 2.59777i −0.217135 0.119826i
\(471\) −3.67993 6.37383i −0.169562 0.293691i
\(472\) −0.878251 + 1.74799i −0.0404248 + 0.0804577i
\(473\) 30.1037i 1.38417i
\(474\) 0.429846 + 22.2289i 0.0197435 + 1.02101i
\(475\) 3.52537 6.10612i 0.161755 0.280168i
\(476\) 1.34145 + 0.706800i 0.0614853 + 0.0323961i
\(477\) 44.1092 + 25.4664i 2.01962 + 1.16603i
\(478\) 1.60711 + 0.886884i 0.0735073 + 0.0405651i
\(479\) 25.4604 14.6996i 1.16332 0.671641i 0.211219 0.977439i \(-0.432257\pi\)
0.952096 + 0.305798i \(0.0989232\pi\)
\(480\) −16.6972 7.59560i −0.762118 0.346690i
\(481\) −6.42665 21.2493i −0.293030 0.968887i
\(482\) −19.2879 + 11.6388i −0.878538 + 0.530131i
\(483\) −13.7116 23.7491i −0.623898 1.08062i
\(484\) 2.21258 0.0856027i 0.100572 0.00389103i
\(485\) −4.51069 2.60425i −0.204820 0.118253i
\(486\) −44.7128 + 26.9808i −2.02822 + 1.22387i
\(487\) −17.3765 10.0323i −0.787404 0.454608i 0.0516439 0.998666i \(-0.483554\pi\)
−0.839048 + 0.544058i \(0.816887\pi\)
\(488\) −10.3163 5.18328i −0.466997 0.234636i
\(489\) 55.1637i 2.49459i
\(490\) 16.8648 0.326120i 0.761874 0.0147326i
\(491\) 4.61110 2.66222i 0.208096 0.120144i −0.392330 0.919824i \(-0.628331\pi\)
0.600426 + 0.799680i \(0.294998\pi\)
\(492\) −28.1929 + 1.09076i −1.27103 + 0.0491751i
\(493\) 0.504535i 0.0227231i
\(494\) 11.0711 + 34.2048i 0.498112 + 1.53895i
\(495\) −26.1496 −1.17534
\(496\) −14.4471 6.91223i −0.648696 0.310368i
\(497\) 14.3360 + 24.8306i 0.643056 + 1.11381i
\(498\) 0.955071 + 49.3901i 0.0427978 + 2.21322i
\(499\) 18.2983 0.819146 0.409573 0.912277i \(-0.365678\pi\)
0.409573 + 0.912277i \(0.365678\pi\)
\(500\) 1.06621 + 1.69210i 0.0476825 + 0.0756728i
\(501\) 19.7997 34.2940i 0.884583 1.53214i
\(502\) −6.86992 + 4.14548i −0.306620 + 0.185022i
\(503\) 21.0061 36.3836i 0.936615 1.62227i 0.164888 0.986312i \(-0.447274\pi\)
0.771728 0.635953i \(-0.219393\pi\)
\(504\) 77.2725 50.8038i 3.44199 2.26298i
\(505\) −8.61732 + 4.97521i −0.383466 + 0.221394i
\(506\) −4.94189 8.18973i −0.219694 0.364078i
\(507\) −42.0697 + 2.68723i −1.86838 + 0.119344i
\(508\) 2.44701 4.64423i 0.108568 0.206054i
\(509\) 2.11106 + 3.65646i 0.0935709 + 0.162070i 0.909011 0.416771i \(-0.136838\pi\)
−0.815440 + 0.578841i \(0.803505\pi\)
\(510\) −0.699673 0.386116i −0.0309821 0.0170975i
\(511\) 12.5854 21.7986i 0.556745 0.964311i
\(512\) 22.2857 3.91765i 0.984898 0.173137i
\(513\) 89.4045 + 51.6177i 3.94730 + 2.27898i
\(514\) 15.1899 0.293731i 0.669996 0.0129559i
\(515\) −4.46886 −0.196922
\(516\) 29.9125 + 47.4716i 1.31683 + 2.08982i
\(517\) 11.4563 6.61429i 0.503847 0.290896i
\(518\) 33.1674 + 18.3035i 1.45729 + 0.804210i
\(519\) 24.4014 1.07110
\(520\) −10.0477 1.74442i −0.440622 0.0764981i
\(521\) 40.6898 1.78265 0.891326 0.453363i \(-0.149776\pi\)
0.891326 + 0.453363i \(0.149776\pi\)
