Properties

Label 520.2.a.g.1.2
Level $520$
Weight $2$
Character 520.1
Self dual yes
Analytic conductor $4.152$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,2,Mod(1,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.15222090511\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 520.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.23607 q^{3} -1.00000 q^{5} +7.47214 q^{9} +O(q^{10})\) \(q+3.23607 q^{3} -1.00000 q^{5} +7.47214 q^{9} +0.763932 q^{11} -1.00000 q^{13} -3.23607 q^{15} +2.00000 q^{17} +0.763932 q^{19} -3.23607 q^{23} +1.00000 q^{25} +14.4721 q^{27} +8.47214 q^{29} -5.70820 q^{31} +2.47214 q^{33} -8.47214 q^{37} -3.23607 q^{39} -10.9443 q^{41} -3.23607 q^{43} -7.47214 q^{45} +12.9443 q^{47} -7.00000 q^{49} +6.47214 q^{51} -10.9443 q^{53} -0.763932 q^{55} +2.47214 q^{57} -5.70820 q^{59} -4.47214 q^{61} +1.00000 q^{65} +10.4721 q^{67} -10.4721 q^{69} -0.763932 q^{71} -7.52786 q^{73} +3.23607 q^{75} +6.47214 q^{79} +24.4164 q^{81} +4.00000 q^{83} -2.00000 q^{85} +27.4164 q^{87} +10.0000 q^{89} -18.4721 q^{93} -0.763932 q^{95} -10.0000 q^{97} +5.70820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 2 q^{5} + 6 q^{9} + 6 q^{11} - 2 q^{13} - 2 q^{15} + 4 q^{17} + 6 q^{19} - 2 q^{23} + 2 q^{25} + 20 q^{27} + 8 q^{29} + 2 q^{31} - 4 q^{33} - 8 q^{37} - 2 q^{39} - 4 q^{41} - 2 q^{43} - 6 q^{45} + 8 q^{47} - 14 q^{49} + 4 q^{51} - 4 q^{53} - 6 q^{55} - 4 q^{57} + 2 q^{59} + 2 q^{65} + 12 q^{67} - 12 q^{69} - 6 q^{71} - 24 q^{73} + 2 q^{75} + 4 q^{79} + 22 q^{81} + 8 q^{83} - 4 q^{85} + 28 q^{87} + 20 q^{89} - 28 q^{93} - 6 q^{95} - 20 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.23607 1.86834 0.934172 0.356822i \(-0.116140\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 7.47214 2.49071
\(10\) 0 0
\(11\) 0.763932 0.230334 0.115167 0.993346i \(-0.463260\pi\)
0.115167 + 0.993346i \(0.463260\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −3.23607 −0.835549
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 0.763932 0.175258 0.0876290 0.996153i \(-0.472071\pi\)
0.0876290 + 0.996153i \(0.472071\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.23607 −0.674767 −0.337383 0.941367i \(-0.609542\pi\)
−0.337383 + 0.941367i \(0.609542\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 14.4721 2.78516
\(28\) 0 0
\(29\) 8.47214 1.57324 0.786618 0.617440i \(-0.211830\pi\)
0.786618 + 0.617440i \(0.211830\pi\)
\(30\) 0 0
\(31\) −5.70820 −1.02522 −0.512612 0.858620i \(-0.671322\pi\)
−0.512612 + 0.858620i \(0.671322\pi\)
\(32\) 0 0
\(33\) 2.47214 0.430344
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.47214 −1.39281 −0.696405 0.717649i \(-0.745218\pi\)
−0.696405 + 0.717649i \(0.745218\pi\)
\(38\) 0 0
\(39\) −3.23607 −0.518186
\(40\) 0 0
\(41\) −10.9443 −1.70921 −0.854604 0.519280i \(-0.826200\pi\)
−0.854604 + 0.519280i \(0.826200\pi\)
\(42\) 0 0
\(43\) −3.23607 −0.493496 −0.246748 0.969080i \(-0.579362\pi\)
−0.246748 + 0.969080i \(0.579362\pi\)
\(44\) 0 0
\(45\) −7.47214 −1.11388
\(46\) 0 0
\(47\) 12.9443 1.88812 0.944058 0.329779i \(-0.106974\pi\)
0.944058 + 0.329779i \(0.106974\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 6.47214 0.906280
\(52\) 0 0
\(53\) −10.9443 −1.50331 −0.751656 0.659556i \(-0.770744\pi\)
−0.751656 + 0.659556i \(0.770744\pi\)
\(54\) 0 0
\(55\) −0.763932 −0.103009
\(56\) 0 0
\(57\) 2.47214 0.327442
\(58\) 0 0
\(59\) −5.70820 −0.743145 −0.371572 0.928404i \(-0.621181\pi\)
−0.371572 + 0.928404i \(0.621181\pi\)
\(60\) 0 0
\(61\) −4.47214 −0.572598 −0.286299 0.958140i \(-0.592425\pi\)
−0.286299 + 0.958140i \(0.592425\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 10.4721 1.27938 0.639688 0.768635i \(-0.279064\pi\)
0.639688 + 0.768635i \(0.279064\pi\)
\(68\) 0 0
\(69\) −10.4721 −1.26070
\(70\) 0 0
\(71\) −0.763932 −0.0906621 −0.0453310 0.998972i \(-0.514434\pi\)
−0.0453310 + 0.998972i \(0.514434\pi\)
