Defining parameters
Level: | \( N \) | \(=\) | \( 520 = 2^{3} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 520.ca (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(520, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 176 | 112 | 64 |
Cusp forms | 160 | 112 | 48 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(520, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
520.2.ca.a | $56$ | $4.152$ | None | \(0\) | \(0\) | \(-56\) | \(0\) | ||
520.2.ca.b | $56$ | $4.152$ | None | \(0\) | \(0\) | \(56\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(520, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(520, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)