Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [520,2,Mod(1,520)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(520, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("520.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 520 = 2^{3} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 520.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(4.15222090511\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 520.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −1.00000 | −0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −3.00000 | −1.00000 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −4.00000 | −1.20605 | −0.603023 | − | 0.797724i | \(-0.706037\pi\) | ||||
−0.603023 | + | 0.797724i | \(0.706037\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −1.00000 | −0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −6.00000 | −1.45521 | −0.727607 | − | 0.685994i | \(-0.759367\pi\) | ||||
−0.727607 | + | 0.685994i | \(0.759367\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −6.00000 | −0.986394 | −0.493197 | − | 0.869918i | \(-0.664172\pi\) | ||||
−0.493197 | + | 0.869918i | \(0.664172\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 8.00000 | 1.21999 | 0.609994 | − | 0.792406i | \(-0.291172\pi\) | ||||
0.609994 | + | 0.792406i | \(0.291172\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 3.00000 | 0.447214 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 2.00000 | 0.274721 | 0.137361 | − | 0.990521i | \(-0.456138\pi\) | ||||
0.137361 | + | 0.990521i | \(0.456138\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 4.00000 | 0.539360 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 4.00000 | 0.520756 | 0.260378 | − | 0.965507i | \(-0.416153\pi\) | ||||
0.260378 | + | 0.965507i | \(0.416153\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 1.00000 | 0.124035 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 12.0000 | 1.46603 | 0.733017 | − | 0.680211i | \(-0.238112\pi\) | ||||
0.733017 | + | 0.680211i | \(0.238112\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −4.00000 | −0.474713 | −0.237356 | − | 0.971423i | \(-0.576281\pi\) | ||||
−0.237356 | + | 0.971423i | \(0.576281\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 14.0000 | 1.63858 | 0.819288 | − | 0.573382i | \(-0.194369\pi\) | ||||
0.819288 | + | 0.573382i | \(0.194369\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −16.0000 | −1.80014 | −0.900070 | − | 0.435745i | \(-0.856485\pi\) | ||||
−0.900070 | + | 0.435745i | \(0.856485\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 9.00000 | 1.00000 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000 | 1.31717 | 0.658586 | − | 0.752506i | \(-0.271155\pi\) | ||||
0.658586 | + | 0.752506i | \(0.271155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 6.00000 | 0.650791 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 2.00000 | 0.212000 | 0.106000 | − | 0.994366i | \(-0.466196\pi\) | ||||
0.106000 | + | 0.994366i | \(0.466196\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | −4.00000 | −0.410391 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −2.00000 | −0.203069 | −0.101535 | − | 0.994832i | \(-0.532375\pi\) | ||||
−0.101535 | + | 0.994832i | \(0.532375\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 12.0000 | 1.20605 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −2.00000 | −0.199007 | −0.0995037 | − | 0.995037i | \(-0.531726\pi\) | ||||
−0.0995037 | + | 0.995037i | \(0.531726\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000 | 0.788263 | 0.394132 | − | 0.919054i | \(-0.371045\pi\) | ||||
0.394132 | + | 0.919054i | \(0.371045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −8.00000 | −0.773389 | −0.386695 | − | 0.922208i | \(-0.626383\pi\) | ||||
−0.386695 | + | 0.922208i | \(0.626383\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000 | 0.191565 | 0.0957826 | − | 0.995402i | \(-0.469465\pi\) | ||||
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −6.00000 | −0.564433 | −0.282216 | − | 0.959351i | \(-0.591070\pi\) | ||||
−0.282216 | + | 0.959351i | \(0.591070\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 3.00000 | 0.277350 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −1.00000 | −0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −12.0000 | −1.04844 | −0.524222 | − | 0.851581i | \(-0.675644\pi\) | ||||