\(72\) 0 0
\(73\) −7.52786 −0.881070 −0.440535 0.897735i \(-0.645211\pi\)
−0.440535 + 0.897735i \(0.645211\pi\)
\(74\) 0 0
\(75\) 3.23607 0.373669
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.47214 0.728172 0.364086 0.931365i \(-0.381381\pi\)
0.364086 + 0.931365i \(0.381381\pi\)
\(80\) 0 0
\(81\) 24.4164 2.71293
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 27.4164 2.93935
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −18.4721 −1.91547
\(94\) 0 0
\(95\) −0.763932 −0.0783778
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 5.70820 0.573696
\(100\) 0 0
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) −6.29180 −0.619949 −0.309975 0.950745i \(-0.600321\pi\)
−0.309975 + 0.950745i \(0.600321\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.1803 −1.56421 −0.782106 0.623145i \(-0.785855\pi\)
−0.782106 + 0.623145i \(0.785855\pi\)
\(108\) 0 0
\(109\) −1.05573 −0.101120 −0.0505602 0.998721i \(-0.516101\pi\)
−0.0505602 + 0.998721i \(0.516101\pi\)
\(110\) 0 0
\(111\) −27.4164 −2.60225
\(112\) 0 0
\(113\) 19.8885 1.87096 0.935478 0.353384i \(-0.114969\pi\)
0.935478 + 0.353384i \(0.114969\pi\)
\(114\) 0 0
\(115\) 3.23607 0.301765
\(116\) 0 0
\(117\) −7.47214 −0.690799
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.4164 −0.946946
\(122\) 0 0
\(123\) −35.4164 −3.19339
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −9.70820 −0.861464 −0.430732 0.902480i \(-0.641745\pi\)
−0.430732 + 0.902480i \(0.641745\pi\)
\(128\) 0 0
\(129\) −10.4721 −0.922020
\(130\) 0 0
\(131\) 16.9443 1.48043 0.740214 0.672371i \(-0.234724\pi\)
0.740214 + 0.672371i \(0.234724\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −14.4721 −1.24556
\(136\) 0 0
\(137\) −19.8885 −1.69919 −0.849596 0.527433i \(-0.823154\pi\)
−0.849596 + 0.527433i \(0.823154\pi\)
\(138\) 0 0
\(139\) 13.5279 1.14742 0.573709 0.819059i \(-0.305504\pi\)
0.573709 + 0.819059i \(0.305504\pi\)
\(140\) 0 0
\(141\) 41.8885 3.52765
\(142\) 0 0
\(143\) −0.763932 −0.0638832
\(144\) 0 0
\(145\) −8.47214 −0.703573
\(146\) 0 0
\(147\) −22.6525 −1.86834
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 10.6525 0.866886 0.433443 0.901181i \(-0.357299\pi\)
0.433443 + 0.901181i \(0.357299\pi\)
\(152\) 0 0
\(153\) 14.9443 1.20817
\(154\) 0 0
\(155\) 5.70820 0.458494
\(156\) 0 0
\(157\) −10.9443 −0.873448 −0.436724 0.899596i \(-0.643861\pi\)
−0.436724 + 0.899596i \(0.643861\pi\)
\(158\) 0 0
\(159\) −35.4164 −2.80870
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.4721 −0.820241 −0.410120 0.912031i \(-0.634513\pi\)
−0.410120 + 0.912031i \(0.634513\pi\)
\(164\) 0 0
\(165\) −2.47214 −0.192456
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 5.70820 0.436517
\(172\) 0 0
\(173\) −10.9443 −0.832078 −0.416039 0.909347i \(-0.636582\pi\)
−0.416039 + 0.909347i \(0.636582\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −18.4721 −1.38845
\(178\) 0 0
\(179\) 16.9443 1.26647 0.633237 0.773958i \(-0.281726\pi\)
0.633237 + 0.773958i \(0.281726\pi\)
\(180\) 0 0
\(181\) 0.472136 0.0350936 0.0175468 0.999846i \(-0.494414\pi\)
0.0175468 + 0.999846i \(0.494414\pi\)
\(182\) 0 0
\(183\) −14.4721 −1.06981
\(184\) 0 0
\(185\) 8.47214 0.622884
\(186\) 0 0
\(187\) 1.52786 0.111728
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.8885 −1.29437 −0.647185 0.762333i \(-0.724054\pi\)
−0.647185 + 0.762333i \(0.724054\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 0 0
\(195\) 3.23607 0.231740
\(196\) 0 0
\(197\) 19.8885 1.41700 0.708500 0.705711i \(-0.249372\pi\)
0.708500 + 0.705711i \(0.249372\pi\)
\(198\) 0 0
\(199\) 20.9443 1.48470 0.742350 0.670012i \(-0.233711\pi\)
0.742350 + 0.670012i \(0.233711\pi\)
\(200\) 0 0
\(201\) 33.8885 2.39031
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 10.9443 0.764381
\(206\) 0 0
\(207\) −24.1803 −1.68065
\(208\) 0 0
\(209\) 0.583592 0.0403679
\(210\) 0 0