\(522\) 26.9416 + 14.8678i 1.17920 + 0.650744i
\(523\) −9.14346 + 5.27898i −0.399816 + 0.230834i −0.686404 0.727220i \(-0.740812\pi\)
0.286589 + 0.958054i \(0.407479\pi\)
\(524\) 19.9357 12.5618i 0.870895 0.548764i
\(525\) −14.1077 −0.615710
\(526\) 0.344469 0.00666109i 0.0150195 0.000290437i
\(527\) −0.604244 0.348860i −0.0263213 0.0151966i
\(528\) 37.2256 25.5187i 1.62004 1.11056i
\(529\) 9.61074 16.6463i 0.417858 0.723752i
\(530\) 8.39151 + 4.63087i 0.364504 + 0.201152i
\(531\) 2.59888 + 4.50140i 0.112782 + 0.195344i
\(532\) −54.2764 28.5978i −2.35318 1.23987i
\(533\) −15.0138 + 4.54076i −0.650318 + 0.196682i
\(534\) 19.2301 + 31.8683i 0.832169 + 1.37908i
\(535\) 8.53297 4.92651i 0.368913 0.212992i
\(536\) 11.9338 + 18.1513i 0.515462 + 0.784017i
\(537\) −16.4964 + 28.5725i −0.711870 + 1.23300i
\(538\) 16.2631 9.81357i 0.701153 0.423093i
\(539\) −20.7509 + 35.9417i −0.893806 + 1.54812i
\(540\) −24.7753 + 15.6113i −1.06616 + 0.671802i
\(541\) 2.55153 0.109699 0.0548495 0.998495i \(-0.482532\pi\)
0.0548495 + 0.998495i \(0.482532\pi\)
\(542\) −0.253238 13.0958i −0.0108775 0.562514i
\(543\) 36.5049 + 63.2284i 1.56658 + 2.71339i
\(544\) 0.981163 0.0951501i 0.0420670 0.00407953i
\(545\) −9.16126 −0.392425
\(546\) 48.1946 53.4040i 2.06254 2.28548i
\(547\) 12.6446i 0.540645i 0.962770 + 0.270323i \(0.0871304\pi\)
−0.962770 + 0.270323i \(0.912870\pi\)
\(548\) 0.632400 + 16.3457i 0.0270148 + 0.698254i
\(549\) −26.5664 + 15.3381i −1.13383 + 0.654615i
\(550\) −4.91988 + 0.0951372i −0.209784 + 0.00405666i
\(551\) 20.4140i 0.869665i
\(552\) −15.9308 8.00419i −0.678059 0.340681i
\(553\) −18.2663 10.5460i −0.776761 0.448463i
\(554\) −10.9380 + 6.60027i −0.464712 + 0.280419i
\(555\) −17.2910 9.98297i −0.733963 0.423754i
\(556\) 1.58351 + 40.9292i 0.0671560 + 1.73579i
\(557\) −12.2626 21.2394i −0.519583 0.899944i −0.999741 0.0227621i \(-0.992754\pi\)
0.480158 0.877182i \(-0.340579\pi\)
\(558\) −36.4347 + 21.9856i −1.54240 + 0.930725i
\(559\) 22.7496 + 21.3428i 0.962207 + 0.902706i
\(560\) 14.3535 9.83954i 0.606546 0.415796i
\(561\) 1.70279 0.983104i 0.0718917 0.0415067i
\(562\) −32.8488 18.1277i −1.38564 0.764669i
\(563\) −36.7348 21.2089i −1.54819 0.893847i −0.998280 0.0586214i \(-0.981330\pi\)
−0.549908 0.835225i \(-0.685337\pi\)
\(564\) 11.4936 21.8139i 0.483966 0.918530i
\(565\) 4.01133 6.94783i 0.168758 0.292297i
\(566\) −0.251049 12.9826i −0.0105524 0.545700i
\(567\) 108.475i 4.55551i
\(568\) 16.6562 + 8.36869i 0.698880 + 0.351142i
\(569\) −0.0235241 0.0407450i −0.000986182 0.00170812i 0.865532 0.500854i \(-0.166981\pi\)
−0.866518 + 0.499146i \(0.833647\pi\)
\(570\) 28.3094 + 15.6226i 1.18575 + 0.654360i
\(571\) 22.2621i 0.931641i 0.884879 + 0.465821i \(0.154241\pi\)
−0.884879 + 0.465821i \(0.845759\pi\)