−0.524222 | + | 0.851581i | \(0.675644\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −2.00000 | −0.170872 | −0.0854358 | − | 0.996344i | \(-0.527228\pi\) | ||||
−0.0854358 | + | 0.996344i | \(0.527228\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 20.0000 | 1.69638 | 0.848189 | − | 0.529694i | \(-0.177693\pi\) | ||||
0.848189 | + | 0.529694i | \(0.177693\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 4.00000 | 0.334497 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 2.00000 | 0.166091 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 18.0000 | 1.47462 | 0.737309 | − | 0.675556i | \(-0.236096\pi\) | ||||
0.737309 | + | 0.675556i | \(0.236096\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 4.00000 | 0.325515 | 0.162758 | − | 0.986666i | \(-0.447961\pi\) | ||||
0.162758 | + | 0.986666i | \(0.447961\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 18.0000 | 1.45521 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 4.00000 | 0.321288 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −14.0000 | −1.11732 | −0.558661 | − | 0.829396i | \(-0.688685\pi\) | ||||
−0.558661 | + | 0.829396i | \(0.688685\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 4.00000 | 0.313304 | 0.156652 | − | 0.987654i | \(-0.449930\pi\) | ||||
0.156652 | + | 0.987654i | \(0.449930\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −24.0000 | −1.85718 | −0.928588 | − | 0.371113i | \(-0.878976\pi\) | ||||
−0.928588 | + | 0.371113i | \(0.878976\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −12.0000 | −0.917663 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 10.0000 | 0.760286 | 0.380143 | − | 0.924928i | \(-0.375875\pi\) | ||||
0.380143 | + | 0.924928i | \(0.375875\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 22.0000 | 1.63525 | 0.817624 | − | 0.575753i | \(-0.195291\pi\) | ||||
0.817624 | + | 0.575753i | \(0.195291\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 6.00000 | 0.441129 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 24.0000 | 1.75505 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.0000 | −1.73658 | −0.868290 | − | 0.496058i | \(-0.834780\pi\) | ||||
−0.868290 | + | 0.496058i | \(0.834780\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −18.0000 | −1.29567 | −0.647834 | − | 0.761781i | \(-0.724325\pi\) | ||||
−0.647834 | + | 0.761781i | \(0.724325\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −6.00000 | −0.427482 | −0.213741 | − | 0.976890i | \(-0.568565\pi\) | ||||
−0.213741 | + | 0.976890i | \(0.568565\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −24.0000 | −1.70131 | −0.850657 | − | 0.525720i | \(-0.823796\pi\) | ||||
−0.850657 | + | 0.525720i | \(0.823796\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 6.00000 | 0.419058 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −16.0000 | −1.10674 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −20.0000 | −1.37686 | −0.688428 | − | 0.725304i | \(-0.741699\pi\) | ||||
−0.688428 | + | 0.725304i | \(0.741699\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −8.00000 | −0.545595 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 6.00000 | 0.403604 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 16.0000 | 1.07144 | 0.535720 | − | 0.844396i | \(-0.320040\pi\) | ||||
0.535720 | + | 0.844396i | \(0.320040\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | −3.00000 | −0.200000 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 4.00000 | 0.265489 | 0.132745 | − | 0.991150i | \(-0.457621\pi\) | ||||
0.132745 | + | 0.991150i | \(0.457621\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
−0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 18.0000 | 1.17922 | 0.589610 | − | 0.807688i | \(-0.299282\pi\) | ||||
0.589610 | + | 0.807688i | \(0.299282\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 4.00000 | 0.258738 | 0.129369 | − | 0.991596i | \(-0.458705\pi\) | ||||
0.129369 | + | 0.991596i | \(0.458705\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −14.0000 | −0.901819 | −0.450910 | − | 0.892570i | \(-0.648900\pi\) | ||||
−0.450910 | + | 0.892570i | \(0.648900\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 7.00000 | 0.447214 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −4.00000 | −0.254514 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −4.00000 | −0.252478 | −0.126239 | − | 0.992000i | \(-0.540291\pi\) | ||||