\(211\) 8.94427 0.615749 0.307875 0.951427i \(-0.400382\pi\)
0.307875 + 0.951427i \(0.400382\pi\)
\(212\) 0 0
\(213\) −2.47214 −0.169388
\(214\) 0 0
\(215\) 3.23607 0.220698
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −24.3607 −1.64614
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) −9.88854 −0.662186 −0.331093 0.943598i \(-0.607417\pi\)
−0.331093 + 0.943598i \(0.607417\pi\)
\(224\) 0 0
\(225\) 7.47214 0.498142
\(226\) 0 0
\(227\) 18.4721 1.22604 0.613019 0.790068i \(-0.289955\pi\)
0.613019 + 0.790068i \(0.289955\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.9443 −0.716983 −0.358492 0.933533i \(-0.616709\pi\)
−0.358492 + 0.933533i \(0.616709\pi\)
\(234\) 0 0
\(235\) −12.9443 −0.844391
\(236\) 0 0
\(237\) 20.9443 1.36048
\(238\) 0 0
\(239\) 2.65248 0.171574 0.0857872 0.996313i \(-0.472659\pi\)
0.0857872 + 0.996313i \(0.472659\pi\)
\(240\) 0 0
\(241\) −15.8885 −1.02347 −0.511736 0.859143i \(-0.670997\pi\)
−0.511736 + 0.859143i \(0.670997\pi\)
\(242\) 0 0
\(243\) 35.5967 2.28353
\(244\) 0 0
\(245\) 7.00000 0.447214
\(246\) 0 0
\(247\) −0.763932 −0.0486078
\(248\) 0 0
\(249\) 12.9443 0.820310
\(250\) 0 0
\(251\) 2.47214 0.156040 0.0780199 0.996952i \(-0.475140\pi\)
0.0780199 + 0.996952i \(0.475140\pi\)
\(252\) 0 0
\(253\) −2.47214 −0.155422
\(254\) 0 0
\(255\) −6.47214 −0.405301
\(256\) 0 0
\(257\) 5.05573 0.315368 0.157684 0.987490i \(-0.449597\pi\)
0.157684 + 0.987490i \(0.449597\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 63.3050 3.91848
\(262\) 0 0
\(263\) −1.70820 −0.105332 −0.0526662 0.998612i \(-0.516772\pi\)
−0.0526662 + 0.998612i \(0.516772\pi\)
\(264\) 0 0
\(265\) 10.9443 0.672301
\(266\) 0 0
\(267\) 32.3607 1.98044
\(268\) 0 0
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 18.6525 1.13306 0.566529 0.824042i \(-0.308286\pi\)
0.566529 + 0.824042i \(0.308286\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.763932 0.0460668
\(276\) 0 0
\(277\) 6.94427 0.417241 0.208620 0.977997i \(-0.433103\pi\)
0.208620 + 0.977997i \(0.433103\pi\)
\(278\) 0 0
\(279\) −42.6525 −2.55354
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 30.6525 1.82210 0.911050 0.412295i \(-0.135273\pi\)
0.911050 + 0.412295i \(0.135273\pi\)
\(284\) 0 0
\(285\) −2.47214 −0.146437
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −32.3607 −1.89702
\(292\) 0 0
\(293\) 22.3607 1.30632 0.653162 0.757218i \(-0.273442\pi\)
0.653162 + 0.757218i \(0.273442\pi\)
\(294\) 0 0
\(295\) 5.70820 0.332344
\(296\) 0 0
\(297\) 11.0557 0.641518
\(298\) 0 0
\(299\) 3.23607 0.187147
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 45.3050 2.60270
\(304\) 0 0
\(305\) 4.47214 0.256074
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) −20.3607 −1.15828
\(310\) 0 0
\(311\) 11.4164 0.647365 0.323683 0.946166i \(-0.395079\pi\)
0.323683 + 0.946166i \(0.395079\pi\)
\(312\) 0 0
\(313\) −20.8328 −1.17754 −0.588770 0.808300i \(-0.700388\pi\)
−0.588770 + 0.808300i \(0.700388\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 30.3607 1.70523 0.852613 0.522543i \(-0.175017\pi\)
0.852613 + 0.522543i \(0.175017\pi\)
\(318\) 0 0
\(319\) 6.47214 0.362370
\(320\) 0 0
\(321\) −52.3607 −2.92249
\(322\) 0 0
\(323\) 1.52786 0.0850126
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) −3.41641 −0.188928
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.763932 −0.0419895 −0.0209948 0.999780i \(-0.506683\pi\)
−0.0209948 + 0.999780i \(0.506683\pi\)
\(332\) 0 0
\(333\) −63.3050 −3.46909
\(334\) 0 0
\(335\) −10.4721 −0.572154
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 0 0
\(339\) 64.3607 3.49559
\(340\) 0 0
\(341\) −4.36068 −0.236144
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 10.4721 0.563801
\(346\) 0 0
\(347\) 20.7639 1.11467 0.557333 0.830289i \(-0.311825\pi\)
0.557333 + 0.830289i \(0.311825\pi\)
\(348\) 0 0
\(349\) 14.9443 0.799949 0.399974 0.916526i \(-0.369019\pi\)
0.399974 + 0.916526i \(0.369019\pi\)