\(572\) 16.4471 18.9490i 0.687688 0.792296i
\(573\) 33.1904i 1.38655i
\(574\) 12.9324 23.4345i 0.539787 0.978138i
\(575\) 0.971921 + 1.68342i 0.0405319 + 0.0702033i
\(576\) 23.8323 55.1969i 0.993011 2.29987i
\(577\) 42.4031i 1.76527i −0.470063 0.882633i \(-0.655769\pi\)
0.470063 0.882633i \(-0.344231\pi\)
\(578\) −23.9942 + 0.463983i −0.998027 + 0.0192992i
\(579\) −24.8200 + 42.9896i −1.03149 + 1.78659i
\(580\) 5.12298 + 2.69926i 0.212720 + 0.112081i
\(581\) −40.5856 23.4321i −1.68378 0.972128i
\(582\) 11.5407 20.9126i 0.478376 0.866856i
\(583\) −20.4223 + 11.7908i −0.845806 + 0.488326i
\(584\) −0.948671 16.3367i −0.0392563 0.676019i
\(585\) −18.5395 + 19.7615i −0.766514 + 0.817038i
\(586\) 14.3126 + 23.7190i 0.591248 + 0.979821i
\(587\) −14.6618 25.3949i −0.605155 1.04816i −0.992027 0.126026i \(-0.959778\pi\)
0.386871 0.922134i \(-0.373556\pi\)
\(588\) 2.99055 + 77.2970i 0.123328 + 3.18768i
\(589\) 24.4483 + 14.1152i 1.00737 + 0.581607i
\(590\) 0.505340 + 0.837454i 0.0208045 + 0.0344774i
\(591\) −24.4679 14.1266i −1.00648 0.581089i
\(592\) 24.5550 1.90287i 1.00920 0.0782074i
\(593\) 33.7161i 1.38456i 0.721631 + 0.692278i \(0.243393\pi\)
−0.721631 + 0.692278i \(0.756607\pi\)
\(594\) −1.39298 72.0357i −0.0571545 2.95566i
\(595\) 0.656562 0.379066i 0.0269164 0.0155402i
\(596\) −38.7545 + 1.49938i −1.58745 + 0.0614168i
\(597\) 37.2609i 1.52499i
\(598\) −9.69276 2.07171i −0.396366 0.0847187i
\(599\) −42.5949 −1.74038 −0.870190 0.492717i \(-0.836004\pi\)
−0.870190 + 0.492717i \(0.836004\pi\)
\(600\) −7.66381 + 5.03867i −0.312874 + 0.205703i
\(601\) 0.772803 + 1.33853i 0.0315233 + 0.0545999i 0.881357 0.472452i \(-0.156631\pi\)
−0.849833 + 0.527051i \(0.823297\pi\)
\(602\) −53.2205 + 1.02914i −2.16910 + 0.0419446i
\(603\) 57.7188 2.35049
\(604\) −34.0590 + 21.4610i −1.38584 + 0.873237i
\(605\) 0.553559 0.958792i 0.0225054 0.0389804i
\(606\) −23.5756 39.0697i −0.957694 1.58710i
\(607\) −7.08488 + 12.2714i −0.287566 + 0.498079i −0.973228 0.229841i \(-0.926179\pi\)
0.685662 + 0.727920i \(0.259513\pi\)
\(608\) −39.6988 + 3.84986i −1.61000 + 0.156133i
\(609\) −35.3736 + 20.4230i −1.43341 + 0.827580i
\(610\) −4.94249 + 2.98242i −0.200116 + 0.120755i
\(611\) 3.12378 13.3470i 0.126375 0.539963i
\(612\) 1.22094 2.31725i 0.0493536 0.0936694i
\(613\) −5.97094 10.3420i −0.241164 0.417709i 0.719882 0.694096i \(-0.244196\pi\)
−0.961046 + 0.276388i \(0.910863\pi\)
\(614\) 3.00785 5.45047i 0.121387 0.219963i
\(615\) −7.05349 + 12.2170i −0.284424 + 0.492637i
\(616\) 2.48217 + 42.7445i 0.100009 + 1.72223i
\(617\) −4.56663 2.63655i −0.183846 0.106143i 0.405253 0.914205i \(-0.367184\pi\)
−0.589098 + 0.808061i \(0.700517\pi\)
\(618\) −0.396220 20.4900i −0.0159383 0.824227i
\(619\) −10.0988 −0.405904 −0.202952 0.979189i \(-0.565054\pi\)