−0.126239 | + | 0.992000i | \(0.540291\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −22.0000 | −1.37232 | −0.686161 | − | 0.727450i | \(-0.740706\pi\) | ||||
−0.686161 | + | 0.727450i | \(0.740706\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.00000 | 0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −16.0000 | −0.986602 | −0.493301 | − | 0.869859i | \(-0.664210\pi\) | ||||
−0.493301 | + | 0.869859i | \(0.664210\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −2.00000 | −0.122859 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −26.0000 | −1.58525 | −0.792624 | − | 0.609711i | \(-0.791286\pi\) | ||||
−0.792624 | + | 0.609711i | \(0.791286\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −20.0000 | −1.21491 | −0.607457 | − | 0.794353i | \(-0.707810\pi\) | ||||
−0.607457 | + | 0.794353i | \(0.707810\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −4.00000 | −0.241209 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2.00000 | 0.120168 | 0.0600842 | − | 0.998193i | \(-0.480863\pi\) | ||||
0.0600842 | + | 0.998193i | \(0.480863\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 12.0000 | 0.718421 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 18.0000 | 1.07379 | 0.536895 | − | 0.843649i | \(-0.319597\pi\) | ||||
0.536895 | + | 0.843649i | \(0.319597\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −32.0000 | −1.90220 | −0.951101 | − | 0.308879i | \(-0.900046\pi\) | ||||
−0.951101 | + | 0.308879i | \(0.900046\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −6.00000 | −0.350524 | −0.175262 | − | 0.984522i | \(-0.556077\pi\) | ||||
−0.175262 | + | 0.984522i | \(0.556077\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −4.00000 | −0.232889 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 10.0000 | 0.572598 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 28.0000 | 1.59804 | 0.799022 | − | 0.601302i | \(-0.205351\pi\) | ||||
0.799022 | + | 0.601302i | \(0.205351\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −8.00000 | −0.453638 | −0.226819 | − | 0.973937i | \(-0.572833\pi\) | ||||
−0.226819 | + | 0.973937i | \(0.572833\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −6.00000 | −0.339140 | −0.169570 | − | 0.985518i | \(-0.554238\pi\) | ||||
−0.169570 | + | 0.985518i | \(0.554238\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −14.0000 | −0.786318 | −0.393159 | − | 0.919470i | \(-0.628618\pi\) | ||||
−0.393159 | + | 0.919470i | \(0.628618\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 8.00000 | 0.447914 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −24.0000 | −1.33540 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −1.00000 | −0.0554700 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 20.0000 | 1.09930 | 0.549650 | − | 0.835395i | \(-0.314761\pi\) | ||||
0.549650 | + | 0.835395i | \(0.314761\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 18.0000 | 0.986394 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −12.0000 | −0.655630 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 18.0000 | 0.980522 | 0.490261 | − | 0.871576i | \(-0.336901\pi\) | ||||
0.490261 | + | 0.871576i | \(0.336901\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 16.0000 | 0.866449 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −8.00000 | −0.429463 | −0.214731 | − | 0.976673i | \(-0.568888\pi\) | ||||
−0.214731 | + | 0.976673i | \(0.568888\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −14.0000 | −0.749403 | −0.374701 | − | 0.927146i | \(-0.622255\pi\) | ||||
−0.374701 | + | 0.927146i | \(0.622255\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −18.0000 | −0.958043 | −0.479022 | − | 0.877803i | \(-0.659008\pi\) | ||||
−0.479022 | + | 0.877803i | \(0.659008\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 4.00000 | 0.212298 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −12.0000 | −0.633336 | −0.316668 | − | 0.948536i | \(-0.602564\pi\) | ||||
−0.316668 | + | 0.948536i | \(0.602564\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −14.0000 | −0.732793 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 18.0000 | 0.937043 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −22.0000 | −1.13912 | −0.569558 | − | 0.821951i | \(-0.692886\pi\) | ||||
−0.569558 | + | 0.821951i | \(0.692886\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 2.00000 | 0.103005 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 12.0000 | 0.616399 | 0.308199 | − | 0.951322i | \(-0.400274\pi\) | ||||