\(350\) 0 0
\(351\) −14.4721 −0.772465
\(352\) 0 0
\(353\) −12.4721 −0.663825 −0.331912 0.943310i \(-0.607694\pi\)
−0.331912 + 0.943310i \(0.607694\pi\)
\(354\) 0 0
\(355\) 0.763932 0.0405453
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.23607 0.381905 0.190953 0.981599i \(-0.438842\pi\)
0.190953 + 0.981599i \(0.438842\pi\)
\(360\) 0 0
\(361\) −18.4164 −0.969285
\(362\) 0 0
\(363\) −33.7082 −1.76922
\(364\) 0 0
\(365\) 7.52786 0.394026
\(366\) 0 0
\(367\) −24.1803 −1.26220 −0.631102 0.775700i \(-0.717397\pi\)
−0.631102 + 0.775700i \(0.717397\pi\)
\(368\) 0 0
\(369\) −81.7771 −4.25715
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.94427 −0.152449 −0.0762243 0.997091i \(-0.524287\pi\)
−0.0762243 + 0.997091i \(0.524287\pi\)
\(374\) 0 0
\(375\) −3.23607 −0.167110
\(376\) 0 0
\(377\) −8.47214 −0.436337
\(378\) 0 0
\(379\) 16.7639 0.861105 0.430553 0.902565i \(-0.358319\pi\)
0.430553 + 0.902565i \(0.358319\pi\)
\(380\) 0 0
\(381\) −31.4164 −1.60951
\(382\) 0 0
\(383\) −17.8885 −0.914062 −0.457031 0.889451i \(-0.651087\pi\)
−0.457031 + 0.889451i \(0.651087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −24.1803 −1.22916
\(388\) 0 0
\(389\) 31.8885 1.61681 0.808407 0.588624i \(-0.200330\pi\)
0.808407 + 0.588624i \(0.200330\pi\)
\(390\) 0 0
\(391\) −6.47214 −0.327310
\(392\) 0 0
\(393\) 54.8328 2.76595
\(394\) 0 0
\(395\) −6.47214 −0.325649
\(396\) 0 0
\(397\) −6.58359 −0.330421 −0.165211 0.986258i \(-0.552830\pi\)
−0.165211 + 0.986258i \(0.552830\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.88854 −0.393935 −0.196968 0.980410i \(-0.563109\pi\)
−0.196968 + 0.980410i \(0.563109\pi\)
\(402\) 0 0
\(403\) 5.70820 0.284346
\(404\) 0 0
\(405\) −24.4164 −1.21326
\(406\) 0 0
\(407\) −6.47214 −0.320812
\(408\) 0 0
\(409\) 32.8328 1.62348 0.811739 0.584020i \(-0.198521\pi\)
0.811739 + 0.584020i \(0.198521\pi\)
\(410\) 0 0
\(411\) −64.3607 −3.17468
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) 0 0
\(417\) 43.7771 2.14377
\(418\) 0 0
\(419\) −0.583592 −0.0285103 −0.0142552 0.999898i \(-0.504538\pi\)
−0.0142552 + 0.999898i \(0.504538\pi\)
\(420\) 0 0
\(421\) 3.88854 0.189516 0.0947580 0.995500i \(-0.469792\pi\)
0.0947580 + 0.995500i \(0.469792\pi\)
\(422\) 0 0
\(423\) 96.7214 4.70275
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.47214 −0.119356
\(430\) 0 0
\(431\) 38.0689 1.83371 0.916857 0.399216i \(-0.130718\pi\)
0.916857 + 0.399216i \(0.130718\pi\)
\(432\) 0 0
\(433\) 24.8328 1.19339 0.596694 0.802469i \(-0.296480\pi\)
0.596694 + 0.802469i \(0.296480\pi\)
\(434\) 0 0
\(435\) −27.4164 −1.31452
\(436\) 0 0
\(437\) −2.47214 −0.118258
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −52.3050 −2.49071
\(442\) 0 0
\(443\) −22.6525 −1.07625 −0.538126 0.842865i \(-0.680867\pi\)
−0.538126 + 0.842865i \(0.680867\pi\)
\(444\) 0 0
\(445\) −10.0000 −0.474045
\(446\) 0 0
\(447\) −19.4164 −0.918365
\(448\) 0 0
\(449\) −9.05573 −0.427366 −0.213683 0.976903i \(-0.568546\pi\)
−0.213683 + 0.976903i \(0.568546\pi\)
\(450\) 0 0
\(451\) −8.36068 −0.393689
\(452\) 0 0
\(453\) 34.4721 1.61964
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.88854 0.369011 0.184505 0.982832i \(-0.440932\pi\)
0.184505 + 0.982832i \(0.440932\pi\)
\(458\) 0 0
\(459\) 28.9443 1.35100
\(460\) 0 0
\(461\) −4.11146 −0.191490 −0.0957448 0.995406i \(-0.530523\pi\)
−0.0957448 + 0.995406i \(0.530523\pi\)
\(462\) 0 0
\(463\) −19.4164 −0.902357 −0.451178 0.892434i \(-0.648996\pi\)
−0.451178 + 0.892434i \(0.648996\pi\)
\(464\) 0 0
\(465\) 18.4721 0.856625
\(466\) 0 0
\(467\) −1.70820 −0.0790463 −0.0395231 0.999219i \(-0.512584\pi\)
−0.0395231 + 0.999219i \(0.512584\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −35.4164 −1.63190
\(472\) 0 0
\(473\) −2.47214 −0.113669
\(474\) 0 0
\(475\) 0.763932 0.0350516
\(476\) 0 0
\(477\) −81.7771 −3.74432
\(478\) 0 0
