Defining parameters
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(52, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 0 | 10 |
Cusp forms | 4 | 0 | 4 |
Eisenstein series | 6 | 0 | 6 |
Decomposition of \(S_{2}^{\mathrm{old}}(52, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(52, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)