0.308199 | + | 0.951322i | \(0.400274\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −8.00000 | −0.408781 | −0.204390 | − | 0.978889i | \(-0.565521\pi\) | ||||
−0.204390 | + | 0.978889i | \(0.565521\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | −24.0000 | −1.21999 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 16.0000 | 0.805047 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 18.0000 | 0.903394 | 0.451697 | − | 0.892171i | \(-0.350819\pi\) | ||||
0.451697 | + | 0.892171i | \(0.350819\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 10.0000 | 0.499376 | 0.249688 | − | 0.968326i | \(-0.419672\pi\) | ||||
0.249688 | + | 0.968326i | \(0.419672\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 4.00000 | 0.199254 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | −9.00000 | −0.447214 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 24.0000 | 1.18964 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −14.0000 | −0.692255 | −0.346128 | − | 0.938187i | \(-0.612504\pi\) | ||||
−0.346128 | + | 0.938187i | \(0.612504\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −12.0000 | −0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 28.0000 | 1.36789 | 0.683945 | − | 0.729534i | \(-0.260263\pi\) | ||||
0.683945 | + | 0.729534i | \(0.260263\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000 | 0.487370 | 0.243685 | − | 0.969854i | \(-0.421644\pi\) | ||||
0.243685 | + | 0.969854i | \(0.421644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −6.00000 | −0.291043 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 36.0000 | 1.73406 | 0.867029 | − | 0.498257i | \(-0.166026\pi\) | ||||
0.867029 | + | 0.498257i | \(0.166026\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −14.0000 | −0.672797 | −0.336399 | − | 0.941720i | \(-0.609209\pi\) | ||||
−0.336399 | + | 0.941720i | \(0.609209\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 21.0000 | 1.00000 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 16.0000 | 0.760183 | 0.380091 | − | 0.924949i | \(-0.375893\pi\) | ||||
0.380091 | + | 0.924949i | \(0.375893\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −2.00000 | −0.0948091 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 10.0000 | 0.471929 | 0.235965 | − | 0.971762i | \(-0.424175\pi\) | ||||
0.235965 | + | 0.971762i | \(0.424175\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 24.0000 | 1.13012 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −10.0000 | −0.467780 | −0.233890 | − | 0.972263i | \(-0.575146\pi\) | ||||
−0.233890 | + | 0.972263i | \(0.575146\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −14.0000 | −0.652045 | −0.326023 | − | 0.945362i | \(-0.605709\pi\) | ||||
−0.326023 | + | 0.945362i | \(0.605709\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 32.0000 | 1.48717 | 0.743583 | − | 0.668644i | \(-0.233125\pi\) | ||||
0.743583 | + | 0.668644i | \(0.233125\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 8.00000 | 0.370196 | 0.185098 | − | 0.982720i | \(-0.440740\pi\) | ||||
0.185098 | + | 0.982720i | \(0.440740\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −32.0000 | −1.47136 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 4.00000 | 0.183533 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −6.00000 | −0.274721 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −36.0000 | −1.64488 | −0.822441 | − | 0.568850i | \(-0.807388\pi\) | ||||
−0.822441 | + | 0.568850i | \(0.807388\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 6.00000 | 0.273576 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 2.00000 | 0.0908153 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 16.0000 | 0.725029 | 0.362515 | − | 0.931978i | \(-0.381918\pi\) | ||||
0.362515 | + | 0.931978i | \(0.381918\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 20.0000 | 0.902587 | 0.451294 | − | 0.892375i | \(-0.350963\pi\) | ||||
0.451294 | + | 0.892375i | \(0.350963\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 12.0000 | 0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | −12.0000 | −0.539360 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 44.0000 | 1.96971 | 0.984855 | − | 0.173379i | \(-0.0554684\pi\) | ||||
0.984855 | + | 0.173379i | \(0.0554684\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 24.0000 | 1.07011 | 0.535054 | − | 0.844818i | \(-0.320291\pi\) | ||||