\(479\) 9.12461 0.416914 0.208457 0.978032i \(-0.433156\pi\)
0.208457 + 0.978032i \(0.433156\pi\)
\(480\) 0 0
\(481\) 8.47214 0.386296
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) 29.3050 1.32793 0.663967 0.747762i \(-0.268872\pi\)
0.663967 + 0.747762i \(0.268872\pi\)
\(488\) 0 0
\(489\) −33.8885 −1.53249
\(490\) 0 0
\(491\) −34.4721 −1.55571 −0.777853 0.628446i \(-0.783691\pi\)
−0.777853 + 0.628446i \(0.783691\pi\)
\(492\) 0 0
\(493\) 16.9443 0.763132
\(494\) 0 0
\(495\) −5.70820 −0.256565
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 37.7082 1.68805 0.844026 0.536303i \(-0.180180\pi\)
0.844026 + 0.536303i \(0.180180\pi\)
\(500\) 0 0
\(501\) 25.8885 1.15661
\(502\) 0 0
\(503\) 14.2918 0.637240 0.318620 0.947883i \(-0.396781\pi\)
0.318620 + 0.947883i \(0.396781\pi\)
\(504\) 0 0
\(505\) −14.0000 −0.622992
\(506\) 0 0
\(507\) 3.23607 0.143719
\(508\) 0 0
\(509\) −9.05573 −0.401388 −0.200694 0.979654i \(-0.564320\pi\)
−0.200694 + 0.979654i \(0.564320\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 11.0557 0.488122
\(514\) 0 0
\(515\) 6.29180 0.277250
\(516\) 0 0
\(517\) 9.88854 0.434898
\(518\) 0 0
\(519\) −35.4164 −1.55461
\(520\) 0 0
\(521\) −6.58359 −0.288432 −0.144216 0.989546i \(-0.546066\pi\)
−0.144216 + 0.989546i \(0.546066\pi\)
\(522\) 0 0
\(523\) −19.5967 −0.856906 −0.428453 0.903564i \(-0.640941\pi\)
−0.428453 + 0.903564i \(0.640941\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.4164 −0.497307
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) 0 0
\(531\) −42.6525 −1.85096
\(532\) 0 0
\(533\) 10.9443 0.474049
\(534\) 0 0
\(535\) 16.1803 0.699537
\(536\) 0 0
\(537\) 54.8328 2.36621
\(538\) 0 0
\(539\) −5.34752 −0.230334
\(540\) 0 0
\(541\) −17.0557 −0.733283 −0.366642 0.930362i \(-0.619492\pi\)
−0.366642 + 0.930362i \(0.619492\pi\)
\(542\) 0 0
\(543\) 1.52786 0.0655669
\(544\) 0 0
\(545\) 1.05573 0.0452224
\(546\) 0 0
\(547\) 35.5967 1.52201 0.761004 0.648748i \(-0.224707\pi\)
0.761004 + 0.648748i \(0.224707\pi\)
\(548\) 0 0
\(549\) −33.4164 −1.42618
\(550\) 0 0
\(551\) 6.47214 0.275722
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 27.4164 1.16376
\(556\) 0 0
\(557\) 25.4164 1.07693 0.538464 0.842649i \(-0.319005\pi\)
0.538464 + 0.842649i \(0.319005\pi\)
\(558\) 0 0
\(559\) 3.23607 0.136871
\(560\) 0 0
\(561\) 4.94427 0.208747
\(562\) 0 0
\(563\) −14.2918 −0.602327 −0.301164 0.953572i \(-0.597375\pi\)
−0.301164 + 0.953572i \(0.597375\pi\)
\(564\) 0 0
\(565\) −19.8885 −0.836717
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 41.4164 1.73627 0.868133 0.496332i \(-0.165320\pi\)
0.868133 + 0.496332i \(0.165320\pi\)
\(570\) 0 0
\(571\) −13.5279 −0.566123 −0.283062 0.959102i \(-0.591350\pi\)
−0.283062 + 0.959102i \(0.591350\pi\)
\(572\) 0 0
\(573\) −57.8885 −2.41833
\(574\) 0 0
\(575\) −3.23607 −0.134953
\(576\) 0 0
\(577\) −41.4164 −1.72419 −0.862094 0.506749i \(-0.830847\pi\)
−0.862094 + 0.506749i \(0.830847\pi\)
\(578\) 0 0
\(579\) 19.4164 0.806918
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8.36068 −0.346264
\(584\) 0 0
\(585\) 7.47214 0.308935
\(586\) 0 0
\(587\) −13.5279 −0.558355 −0.279177 0.960240i \(-0.590062\pi\)
−0.279177 + 0.960240i \(0.590062\pi\)
\(588\) 0 0
\(589\) −4.36068 −0.179679
\(590\) 0 0
\(591\) 64.3607 2.64744
\(592\) 0 0
\(593\) −0.111456 −0.00457696 −0.00228848 0.999997i \(-0.500728\pi\)
−0.00228848 + 0.999997i \(0.500728\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 67.7771 2.77393
\(598\) 0 0
\(599\) −6.47214 −0.264444 −0.132222 0.991220i \(-0.542211\pi\)
−0.132222 + 0.991220i \(0.542211\pi\)
\(600\) 0 0
\(601\) −15.8885 −0.648107 −0.324054 0.946039i \(-0.605046\pi\)
−0.324054 + 0.946039i \(0.605046\pi\)
\(602\) 0 0
\(603\) 78.2492 3.18655
\(604\) 0 0
\(605\) 10.4164 0.423487
\(606\) 0 0
\(607\) −34.0689 −1.38281 −0.691407 0.722466i \(-0.743009\pi\)
−0.691407 + 0.722466i \(0.743009\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.9443 −0.523669
