Properties

Label 52.2.a
Level 52
Weight 2
Character orbit a
Rep. character \(\chi_{52}(1,\cdot)\)
Character field \(\Q\)
Dimension 1
Newforms 1
Sturm bound 14
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 52.a (trivial)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(14\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(52))\).

Total New Old
Modular forms 10 1 9
Cusp forms 5 1 4
Eisenstein series 5 0 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeDim.
\(-\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\(q \) \(\mathstrut +\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut +\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut -\mathstrut 3q^{9} \) \(\mathstrut -\mathstrut 2q^{11} \) \(\mathstrut -\mathstrut q^{13} \) \(\mathstrut +\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 6q^{19} \) \(\mathstrut +\mathstrut 8q^{23} \) \(\mathstrut -\mathstrut q^{25} \) \(\mathstrut +\mathstrut 2q^{29} \) \(\mathstrut +\mathstrut 10q^{31} \) \(\mathstrut -\mathstrut 4q^{35} \) \(\mathstrut -\mathstrut 6q^{37} \) \(\mathstrut -\mathstrut 6q^{41} \) \(\mathstrut +\mathstrut 4q^{43} \) \(\mathstrut -\mathstrut 6q^{45} \) \(\mathstrut -\mathstrut 2q^{47} \) \(\mathstrut -\mathstrut 3q^{49} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 4q^{55} \) \(\mathstrut -\mathstrut 10q^{59} \) \(\mathstrut -\mathstrut 2q^{61} \) \(\mathstrut +\mathstrut 6q^{63} \) \(\mathstrut -\mathstrut 2q^{65} \) \(\mathstrut +\mathstrut 10q^{67} \) \(\mathstrut +\mathstrut 10q^{71} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 4q^{77} \) \(\mathstrut -\mathstrut 4q^{79} \) \(\mathstrut +\mathstrut 9q^{81} \) \(\mathstrut -\mathstrut 6q^{83} \) \(\mathstrut +\mathstrut 12q^{85} \) \(\mathstrut -\mathstrut 6q^{89} \) \(\mathstrut +\mathstrut 2q^{91} \) \(\mathstrut -\mathstrut 12q^{95} \) \(\mathstrut +\mathstrut 2q^{97} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(52))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 13
52.2.a.a \(1\) \(0.415\) \(\Q\) None \(0\) \(0\) \(2\) \(-2\) \(-\) \(+\) \(q+2q^{5}-2q^{7}-3q^{9}-2q^{11}-q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(52))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(52)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)