0.535054 | + | 0.844818i | \(0.320291\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 2.00000 | 0.0889988 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −8.00000 | −0.352522 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −6.00000 | −0.262865 | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||||
−0.131432 | + | 0.991325i | \(0.541958\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −16.0000 | −0.699631 | −0.349816 | − | 0.936819i | \(-0.613756\pi\) | ||||
−0.349816 | + | 0.936819i | \(0.613756\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 24.0000 | 1.04546 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | −12.0000 | −0.520756 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 6.00000 | 0.259889 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 8.00000 | 0.345870 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 28.0000 | 1.20605 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 10.0000 | 0.429934 | 0.214967 | − | 0.976621i | \(-0.431036\pi\) | ||||
0.214967 | + | 0.976621i | \(0.431036\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −2.00000 | −0.0856706 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −8.00000 | −0.342055 | −0.171028 | − | 0.985266i | \(-0.554709\pi\) | ||||
−0.171028 | + | 0.985266i | \(0.554709\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 30.0000 | 1.28037 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −8.00000 | −0.340811 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 18.0000 | 0.762684 | 0.381342 | − | 0.924434i | \(-0.375462\pi\) | ||||
0.381342 | + | 0.924434i | \(0.375462\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 6.00000 | 0.252422 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 42.0000 | 1.76073 | 0.880366 | − | 0.474295i | \(-0.157297\pi\) | ||||
0.880366 | + | 0.474295i | \(0.157297\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 28.0000 | 1.17176 | 0.585882 | − | 0.810397i | \(-0.300748\pi\) | ||||
0.585882 | + | 0.810397i | \(0.300748\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −10.0000 | −0.416305 | −0.208153 | − | 0.978096i | \(-0.566745\pi\) | ||||
−0.208153 | + | 0.978096i | \(0.566745\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −8.00000 | −0.331326 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | −3.00000 | −0.124035 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −12.0000 | −0.495293 | −0.247647 | − | 0.968850i | \(-0.579657\pi\) | ||||
−0.247647 | + | 0.968850i | \(0.579657\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −16.0000 | −0.659269 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −34.0000 | −1.39621 | −0.698106 | − | 0.715994i | \(-0.745974\pi\) | ||||
−0.698106 | + | 0.715994i | \(0.745974\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −32.0000 | −1.30748 | −0.653742 | − | 0.756717i | \(-0.726802\pi\) | ||||
−0.653742 | + | 0.756717i | \(0.726802\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −22.0000 | −0.897399 | −0.448699 | − | 0.893683i | \(-0.648113\pi\) | ||||
−0.448699 | + | 0.893683i | \(0.648113\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | −36.0000 | −1.46603 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −5.00000 | −0.203279 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 24.0000 | 0.974130 | 0.487065 | − | 0.873366i | \(-0.338067\pi\) | ||||
0.487065 | + | 0.873366i | \(0.338067\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −22.0000 | −0.888572 | −0.444286 | − | 0.895885i | \(-0.646543\pi\) | ||||
−0.444286 | + | 0.895885i | \(0.646543\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 38.0000 | 1.52982 | 0.764911 | − | 0.644136i | \(-0.222783\pi\) | ||||
0.764911 | + | 0.644136i | \(0.222783\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −28.0000 | −1.12542 | −0.562708 | − | 0.826656i | \(-0.690240\pi\) | ||||
−0.562708 | + | 0.826656i | \(0.690240\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 36.0000 | 1.43541 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 36.0000 | 1.43314 | 0.716569 | − | 0.697517i | \(-0.245712\pi\) | ||||
0.716569 | + | 0.697517i | \(0.245712\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −8.00000 | −0.317470 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 7.00000 | 0.277350 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 12.0000 | 0.474713 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 18.0000 | 0.710957 | 0.355479 | − | 0.934684i | \(-0.384318\pi\) | ||||