\(612\) 0 0
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 0 0
\(615\) 35.4164 1.42813
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) −2.65248 −0.106612 −0.0533060 0.998578i \(-0.516976\pi\)
−0.0533060 + 0.998578i \(0.516976\pi\)
\(620\) 0 0
\(621\) −46.8328 −1.87934
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.88854 0.0754212
\(628\) 0 0
\(629\) −16.9443 −0.675612
\(630\) 0 0
\(631\) −43.0132 −1.71233 −0.856163 0.516705i \(-0.827158\pi\)
−0.856163 + 0.516705i \(0.827158\pi\)
\(632\) 0 0
\(633\) 28.9443 1.15043
\(634\) 0 0
\(635\) 9.70820 0.385258
\(636\) 0 0
\(637\) 7.00000 0.277350
\(638\) 0 0
\(639\) −5.70820 −0.225813
\(640\) 0 0
\(641\) −14.0000 −0.552967 −0.276483 0.961019i \(-0.589169\pi\)
−0.276483 + 0.961019i \(0.589169\pi\)
\(642\) 0 0
\(643\) 15.0557 0.593740 0.296870 0.954918i \(-0.404057\pi\)
0.296870 + 0.954918i \(0.404057\pi\)
\(644\) 0 0
\(645\) 10.4721 0.412340
\(646\) 0 0
\(647\) 19.2361 0.756248 0.378124 0.925755i \(-0.376569\pi\)
0.378124 + 0.925755i \(0.376569\pi\)
\(648\) 0 0
\(649\) −4.36068 −0.171172
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.8328 −0.502187 −0.251093 0.967963i \(-0.580790\pi\)
−0.251093 + 0.967963i \(0.580790\pi\)
\(654\) 0 0
\(655\) −16.9443 −0.662067
\(656\) 0 0
\(657\) −56.2492 −2.19449
\(658\) 0 0
\(659\) −33.3050 −1.29738 −0.648688 0.761054i \(-0.724682\pi\)
−0.648688 + 0.761054i \(0.724682\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) 0 0
\(663\) −6.47214 −0.251357
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −27.4164 −1.06157
\(668\) 0 0
\(669\) −32.0000 −1.23719
\(670\) 0 0
\(671\) −3.41641 −0.131889
\(672\) 0 0
\(673\) 43.8885 1.69178 0.845890 0.533358i \(-0.179070\pi\)
0.845890 + 0.533358i \(0.179070\pi\)
\(674\) 0 0
\(675\) 14.4721 0.557033
\(676\) 0 0
\(677\) −12.8328 −0.493205 −0.246603 0.969117i \(-0.579314\pi\)
−0.246603 + 0.969117i \(0.579314\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 59.7771 2.29066
\(682\) 0 0
\(683\) −44.3607 −1.69741 −0.848707 0.528863i \(-0.822618\pi\)
−0.848707 + 0.528863i \(0.822618\pi\)
\(684\) 0 0
\(685\) 19.8885 0.759902
\(686\) 0 0
\(687\) 32.3607 1.23464
\(688\) 0 0
\(689\) 10.9443 0.416944
\(690\) 0 0
\(691\) 43.0132 1.63630 0.818149 0.575007i \(-0.195001\pi\)
0.818149 + 0.575007i \(0.195001\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.5279 −0.513141
\(696\) 0 0
\(697\) −21.8885 −0.829088
\(698\) 0 0
\(699\) −35.4164 −1.33957
\(700\) 0 0
\(701\) −51.8885 −1.95980 −0.979902 0.199481i \(-0.936074\pi\)
−0.979902 + 0.199481i \(0.936074\pi\)
\(702\) 0 0
\(703\) −6.47214 −0.244101
\(704\) 0 0
\(705\) −41.8885 −1.57761
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15.8885 −0.596707 −0.298353 0.954455i \(-0.596437\pi\)
−0.298353 + 0.954455i \(0.596437\pi\)
\(710\) 0 0
\(711\) 48.3607 1.81367
\(712\) 0 0
\(713\) 18.4721 0.691787
\(714\) 0 0
\(715\) 0.763932 0.0285694
\(716\) 0 0
\(717\) 8.58359 0.320560
\(718\) 0 0
\(719\) −46.8328 −1.74657 −0.873285 0.487210i \(-0.838015\pi\)
−0.873285 + 0.487210i \(0.838015\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −51.4164 −1.91220
\(724\) 0 0
\(725\) 8.47214 0.314647
\(726\) 0 0
\(727\) −25.7082 −0.953465 −0.476732 0.879049i \(-0.658179\pi\)
−0.476732 + 0.879049i \(0.658179\pi\)
\(728\) 0 0
\(729\) 41.9443 1.55349
\(730\) 0 0
\(731\) −6.47214 −0.239381
\(732\) 0 0
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) 0 0
\(735\) 22.6525 0.835549
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) 35.0132 1.28798 0.643990 0.765034i \(-0.277278\pi\)
0.643990 + 0.765034i \(0.277278\pi\)
\(740\) 0 0
\(741\) −2.47214 −0.0908162
\(742\) 0 0
\(743\) 6.11146 0.224208 0.112104 0.993697i \(-0.464241\pi\)
0.112104 + 0.993697i \(0.464241\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 29.8885 1.09356