−0.202952 + 0.979189i \(0.565054\pi\)
\(620\) −6.77497 + 4.26901i −0.272089 + 0.171447i
\(621\) −24.6482 + 14.2306i −0.989098 + 0.571056i
\(622\) −12.5246 + 22.6956i −0.502191 + 0.910011i
\(623\) −35.3107 −1.41469
\(624\) 7.10741 46.2240i 0.284524 1.85044i
\(625\) 1.00000 0.0400000
\(626\) −3.72240 + 6.74530i −0.148777 + 0.269596i
\(627\) −68.8963 + 39.7773i −2.75146 + 1.58855i
\(628\) 3.84047 2.41994i 0.153252 0.0965660i
\(629\) 1.07295 0.0427812
\(630\) −0.893964 46.2300i −0.0356164 1.84185i
\(631\) 33.0021 + 19.0538i 1.31379 + 0.758518i 0.982722 0.185088i \(-0.0592569\pi\)
0.331070 + 0.943606i \(0.392590\pi\)
\(632\) −13.6895 + 0.794947i −0.544539 + 0.0316213i
\(633\) 5.56539 9.63954i 0.221205 0.383137i
\(634\) −6.93475 + 12.5663i −0.275414 + 0.499072i
\(635\) −1.31236 2.27308i −0.0520795 0.0902043i
\(636\) −20.4888 + 38.8861i −0.812432 + 1.54193i
\(637\) 12.4495 + 41.1636i 0.493268 + 1.63096i
\(638\) −12.1984 + 7.36079i −0.482938 + 0.291416i
\(639\) 42.8929 24.7643i 1.69682 0.979659i
\(640\) 4.28307 10.4716i 0.169303 0.413928i
\(641\) −10.0031 + 17.3259i −0.395100 + 0.684334i −0.993114 0.117152i \(-0.962624\pi\)
0.598014 + 0.801486i \(0.295957\pi\)
\(642\) 23.3449 + 38.6873i 0.921348 + 1.52687i
\(643\) −2.97322 + 5.14977i −0.117252 + 0.203087i −0.918678 0.395008i \(-0.870742\pi\)
0.801426 + 0.598095i \(0.204075\pi\)
\(644\) 14.3097 9.01677i 0.563883 0.355311i
\(645\) 28.0549 1.10466
\(646\) −1.73727 + 0.0335942i −0.0683521 + 0.00132174i
\(647\) 4.06180 + 7.03525i 0.159686 + 0.276584i 0.934755 0.355292i \(-0.115619\pi\)
−0.775070 + 0.631876i \(0.782285\pi\)
\(648\) −38.7425 58.9273i −1.52195 2.31488i
\(649\) −2.40654 −0.0944649
\(650\) −3.41619 + 3.78545i −0.133994 + 0.148478i
\(651\) 56.4857i 2.21385i
\(652\) 33.9976 1.31534i 1.33145 0.0515126i
\(653\) −9.19313 + 5.30766i −0.359755 + 0.207705i −0.668973 0.743286i \(-0.733266\pi\)
0.309218 + 0.950991i \(0.399933\pi\)
\(654\) −0.812261 42.0048i −0.0317619 1.64252i
\(655\) 11.7817i 0.460348i
\(656\) −1.34447 17.3494i −0.0524929 0.677379i
\(657\) −37.6553 21.7403i −1.46907 0.848170i
\(658\) 12.0851 + 20.0275i 0.471126 + 0.780754i
\(659\) −24.8204 14.3301i −0.966866 0.558220i −0.0685868 0.997645i \(-0.521849\pi\)
−0.898279 + 0.439425i \(0.855182\pi\)
\(660\) −0.872417 22.5494i −0.0339588 0.877736i
\(661\) 18.3673 + 31.8131i 0.714404 + 1.23738i 0.963189 + 0.268826i \(0.0866356\pi\)
−0.248785 + 0.968559i \(0.580031\pi\)
\(662\) −6.08472 10.0837i −0.236489 0.391912i
\(663\) 0.464298 1.98381i 0.0180318 0.0770449i
\(664\) −30.4165 + 1.76628i −1.18039 + 0.0685451i
\(665\) −26.5651 + 15.3374i −1.03015 + 0.594758i
\(666\) 31.6179 57.2942i 1.22517 2.22010i
\(667\) 4.87398 + 2.81400i 0.188721 + 0.108958i
\(668\) 21.6076 + 11.3849i 0.836025 + 0.440495i