0.355479 | + | 0.934684i | \(0.384318\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −44.0000 | −1.73519 | −0.867595 | − | 0.497271i | \(-0.834335\pi\) | ||||
−0.867595 | + | 0.497271i | \(0.834335\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 40.0000 | 1.57256 | 0.786281 | − | 0.617869i | \(-0.212004\pi\) | ||||
0.786281 | + | 0.617869i | \(0.212004\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −16.0000 | −0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −46.0000 | −1.80012 | −0.900060 | − | 0.435767i | \(-0.856477\pi\) | ||||
−0.900060 | + | 0.435767i | \(0.856477\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 12.0000 | 0.468879 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | −42.0000 | −1.63858 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −20.0000 | −0.779089 | −0.389545 | − | 0.921008i | \(-0.627368\pi\) | ||||
−0.389545 | + | 0.921008i | \(0.627368\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 2.00000 | 0.0777910 | 0.0388955 | − | 0.999243i | \(-0.487616\pi\) | ||||
0.0388955 | + | 0.999243i | \(0.487616\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 40.0000 | 1.54418 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 26.0000 | 1.00223 | 0.501113 | − | 0.865382i | \(-0.332924\pi\) | ||||
0.501113 | + | 0.865382i | \(0.332924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −6.00000 | −0.230599 | −0.115299 | − | 0.993331i | \(-0.536783\pi\) | ||||
−0.115299 | + | 0.993331i | \(0.536783\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −4.00000 | −0.153056 | −0.0765279 | − | 0.997067i | \(-0.524383\pi\) | ||||
−0.0765279 | + | 0.997067i | \(0.524383\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 2.00000 | 0.0764161 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −2.00000 | −0.0761939 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −20.0000 | −0.760836 | −0.380418 | − | 0.924815i | \(-0.624220\pi\) | ||||
−0.380418 | + | 0.924815i | \(0.624220\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −20.0000 | −0.758643 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 36.0000 | 1.36360 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −42.0000 | −1.58632 | −0.793159 | − | 0.609015i | \(-0.791565\pi\) | ||||
−0.793159 | + | 0.609015i | \(0.791565\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −24.0000 | −0.905177 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −46.0000 | −1.72757 | −0.863783 | − | 0.503864i | \(-0.831911\pi\) | ||||
−0.863783 | + | 0.503864i | \(0.831911\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 48.0000 | 1.80014 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −4.00000 | −0.149592 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 8.00000 | 0.298350 | 0.149175 | − | 0.988811i | \(-0.452338\pi\) | ||||
0.149175 | + | 0.988811i | \(0.452338\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −2.00000 | −0.0742781 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −27.0000 | −1.00000 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −48.0000 | −1.77534 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −46.0000 | −1.69905 | −0.849524 | − | 0.527549i | \(-0.823111\pi\) | ||||
−0.849524 | + | 0.527549i | \(0.823111\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −48.0000 | −1.76810 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 36.0000 | 1.32428 | 0.662141 | − | 0.749380i | \(-0.269648\pi\) | ||||
0.662141 | + | 0.749380i | \(0.269648\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 48.0000 | 1.76095 | 0.880475 | − | 0.474093i | \(-0.157224\pi\) | ||||
0.880475 | + | 0.474093i | \(0.157224\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −18.0000 | −0.659469 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | −36.0000 | −1.31717 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −24.0000 | −0.875772 | −0.437886 | − | 0.899030i | \(-0.644273\pi\) | ||||
−0.437886 | + | 0.899030i | \(0.644273\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −4.00000 | −0.145575 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 34.0000 | 1.23575 | 0.617876 | − | 0.786276i | \(-0.287994\pi\) | ||||
0.617876 | + | 0.786276i | \(0.287994\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 34.0000 | 1.23250 | 0.616250 | − | 0.787551i | \(-0.288651\pi\) | ||||