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 46.4721 1.69579 0.847896 0.530162i \(-0.177869\pi\)
0.847896 + 0.530162i \(0.177869\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) −10.6525 −0.387683
\(756\) 0 0
\(757\) −28.8328 −1.04795 −0.523973 0.851735i \(-0.675551\pi\)
−0.523973 + 0.851735i \(0.675551\pi\)
\(758\) 0 0
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −14.9443 −0.540311
\(766\) 0 0
\(767\) 5.70820 0.206111
\(768\) 0 0
\(769\) 14.9443 0.538904 0.269452 0.963014i \(-0.413157\pi\)
0.269452 + 0.963014i \(0.413157\pi\)
\(770\) 0 0
\(771\) 16.3607 0.589215
\(772\) 0 0
\(773\) −28.2492 −1.01605 −0.508027 0.861341i \(-0.669625\pi\)
−0.508027 + 0.861341i \(0.669625\pi\)
\(774\) 0 0
\(775\) −5.70820 −0.205045
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.36068 −0.299552
\(780\) 0 0
\(781\) −0.583592 −0.0208826
\(782\) 0 0
\(783\) 122.610 4.38172
\(784\) 0 0
\(785\) 10.9443 0.390618
\(786\) 0 0
\(787\) −21.8885 −0.780242 −0.390121 0.920764i \(-0.627567\pi\)
−0.390121 + 0.920764i \(0.627567\pi\)
\(788\) 0 0
\(789\) −5.52786 −0.196797
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.47214 0.158810
\(794\) 0 0
\(795\) 35.4164 1.25609
\(796\) 0 0
\(797\) −22.0000 −0.779280 −0.389640 0.920967i \(-0.627401\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 25.8885 0.915871
\(800\) 0 0
\(801\) 74.7214 2.64015
\(802\) 0 0
\(803\) −5.75078 −0.202940
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 19.4164 0.683490
\(808\) 0 0
\(809\) 4.47214 0.157232 0.0786160 0.996905i \(-0.474950\pi\)
0.0786160 + 0.996905i \(0.474950\pi\)
\(810\) 0 0
\(811\) 39.2361 1.37776 0.688882 0.724873i \(-0.258102\pi\)
0.688882 + 0.724873i \(0.258102\pi\)
\(812\) 0 0
\(813\) 60.3607 2.11694
\(814\) 0 0
\(815\) 10.4721 0.366823
\(816\) 0 0
\(817\) −2.47214 −0.0864891
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.05573 0.176446 0.0882231 0.996101i \(-0.471881\pi\)
0.0882231 + 0.996101i \(0.471881\pi\)
\(822\) 0 0
\(823\) −21.1246 −0.736358 −0.368179 0.929755i \(-0.620019\pi\)
−0.368179 + 0.929755i \(0.620019\pi\)
\(824\) 0 0
\(825\) 2.47214 0.0860687
\(826\) 0 0
\(827\) 26.8328 0.933068 0.466534 0.884503i \(-0.345502\pi\)
0.466534 + 0.884503i \(0.345502\pi\)
\(828\) 0 0
\(829\) 37.4164 1.29953 0.649763 0.760137i \(-0.274868\pi\)
0.649763 + 0.760137i \(0.274868\pi\)
\(830\) 0 0
\(831\) 22.4721 0.779550
\(832\) 0 0
\(833\) −14.0000 −0.485071
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) −82.6099 −2.85542
\(838\) 0 0
\(839\) −50.6525 −1.74872 −0.874359 0.485280i \(-0.838718\pi\)
−0.874359 + 0.485280i \(0.838718\pi\)
\(840\) 0 0
\(841\) 42.7771 1.47507
\(842\) 0 0
\(843\) 32.3607 1.11456
\(844\) 0 0
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 99.1935 3.40431
\(850\) 0 0
\(851\) 27.4164 0.939822
\(852\) 0 0
\(853\) 12.4721 0.427038 0.213519 0.976939i \(-0.431508\pi\)
0.213519 + 0.976939i \(0.431508\pi\)
\(854\) 0 0
\(855\) −5.70820 −0.195216
\(856\) 0 0
\(857\) 21.0557 0.719250 0.359625 0.933097i \(-0.382905\pi\)
0.359625 + 0.933097i \(0.382905\pi\)
\(858\) 0 0
\(859\) 11.6393 0.397128 0.198564 0.980088i \(-0.436372\pi\)
0.198564 + 0.980088i \(0.436372\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.0557 0.648665 0.324332 0.945943i \(-0.394860\pi\)
0.324332 + 0.945943i \(0.394860\pi\)
\(864\) 0 0
\(865\) 10.9443 0.372116
\(866\) 0 0
\(867\) −42.0689 −1.42873
\(868\) 0 0
\(869\) 4.94427 0.167723
\(870\) 0 0
\(871\) −10.4721 −0.354835
\(872\) 0 0
\(873\) −74.7214 −2.52893
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −17.7771 −0.600290 −0.300145 0.953894i \(-0.597035\pi\)
−0.300145 + 0.953894i \(0.597035\pi\)
\(878\) 0 0
\(879\) 72.3607 2.44067
\(880\) 0 0
\(881\) −9.63932 −0.324757 −0.162378 0.986729i \(-0.551917\pi\)
−0.162378 + 0.986729i \(0.551917\pi\)
\(882\) 0 0
\(883\) −14.2918 −0.480957 −0.240479 0.970654i \(-0.577304\pi\)
−0.240479 + 0.970654i \(0.577304\pi\)
\(884\) 0 0
