Newspace parameters
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.415222090511\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/52\mathbb{Z}\right)^\times\).
\(n\) | \(27\) | \(41\) |
\(\chi(n)\) | \(-1\) | \(i\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 |
|
1.00000 | − | 1.00000i | 0 | − | 2.00000i | −3.00000 | + | 3.00000i | 0 | 0 | −2.00000 | − | 2.00000i | 3.00000 | 6.00000i | |||||||||||||||||
47.1 | 1.00000 | + | 1.00000i | 0 | 2.00000i | −3.00000 | − | 3.00000i | 0 | 0 | −2.00000 | + | 2.00000i | 3.00000 | − | 6.00000i | ||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-1}) \) |
13.d | odd | 4 | 1 | inner |
52.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 52.2.f.a | ✓ | 2 |
3.b | odd | 2 | 1 | 468.2.n.c | 2 | ||
4.b | odd | 2 | 1 | CM | 52.2.f.a | ✓ | 2 |
8.b | even | 2 | 1 | 832.2.k.d | 2 | ||
8.d | odd | 2 | 1 | 832.2.k.d | 2 | ||
12.b | even | 2 | 1 | 468.2.n.c | 2 | ||
13.b | even | 2 | 1 | 676.2.f.b | 2 | ||
13.c | even | 3 | 2 | 676.2.l.a | 4 | ||
13.d | odd | 4 | 1 | inner | 52.2.f.a | ✓ | 2 |
13.d | odd | 4 | 1 | 676.2.f.b | 2 | ||
13.e | even | 6 | 2 | 676.2.l.g | 4 | ||
13.f | odd | 12 | 2 | 676.2.l.a | 4 | ||
13.f | odd | 12 | 2 | 676.2.l.g | 4 | ||
39.f | even | 4 | 1 | 468.2.n.c | 2 | ||
52.b | odd | 2 | 1 | 676.2.f.b | 2 | ||
52.f | even | 4 | 1 | inner | 52.2.f.a | ✓ | 2 |
52.f | even | 4 | 1 | 676.2.f.b | 2 | ||
52.i | odd | 6 | 2 | 676.2.l.g | 4 | ||
52.j | odd | 6 | 2 | 676.2.l.a | 4 | ||
52.l | even | 12 | 2 | 676.2.l.a | 4 | ||
52.l | even | 12 | 2 | 676.2.l.g | 4 | ||
104.j | odd | 4 | 1 | 832.2.k.d | 2 | ||
104.m | even | 4 | 1 | 832.2.k.d | 2 | ||
156.l | odd | 4 | 1 | 468.2.n.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
52.2.f.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
52.2.f.a | ✓ | 2 | 4.b | odd | 2 | 1 | CM |
52.2.f.a | ✓ | 2 | 13.d | odd | 4 | 1 | inner |
52.2.f.a | ✓ | 2 | 52.f | even | 4 | 1 | inner |
468.2.n.c | 2 | 3.b | odd | 2 | 1 | ||
468.2.n.c | 2 | 12.b | even | 2 | 1 | ||
468.2.n.c | 2 | 39.f | even | 4 | 1 | ||
468.2.n.c | 2 | 156.l | odd | 4 | 1 | ||
676.2.f.b | 2 | 13.b | even | 2 | 1 | ||
676.2.f.b | 2 | 13.d | odd | 4 | 1 | ||
676.2.f.b | 2 | 52.b | odd | 2 | 1 | ||
676.2.f.b | 2 | 52.f | even | 4 | 1 | ||
676.2.l.a | 4 | 13.c | even | 3 | 2 | ||
676.2.l.a | 4 | 13.f | odd | 12 | 2 | ||
676.2.l.a | 4 | 52.j | odd | 6 | 2 | ||
676.2.l.a | 4 | 52.l | even | 12 | 2 | ||
676.2.l.g | 4 | 13.e | even | 6 | 2 | ||
676.2.l.g | 4 | 13.f | odd | 12 | 2 | ||
676.2.l.g | 4 | 52.i | odd | 6 | 2 | ||
676.2.l.g | 4 | 52.l | even | 12 | 2 | ||
832.2.k.d | 2 | 8.b | even | 2 | 1 | ||
832.2.k.d | 2 | 8.d | odd | 2 | 1 | ||
832.2.k.d | 2 | 104.j | odd | 4 | 1 | ||
832.2.k.d | 2 | 104.m | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} \)
acting on \(S_{2}^{\mathrm{new}}(52, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - 2T + 2 \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 6T + 18 \)
$7$
\( T^{2} \)
$11$
\( T^{2} \)
$13$
\( T^{2} + 4T + 13 \)
$17$
\( T^{2} + 4 \)
$19$
\( T^{2} \)
$23$
\( T^{2} \)
$29$
\( (T - 4)^{2} \)
$31$
\( T^{2} \)
$37$
\( T^{2} - 10T + 50 \)
$41$
\( T^{2} + 2T + 2 \)
$43$
\( T^{2} \)
$47$
\( T^{2} \)
$53$
\( (T + 14)^{2} \)
$59$
\( T^{2} \)
$61$
\( (T - 10)^{2} \)
$67$
\( T^{2} \)
$71$
\( T^{2} \)
$73$
\( T^{2} + 22T + 242 \)
$79$
\( T^{2} \)
$83$
\( T^{2} \)
$89$
\( T^{2} - 6T + 18 \)
$97$
\( T^{2} - 10T + 50 \)
show more
show less