0.616250 | + | 0.787551i | \(0.288651\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | −18.0000 | −0.650791 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −4.00000 | −0.144432 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −46.0000 | −1.65880 | −0.829401 | − | 0.558653i | \(-0.811318\pi\) | ||||
−0.829401 | + | 0.558653i | \(0.811318\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 26.0000 | 0.935155 | 0.467578 | − | 0.883952i | \(-0.345127\pi\) | ||||
0.467578 | + | 0.883952i | \(0.345127\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −4.00000 | −0.143684 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −24.0000 | −0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 16.0000 | 0.572525 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 14.0000 | 0.499681 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −20.0000 | −0.712923 | −0.356462 | − | 0.934310i | \(-0.616017\pi\) | ||||
−0.356462 | + | 0.934310i | \(0.616017\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 10.0000 | 0.355110 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −6.00000 | −0.212531 | −0.106265 | − | 0.994338i | \(-0.533889\pi\) | ||||
−0.106265 | + | 0.994338i | \(0.533889\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −6.00000 | −0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −56.0000 | −1.97620 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 42.0000 | 1.47664 | 0.738321 | − | 0.674450i | \(-0.235619\pi\) | ||||
0.738321 | + | 0.674450i | \(0.235619\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 12.0000 | 0.421377 | 0.210688 | − | 0.977553i | \(-0.432429\pi\) | ||||
0.210688 | + | 0.977553i | \(0.432429\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −4.00000 | −0.140114 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 32.0000 | 1.11954 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 42.0000 | 1.46581 | 0.732905 | − | 0.680331i | \(-0.238164\pi\) | ||||
0.732905 | + | 0.680331i | \(0.238164\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | −16.0000 | −0.557725 | −0.278862 | − | 0.960331i | \(-0.589957\pi\) | ||||
−0.278862 | + | 0.960331i | \(0.589957\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −36.0000 | −1.25184 | −0.625921 | − | 0.779886i | \(-0.715277\pi\) | ||||
−0.625921 | + | 0.779886i | \(0.715277\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −10.0000 | −0.347314 | −0.173657 | − | 0.984806i | \(-0.555558\pi\) | ||||
−0.173657 | + | 0.984806i | \(0.555558\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 42.0000 | 1.45521 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 24.0000 | 0.830554 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 12.0000 | 0.414286 | 0.207143 | − | 0.978311i | \(-0.433583\pi\) | ||||
0.207143 | + | 0.978311i | \(0.433583\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −1.00000 | −0.0344010 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 26.0000 | 0.890223 | 0.445112 | − | 0.895475i | \(-0.353164\pi\) | ||||
0.445112 | + | 0.895475i | \(0.353164\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 12.0000 | 0.410391 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −6.00000 | −0.204956 | −0.102478 | − | 0.994735i | \(-0.532677\pi\) | ||||
−0.102478 | + | 0.994735i | \(0.532677\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −4.00000 | −0.136478 | −0.0682391 | − | 0.997669i | \(-0.521738\pi\) | ||||
−0.0682391 | + | 0.997669i | \(0.521738\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −10.0000 | −0.340010 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 64.0000 | 2.17105 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −12.0000 | −0.406604 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 6.00000 | 0.203069 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −46.0000 | −1.55331 | −0.776655 | − | 0.629926i | \(-0.783085\pi\) | ||||
−0.776655 | + | 0.629926i | \(0.783085\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −30.0000 | −1.01073 | −0.505363 | − | 0.862907i | \(-0.668641\pi\) | ||||
−0.505363 | + | 0.862907i | \(0.668641\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −16.0000 | −0.538443 | −0.269221 | − | 0.963078i | \(-0.586766\pi\) | ||||
−0.269221 | + | 0.963078i | \(0.586766\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −48.0000 | −1.61168 | −0.805841 | − | 0.592132i | \(-0.798286\pi\) | ||||