\(669\) 40.0520 69.3721i 1.54850 2.68208i
\(670\) 10.8594 0.209992i 0.419536 0.00811270i
\(671\) 14.2029i 0.548298i
\(672\) 46.3874 + 64.9391i 1.78943 + 2.50508i
\(673\) 19.3088 + 33.4439i 0.744300 + 1.28917i 0.950521 + 0.310661i \(0.100550\pi\)
−0.206221 + 0.978506i \(0.566116\pi\)
\(674\) 0.252261 0.457117i 0.00971673 0.0176075i
\(675\) 14.6418i 0.563562i
\(676\) −2.65927 25.8636i −0.102280 0.994756i
\(677\) 45.0730i 1.73230i −0.499786 0.866149i \(-0.666588\pi\)
0.499786 0.866149i \(-0.333412\pi\)
\(678\) 32.2118 + 17.7761i 1.23709 + 0.682689i
\(679\) 11.3299 + 19.6240i 0.434804 + 0.753102i
\(680\) 0.221282 0.440418i 0.00848577 0.0168893i
\(681\) 70.2449i 2.69179i
\(682\) −0.380919 19.6987i −0.0145861 0.754301i
\(683\) 16.7294 28.9762i 0.640133 1.10874i −0.345270 0.938503i \(-0.612213\pi\)
0.985403 0.170239i \(-0.0544540\pi\)
\(684\) −49.4005 + 93.7582i −1.88887 + 3.58494i
\(685\) 7.08319 + 4.08948i 0.270635 + 0.156251i
\(686\) −26.5432 14.6479i −1.01343 0.559261i
\(687\) 27.6640 15.9718i 1.05545 0.609364i
\(688\) −28.5437 + 19.5671i −1.08822 + 0.745990i
\(689\) −5.56854 + 23.7928i −0.212144 + 0.906433i
\(690\) −7.63237 + 4.60556i −0.290559 + 0.175331i
\(691\) 19.4451 + 33.6799i 0.739727 + 1.28124i 0.952618 + 0.304169i \(0.0983787\pi\)
−0.212891 + 0.977076i \(0.568288\pi\)
\(692\) 0.581833 + 15.0387i 0.0221180 + 0.571685i
\(693\) 98.5239 + 56.8828i 3.74261 + 2.16080i
\(694\) −38.7496 + 23.3824i −1.47091 + 0.887585i
\(695\) 17.7361 + 10.2400i 0.672770 + 0.388424i
\(696\) −11.9220 + 23.7284i −0.451902 + 0.899424i
\(697\) 0.758094i 0.0287148i
\(698\) −31.2824 + 0.604916i −1.18405 + 0.0228964i
\(699\) −5.38557 + 3.10936i −0.203701 + 0.117607i
\(700\) −0.336387 8.69463i −0.0127142 0.328626i
\(701\) 2.82374i 0.106651i −0.998577 0.0533256i \(-0.983018\pi\)
0.998577 0.0533256i \(-0.0169821\pi\)
\(702\) −55.4257 50.0191i −2.09191 1.88785i
\(703\) −43.4125 −1.63733
\(704\) 16.6149 + 22.3338i 0.626198 + 0.841738i
\(705\) −6.16415 10.6766i −0.232155 0.402105i
\(706\) 0.219076 + 11.3292i 0.00824504 + 0.426380i
\(707\) 43.2900 1.62809
\(708\) −3.79496 + 2.39126i −0.142623 + 0.0898690i
\(709\) 11.1522 19.3162i 0.418830 0.725434i −0.576992 0.816749i \(-0.695774\pi\)
0.995822 + 0.0913154i \(0.0291071\pi\)
\(710\) 7.97993 4.81529i 0.299482 0.180715i
\(711\) −18.2175 + 31.5536i −0.683208 + 1.18335i
\(712\) −19.1820 + 12.6115i −0.718877 + 0.472635i
\(713\) −6.74022 + 3.89147i −0.252423 + 0.145737i
\(714\) 1.79625 + 2.97676i 0.0672229 + 0.111402i
\(715\) −3.63183 12.0084i −0.135823 0.449090i
\(716\) −18.0027 9.48548i −0.672793 0.354489i
\(717\) 2.10445 + 3.64501i 0.0785921 + 0.136125i
\(718\) 22.5665 + 12.4534i 0.842174 + 0.464755i
\(719\) 8.58578 14.8710i 0.320196 0.554595i −0.660333 0.750973i \(-0.729585\pi\)