\(885\) 18.4721 0.620934
\(886\) 0 0
\(887\) 4.76393 0.159957 0.0799786 0.996797i \(-0.474515\pi\)
0.0799786 + 0.996797i \(0.474515\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 18.6525 0.624881
\(892\) 0 0
\(893\) 9.88854 0.330908
\(894\) 0 0
\(895\) −16.9443 −0.566385
\(896\) 0 0
\(897\) 10.4721 0.349654
\(898\) 0 0
\(899\) −48.3607 −1.61292
\(900\) 0 0
\(901\) −21.8885 −0.729213
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.472136 −0.0156943
\(906\) 0 0
\(907\) −41.7082 −1.38490 −0.692449 0.721467i \(-0.743468\pi\)
−0.692449 + 0.721467i \(0.743468\pi\)
\(908\) 0 0
\(909\) 104.610 3.46969
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 3.05573 0.101130
\(914\) 0 0
\(915\) 14.4721 0.478434
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −38.4721 −1.26908 −0.634539 0.772891i \(-0.718810\pi\)
−0.634539 + 0.772891i \(0.718810\pi\)
\(920\) 0 0
\(921\) −38.8328 −1.27958
\(922\) 0 0
\(923\) 0.763932 0.0251451
\(924\) 0 0
\(925\) −8.47214 −0.278562
\(926\) 0 0
\(927\) −47.0132 −1.54411
\(928\) 0 0
\(929\) −18.9443 −0.621541 −0.310771 0.950485i \(-0.600587\pi\)
−0.310771 + 0.950485i \(0.600587\pi\)
\(930\) 0 0
\(931\) −5.34752 −0.175258
\(932\) 0 0
\(933\) 36.9443 1.20950
\(934\) 0 0
\(935\) −1.52786 −0.0499665
\(936\) 0 0
\(937\) −44.8328 −1.46462 −0.732312 0.680969i \(-0.761559\pi\)
−0.732312 + 0.680969i \(0.761559\pi\)
\(938\) 0 0
\(939\) −67.4164 −2.20005
\(940\) 0 0
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 35.4164 1.15332
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −39.0557 −1.26914 −0.634570 0.772865i \(-0.718823\pi\)
−0.634570 + 0.772865i \(0.718823\pi\)
\(948\) 0 0
\(949\) 7.52786 0.244365
\(950\) 0 0
\(951\) 98.2492 3.18595
\(952\) 0 0
\(953\) −7.16718 −0.232168 −0.116084 0.993239i \(-0.537034\pi\)
−0.116084 + 0.993239i \(0.537034\pi\)
\(954\) 0 0
\(955\) 17.8885 0.578860
\(956\) 0 0
\(957\) 20.9443 0.677032
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.58359 0.0510836
\(962\) 0 0
\(963\) −120.902 −3.89600
\(964\) 0 0
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) 60.1378 1.93390 0.966950 0.254966i \(-0.0820642\pi\)
0.966950 + 0.254966i \(0.0820642\pi\)
\(968\) 0 0
\(969\) 4.94427 0.158833
\(970\) 0 0
\(971\) 26.8328 0.861106 0.430553 0.902565i \(-0.358319\pi\)
0.430553 + 0.902565i \(0.358319\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.23607 −0.103637
\(976\) 0 0
\(977\) −15.5279 −0.496780 −0.248390 0.968660i \(-0.579902\pi\)
−0.248390 + 0.968660i \(0.579902\pi\)
\(978\) 0 0
\(979\) 7.63932 0.244154
\(980\) 0 0
\(981\) −7.88854 −0.251862
\(982\) 0 0
\(983\) 7.63932 0.243656 0.121828 0.992551i \(-0.461124\pi\)
0.121828 + 0.992551i \(0.461124\pi\)
\(984\) 0 0
\(985\) −19.8885 −0.633702
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.4721 0.332995
\(990\) 0 0
\(991\) −3.05573 −0.0970684 −0.0485342 0.998822i \(-0.515455\pi\)
−0.0485342 + 0.998822i \(0.515455\pi\)
\(992\) 0 0
\(993\) −2.47214 −0.0784509
\(994\) 0 0
\(995\) −20.9443 −0.663978
\(996\) 0 0
\(997\) 0.832816 0.0263755 0.0131878 0.999913i \(-0.495802\pi\)
0.0131878 + 0.999913i \(0.495802\pi\)
\(998\) 0 0
\(999\) −122.610 −3.87921
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.2.a.g.1.2 2
3.2 odd 2 4680.2.a.bc.1.2 2
4.3 odd 2 1040.2.a.i.1.1 2
5.2 odd 4 2600.2.d.j.1249.1 4
5.3 odd 4 2600.2.d.j.1249.4 4
5.4 even 2 2600.2.a.o.1.1 2
8.3 odd 2 4160.2.a.bm.1.2 2
8.5 even 2 4160.2.a.x.1.1 2
12.11 even 2 9360.2.a.cs.1.1 2
13.12 even 2 6760.2.a.t.1.2 2
20.19 odd 2 5200.2.a.bz.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.a.g.1.2 2 1.1 even 1 trivial
1040.2.a.i.1.1 2 4.3 odd 2
2600.2.a.o.1.1 2 5.4 even 2
2600.2.d.j.1249.1 4 5.2 odd 4
2600.2.d.j.1249.4 4 5.3 odd 4
4160.2.a.x.1.1 2 8.5 even 2
4160.2.a.bm.1.2 2 8.3 odd 2
4680.2.a.bc.1.2 2 3.2 odd 2
5200.2.a.bz.1.2 2 20.19 odd 2
6760.2.a.t.1.2 2 13.12 even 2
9360.2.a.cs.1.1 2 12.11 even 2