−0.805841 | + | 0.592132i | \(0.798286\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −36.0000 | −1.20605 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 12.0000 | 0.401116 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 8.00000 | 0.266815 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −12.0000 | −0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −22.0000 | −0.731305 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 6.00000 | 0.199007 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | −48.0000 | −1.58857 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −32.0000 | −1.05558 | −0.527791 | − | 0.849374i | \(-0.676980\pi\) | ||||
−0.527791 | + | 0.849374i | \(0.676980\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 4.00000 | 0.131662 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −6.00000 | −0.197279 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | −24.0000 | −0.788263 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 26.0000 | 0.853032 | 0.426516 | − | 0.904480i | \(-0.359741\pi\) | ||||
0.426516 | + | 0.904480i | \(0.359741\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −28.0000 | −0.917663 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −24.0000 | −0.784884 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 58.0000 | 1.89478 | 0.947389 | − | 0.320085i | \(-0.103712\pi\) | ||||
0.947389 | + | 0.320085i | \(0.103712\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −54.0000 | −1.76035 | −0.880175 | − | 0.474650i | \(-0.842575\pi\) | ||||
−0.880175 | + | 0.474650i | \(0.842575\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −28.0000 | −0.909878 | −0.454939 | − | 0.890523i | \(-0.650339\pi\) | ||||
−0.454939 | + | 0.890523i | \(0.650339\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −14.0000 | −0.454459 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 42.0000 | 1.36051 | 0.680257 | − | 0.732974i | \(-0.261868\pi\) | ||||
0.680257 | + | 0.732974i | \(0.261868\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 24.0000 | 0.776622 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 24.0000 | 0.773389 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 18.0000 | 0.579441 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −24.0000 | −0.771788 | −0.385894 | − | 0.922543i | \(-0.626107\pi\) | ||||
−0.385894 | + | 0.922543i | \(0.626107\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 36.0000 | 1.15529 | 0.577647 | − | 0.816286i | \(-0.303971\pi\) | ||||
0.577647 | + | 0.816286i | \(0.303971\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 38.0000 | 1.21573 | 0.607864 | − | 0.794041i | \(-0.292027\pi\) | ||||
0.607864 | + | 0.794041i | \(0.292027\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −8.00000 | −0.255681 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −6.00000 | −0.191565 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 56.0000 | 1.78612 | 0.893061 | − | 0.449935i | \(-0.148553\pi\) | ||||
0.893061 | + | 0.449935i | \(0.148553\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 6.00000 | 0.191176 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 16.0000 | 0.508257 | 0.254128 | − | 0.967170i | \(-0.418211\pi\) | ||||
0.254128 | + | 0.967170i | \(0.418211\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 24.0000 | 0.760851 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 10.0000 | 0.316703 | 0.158352 | − | 0.987383i | \(-0.449382\pi\) | ||||
0.158352 | + | 0.987383i | \(0.449382\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 520.2.a.a.1.1 | ✓ | 1 | |
3.2 | odd | 2 | 4680.2.a.t.1.1 | 1 | |||
4.3 | odd | 2 | 1040.2.a.d.1.1 | 1 | |||
5.2 | odd | 4 | 2600.2.d.g.1249.2 | 2 | |||
5.3 | odd | 4 | 2600.2.d.g.1249.1 | 2 | |||
5.4 | even | 2 | 2600.2.a.h.1.1 | 1 | |||
8.3 | odd | 2 | 4160.2.a.l.1.1 | 1 | |||
8.5 | even | 2 | 4160.2.a.m.1.1 | 1 | |||
12.11 | even | 2 | 9360.2.a.bl.1.1 | 1 | |||
13.12 | even | 2 | 6760.2.a.j.1.1 | 1 | |||
20.19 | odd | 2 | 5200.2.a.s.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
520.2.a.a.1.1 | ✓ | 1 | 1.1 | even | 1 | trivial | |
1040.2.a.d.1.1 | 1 | 4.3 | odd | 2 | |||
2600.2.a.h.1.1 | 1 | 5.4 | even | 2 | |||
2600.2.d.g.1249.1 | 2 | 5.3 | odd | 4 | |||
2600.2.d.g.1249.2 | 2 | 5.2 | odd | 4 | |||
4160.2.a.l.1.1 | 1 | 8.3 | odd | 2 | |||
4160.2.a.m.1.1 | 1 | 8.5 | even | 2 | |||
4680.2.a.t.1.1 | 1 | 3.2 | odd | 2 | |||
5200.2.a.s.1.1 | 1 | 20.19 | odd | 2 | |||
6760.2.a.j.1.1 | 1 | 13.12 | even | 2 | |||
9360.2.a.bl.1.1 | 1 | 12.11 | even | 2 |