0.980528 + 0.196378i \(0.0629180\pi\)
\(720\) −16.9970 24.7945i −0.633442 0.924038i
\(721\) 16.8373 + 9.72104i 0.627055 + 0.362031i
\(722\) 43.4266 0.839754i 1.61617 0.0312524i
\(723\) −51.6542 −1.92104
\(724\) −38.0975 + 24.0058i −1.41588 + 0.892167i
\(725\) 2.50740 1.44765i 0.0931224 0.0537642i
\(726\) 4.44519 + 2.45309i 0.164976 + 0.0910426i
\(727\) −33.5503 −1.24431 −0.622156 0.782894i \(-0.713743\pi\)
−0.622156 + 0.782894i \(0.713743\pi\)
\(728\) 34.0623 + 28.4292i 1.26243 + 1.05365i
\(729\) −44.9437 −1.66458
\(730\) −7.16370 3.95330i −0.265140 0.146318i
\(731\) −1.30565 + 0.753820i −0.0482914 + 0.0278810i
\(732\) −14.1128 22.3972i −0.521623 0.827823i
\(733\) 34.1152 1.26007 0.630037 0.776565i \(-0.283040\pi\)
0.630037 + 0.776565i \(0.283040\pi\)
\(734\) 23.4873 0.454181i 0.866932 0.0167641i
\(735\) 33.4956 + 19.3387i 1.23551 + 0.713319i
\(736\) 4.55316 10.0091i 0.167832 0.368939i
\(737\) −13.3618 + 23.1432i −0.492187 + 0.852492i
\(738\) −40.4813 22.3397i −1.49014 0.822335i
\(739\) −11.0468 19.1336i −0.406362 0.703840i 0.588117 0.808776i \(-0.299870\pi\)
−0.994479 + 0.104936i \(0.966536\pi\)
\(740\) 5.74026 10.8946i 0.211016 0.400492i
\(741\) −18.7859 + 80.2669i −0.690118 + 2.94868i
\(742\) −21.5433 35.7017i −0.790878 1.31065i
\(743\) 17.5782 10.1488i 0.644881 0.372322i −0.141611 0.989922i \(-0.545228\pi\)
0.786492 + 0.617600i \(0.211895\pi\)
\(744\) −20.1743 30.6851i −0.739625 1.12497i
\(745\) −9.69588 + 16.7937i −0.355229 + 0.615275i
\(746\) 23.6802 14.2892i 0.866992 0.523164i
\(747\) −40.4772 + 70.1085i −1.48098 + 2.56514i
\(748\) 0.646493 + 1.02599i 0.0236381 + 0.0375140i
\(749\) −42.8663 −1.56630
\(750\) 0.0886625 + 4.58505i 0.00323750 + 0.167422i
\(751\) 1.69292 + 2.93223i 0.0617756 + 0.106999i 0.895259 0.445546i \(-0.146990\pi\)
−0.833484 + 0.552544i \(0.813657\pi\)
\(752\) 13.7180 + 6.56339i 0.500245 + 0.239342i
\(753\) −18.3981 −0.670465
\(754\) −3.08576 + 14.4371i −0.112377 + 0.525767i
\(755\) 20.1283i 0.732543i
\(756\) 127.305 4.92531i 4.63003 0.179132i
\(757\) −14.7103 + 8.49301i −0.534656 + 0.308684i −0.742910 0.669391i \(-0.766555\pi\)
0.208254 + 0.978075i \(0.433222\pi\)
\(758\) −50.2595 + 0.971883i −1.82551 + 0.0353004i
\(759\) 21.9327i 0.796105i
\(760\) −8.95327 + 17.8197i −0.324769 + 0.646390i
\(761\) −19.4843 11.2493i −0.706307 0.407787i 0.103385 0.994641i \(-0.467033\pi\)
−0.809692 + 0.586855i \(0.800366\pi\)
\(762\) 10.3058 6.21878i 0.373340 0.225283i
\(763\) 34.5169 + 19.9284i 1.24960 + 0.721455i
\(764\) −20.4554 + 0.791400i −0.740050 + 0.0286319i
\(765\) −0.654807 1.13416i −0.0236746 0.0410056i
\(766\) 11.8178 7.13113i 0.426993 0.257658i
\(767\) −1.70618 + 1.81864i −0.0616067 + 0.0656675i
\(768\) 48.3927 + 18.7096i 1.74622 + 0.675126i
\(769\) −17.2432 + 9.95537i